
Understanding Requirements for Open Source Software

Walt Scacchi

Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3425 USA

http://www.ics.uci.edu/~wscacchi

wscacchi@ics.uci.edu

June 2008

Abstract

This study presents findings from an empirical study directed at understanding the roles, forms, and

consequences arising in requirements within open source software development efforts. Four open

source software development communities are described, examined, and compared to help discover

what these differences may be. At least two dozen kinds of software informalisms are found to play a

critical role in the elicitation, analysis, specification, validation, and management of requirements for

developing open source software systems. Subsequently, understanding the roles these software

informalisms take in a new formulation of the requirements development process for open source

software is the focus of this study. This focus enables considering a reformulation of the requirements

engineering process and its associated artifacts or (in)formalisms to better account for the

requirements for developing open source software systems.

1

http://www.ics.uci.edu/~wscacchi
mailto:wscacchi@ics.uci.edu

1. Overview

The focus in this paper is directed at understanding the requirements processes for open source

software development efforts, and how the development of these requirements differs from those

traditional to software engineering and requirements engineering [Davis 1990 Jackson 1995, Kotonya

1998, Nuseibeh 2000]. This study is about ongoing discovery, description, and abstraction of open

source software development practices and artifacts in different settings across different

communities. It is about expanding our notions of what requirements need to address to account for

open source software development. Subsequently, these are used to understand what open source

software communities are being examined, and what characteristics distinguish one community from

another. This chapter also builds on, refines, and extends an earlier study on this topic [Scacchi

2002], as well as identifying implications for what requirements arise when developing different

kinds of open source software systems.

This study reports on findings and results from an ongoing investigation of the socio-technical

processes, work practices, and community forms found in open source software development. The

purpose of this multi-year investigation is to develop narrative, semi-structured (i.e., hypertextual),

and formal computational models of these processes, practices, and community forms [Scaccchi, et

al., 2006]. This chapter presents a systematic narrative model that characterizes the processes through

which the requirements for open source software systems are developed. The model compares in

form, and presents a contrasting account of, how software requirements differ across traditional

software engineering and open source approaches. This model is descriptive and empirically

grounded. The model is also comparative in that it attempts to characterize an open source

2

requirements engineering process that transcends the practice in a particular project, or within a

particular community. This comparative dimension is necessary to avoid premature generalizations

about processes or practices associated with a particular open source software system or those that

receive substantial attention in the news media (e.g., the GNU/Linux operating system). Such

comparison also allows for system projects that may follow a different form or version of open

source software development (e.g., those in the higher education computing community or networked

computer game arena). Subsequently, the model is neither prescriptive nor proscriptive in that it does

not characterize what should be or what might be done in order to develop open source software

requirements, except in the concluding discussion, where such remarks are bracketed and qualified.

Comparative case studies of requirements or other software development processes are also important

in that they can serve as foundation for the formalization of our findings and process models as a

process meta-model [Mi 1990]. Such a meta-model can be used to construct a predictive, testable,

and incrementally refined theory of open source software development processes within or across

communities or projects. A process meta-model is also used to configure, generate, or instantiate

Web-based process modeling, prototyping, and enactment environments that enable modeled

processes to be globally deployed and computationally supported [e.g., Noll 1999, Noll 2001, Jensen

2005]. This may be of most value to other academic research or commercial development

organizations that seek to adopt "best practices" for open source software development processes that

are well suited to their needs and situation. Therefore, the study and results presented in this report

denote a new foundation on which computational models of open source software requirements

3

processes may be developed, as well as their subsequent analysis and simulation [cf. Scacchi 2000,

Scacchi, et al., 2006].

The study reported here entails the use of empirical field study methods [Zelkowitz 1998] that follow

conform to the principles for conducting and evaluating interpretive research design [Klein 1999] as

identified earlier [Scacchi 2002].

2. Understanding open source software development across different communities

We assume there is no general model or globally accepted framework that defines how open source

software is or should be developed. Subsequently, our starting point is to investigate open source

software practices in different communities from an ethnographic perspective [Atkinson 2000

Nuseibeh 2000, Viller 2000].

We have chosen five different communities to study. These are those centered about the development

of software for networked computer games, Internet/Web infrastructure, bioinformatics and higher

education computing.

2.1 Networked computer game worlds

Participants in this community focus on the development and evolution of first person shooters (FPS)

games (e.g., Quake Arena, Unreal Tournament), massive multiplayer online role-playing games (e.g.,

World of Warcraft, Lineage, EveOnline, City of Heroes), and others (e.g., The Sims (Electronic Arts),

Grand Theft Auto (Rockstar Games)). Interest in networked computer games and gaming

environments, as well as their single-user counterparts, have exploded in recent years as a major (now

4

global) mode of entertainment, playful fun, and global computerization movement [Scacchi 2004,

Scacchi 2008]. The release of DOOM, an early first-person action game, onto the Web in open source

form in the mid 1990’s, began what is widely recognized the landmark event that launched the

development and redistribution of computer game mods [Cleveland 2001, Scacchi 2002]. Mods are

variants of proprietary (closed source) computer game engines that provide extension mechanisms

like game scripting languages that can be used to modify and extend a game, and these extensions are

licensed for distribution in an open source manner. Mods are created by small numbers of users who

want and are able to modify games, compared to the huge numbers of players that enthusiastically

use the games as provided. The scope of mods has expanded to now include new game types, game

character models and skins (surface textures), levels (game play arenas or virtual worlds), and

artificially intelligent game bots (in-game opponents).

2.2 Internet/Web infrastructure

Participants in this community focus on the development and evolution of systems like the Apache

web server, Mozilla Firefox Web browser1, GNOME and K Development Environment (KDE) for

end-user interfaces, the Eclipse and NetBeans interactive development environments for Java-based

Web applications, and thousands of others2. This community can be viewed as the one most typically

considered in popular accounts of open source software projects. The GNU/Linux operating system

environment is of course the largest, most complex, and most diverse sub-community within this

1 It is reasonable to note that the two main software systems that enabled the World Wide Web, the NCSA Mosaic Web
browser (and its descendants, like Netscape Navigator, Mozilla, Firefox, and off-shoots like K-Meleon, Konqueror,
SeaMonkey, and others), and the Apache Web server (originally know as "httpd") were originally and still remain active
open source software development projects.
2 The SourceForge community web portal (http://www.sourceforge.net) currently stores information on more than 1,750K
registered users and developers, along with nearly 200K open source software development projects, with more than 10% of
those projects indicating the availability of a mature, released, and actively supported software system.

5

http://www.sourceforge.net/

arena, so much so that it merits separate treatment and examination. Many other Internet or Web

infrastructure projects constitute recognizable communities or sub-communities of practice. The

software systems that are the focus generally are not standalone end-user applications, but are often

targeted at system administrators or software developers as the targeted user base, rather than the

eventual end-users of the resulting systems. However, notable exceptions like Web browsers, news

readers, instant messaging, and graphic image manipulation programs are growing in number within

the end-user community

2.3 Bioinformatics

Participants in this community focus on the development and evolution of software systems

supporting research into bioinformatics and related computing-intensive biological research efforts.

In contrast to the preceding two development oriented communities, open source software plays a

significant role in scientific research communities. For example, when scientific findings or

discoveries resulting from remotely sensed observations are reported3, then members of the relevant

scientific community want to be assured that the results are not the byproduct of some questionable

software calculation or opaque processing trick. In scientific fields like astrophysics that critically

depend on software, open source is considered an essential precondition for research to proceed, and

for scientific findings to be trusted and open to independent review and validation. Furthermore, as

discoveries in the physics of deep space are made, this in turn often leads to modification or

3 For example, see http://XXXXX. The open source software processing pipelines for each sensor are mostly distinct and are
maintained by different organizations. However, their outputs must be integrated, and the data source must be registered and
oriented for synchronized alignment or overlay, then composed into a final representation, as shown on the cited Web page.
There are dozens of open source software programs that must be brought into alignment for such an image to be produced,
and for such a scientific discovery to be claimed and substantiated [xxxx].

6

http://XXXXX/

extension of the astronomical software in use in order to further explore and analyze newly observed

phenomena, or to modify/add capabilities to how the remote sensing mechanisms operate.

2.4 Higher education computing

Participants in this community focus on the development and evolution of software supporting

educational and administrative operations found in large universities or similar institutions. This

community should not in general be associated with the activities of academic computer scientists nor

of computer science departments, unless they specifically focus on higher education computing

applications (which is uncommon). People who participate in this community generally develop

software for academic teaching or administrative purposes in order to explore topics like course

management (SakaiProject.org), campuswide information systems/portals (uPortal.org), and

university financial systems (for collecting student tuition, research grants administration, payroll,

etc. -- Kuali.org). Projects in this community are primarily organized and governed through multi-

institution contracts, annual subscriptions, and dedicated staff assignments [Wheeler 2007a].

Furthermore, it appears that software developers in this community are often not the end-users of the

software the develop, in contrast to most FOSS projects. Accordingly, it may not be unreasonable to

expect that open source software developed in this community should embody or demonstrate

principles or best practices in administrative computing found in large public or non-profit

enterprises, rather than commercial for-profit enterprises. This includes the practice of developing

explicit software requirements specification documents prior to undertaking system development.

Furthermore, much like the bioinformatics community, members of this community expect that when

breakthrough technologies or innovations have been declared, such as in a refereed conference paper

7

or publication in an educational computing journal, the opportunity exists for other community

members to be able to access, review, or try out the software to assess and demonstrate its

capabilities. Furthermore, there appears to be growing antagonism toward commercial software

vendors whose products target the higher education computing market (e.g., WebCT,

PeopleSoft/Oracle). However, it is often unacceptable to find that higher education computing

software constitutes nothing more than a research-grade “proof of concept” demonstration or

prototype system, not intended for routine or production use by end-users.

2.5 Military computing

Participants in this community focus on the development and deployment of computing systems and

applications that support military and combat operations. Although information on specific military

systems may be limited, there are a small but growing number of sources of public information and

open source software projects that support military and combat operations, it is becoming clear that

the future of military computing, and the future acquisition of software-intensive, mission-critical

systems for military or combat applications will increasingly rely on open source software [Guertin

2007, Justice 2007, Reichers 2007, Scacchi and Alspaugh 2008 , Starrett 2007, Weathersby 2007,

Wheeler 2007b]. For example, it is now known that combat operations in the Iraq war directed by

the U.S. Army rely on tactical command and control systems hosted on thousands of Linux systems,

along with this deployment representing largest system support contract for Red Hat Linux [Justice

2007]. Other emerging applications are being developed for future combat systems, enterprise

systems (the U.S. Department of Defense is the world's largest enterprise, with more than 1 million

military and civilian employees), and various training systems, among others [Starrett 2007,

Weathersby 2007, Wheeler 2007b]. The development of software systems for developing simulators

8

and game-based virtual worlds [McDowell 2006] are among those military software projects that

operate publicly as a “traditional” FOSS project that employs a GPL software license, while other

projects operate as corporate source (i.e., FOSS projects behind the corporate firewall) or community

source projects, much like those identified for higher education computing [Wheeler 2007a].

2.6 Overall cross-community characteristics

In contrast to efforts that draw attention to generally one (but sometimes many) open source

development project(s) within a single community [e.g., DiBona 1999, Raymond 2001], there is

something to be gained by examining and comparing the communities, processes, and practices of

open source software development in different communities. This may help clarify what observations

may be specific to a given community (e.g., GNU/Linux projects), compared to those that span

multiple, and mostly distinct communities. In this study, two of the communities are primarily

oriented to develop software to support scholarly research or institutional administration

(bioinformatics and higher education computing) with rather small user communities. In contrast, the

other three communities are oriented primarily towards software development efforts that may

replace/create commercially viable systems that are used by large end-user communities. Thus, there

is a sample space that allows comparison of different kinds.

Each of these highlighted items point to the public availability of data that can be collected, analyzed,

and re-represented within narrative ethnographies [Hine 2000, Kling 1982], computational process

models [Mi 1990, Scacchi 2000, Scacchi, et al. 2006], or for quantitative studies [Madey 2005,

Howison 2006]. Significant examples of each kind of data have been collected and analyzed as part

of this ongoing study. This paper includes a number of examples that serve as this data.

9

Subsequently, we turn to review what requirements engineering is about, in order to establish a

baseline of comparison for whether what we observe with the development of open source software

system requirements is similar or different, and if so how.

3. Informalisms for describing open source software requirements

The functional and non-functional requirements for open source software systems are elicited,

analyzed, specified, validated, and managed through a variety of Web-based descriptions. These

descriptions can be treated as software informalisms. Software informalisms [Scacchi 2002] are the

information resources and artifacts that participants use to describe, proscribe, or prescribe what's

happening in a FOSSD project. They are informal narrative resources codified in lean descriptions

[cf. Yamaguchi 2000] that coalesce into online document genres (following Kwansik and Crowston

2005, Spinuzzi 2003) that are comparatively easy to use, and publicly accessible to those who want to

join the project, or just browse around. Subsequently, Scacchi [2002] demonstrates how software

informalisms can take the place of formalisms, like “requirement specifications” or software design

notations which are seen as necessary to develop high quality software according to the software

engineering community [cf. Sommerville 2004]. Yet these software informalisms often capture the

detailed rationale and debates for why changes were made in particular development activities,

artifacts, or source code files. Nonetheless, the contents these informalisms embody require extensive

review and comprehension by a developer before contributions can be made [cf. Lanzara and Morner

2005]. Finally, the choice to designate these descriptions as informalisms4 is to draw a distinction

between how the requirements of open source software systems are described, in contrast to the

4 As Goguen [2000] observes, formalisms are not limited to those based on a mathematical logic or state transition
semantics, but can include descriptive schemes that are formed from structured or semi-structured narratives, such as those
employed in Software Requirements Specifications documents.

10

recommended use of formal, logic-based requirements notations (“formalisms”) that are advocated in

traditional approaches [cf. Davis 1990, Jackson 1995, Kotonya 1998, Nuseibeh 2000].

 In OSSD projects, software informalisms are the preferred scheme for describing or representing

open source software requirements. There is no explicit objective or effort to treat these informalisms

as "informal software requirements" that should be refined into formal requirements [Cybulski 1998

Jackson 1995, Kotonya 1998] within any of these communities. Accordingly, each of the available

types of software requirements informalisms t have been found in one or more of the four

communities in this study. Along the way, we seek to identify some of the relations that link them

together into more comprehensive stories, storylines, or intersecting story fragments that help convey

as well as embody the requirements of an open source software system.

At least two dozen types of software informalisms can be identified, and each has sub-types that can

be identified as follows.

The most common informalisms used in FOSSD projects include (i) communications and messages

within project Email [Yamaguchi 2000], (ii) threaded message discussion forums (see Exhibit 1),

bulletin boards, or group blogs, (iii) news postings, (iv) project digests, and (v) instant messaging or

Internet relay chat [Elliott 2007]. As FOSS developers and user employ these informalisms, they

have been found to also serve as carriers of technical beliefs and debates over desirable software

features, social values (e.g., reciprocity, freedom of choice, freedom of expression), project

community norms, as well as affiliation with the global FOSS social movement [Elliott 2005, 2008].

11

Other common informalisms also include (vi) scenarios of usage as linked Web pages, (vii) how-to

guides, (viii) to-do lists, (ix) FAQs, and other itemized lists, and (x) project Wikis, as well as (xi)

traditional system documentation and (xii) external publications [e.g., Fogel 1999, 2005]. FOSS

(xiii) project property licenses (whether to assert collective ownership, transfer copyrights, insure

“copyleft,” or some other reciprocal agreement) are documents that also help to define what software

or related project content are protected resources that can subsequently be shared, examined,

modified, and redistributed. Finally, (xiv) open software architecture diagrams, (xv) intra-application

functionality realized via scripting languages like Perl and PhP, and the ability to either (xvi)

incorporate externally developed software modules or “plug-ins”, or (xvii) integrate software

modules from other OSSD efforts, are all resources that are used informally, where or when needed

according to the interests or actions of project participants.

All of the software informalisms are found or accessed from (xix) project related Web sites or portals.

These Web environments where most FOSS software informalisms can be found, accessed, studied,

modified, and redistributed [Scacchi 2002].

A Web presence helps make visible the project's information infrastructure and the array of

information resources that populate it. These include FOSSD multi-project Web sites (e.g.,

SourgeForge.net, Savanah.org, Freshment.org, Tigris.org, Apache.org, Mozilla.org), community

software Web sites (PhP-Nuke.org), and project-specific Web sites (e.g., www.GNUenterprise.org),

as well as (xx) embedded project source code Webs (directories), (xxi) project repositories (CVS

[Fogel 1999]), and (xxii) software bug reports and (xxiii) issue tracking data base like Bugzilla

12

[Ripoche 2003, http://www.bugzilla.org/]. Last, giving the growing global interest in online social

networking, it not surprising to find increased attention to documenting various kinds of social

gatherings and meetings using (xxiv) social media Web sites (e.g, YouTube, Flickr, MySpace, etc.)

where FOSS developers, users, and interested others come together to discuss, debate, or work on

FOSS projects, and to use these online media to record, and publish photographs/videos that establish

group identity and affiliation with different FOSS projects.

Together, these two dozen types of software informalisms constitute a substantial yet continually

evolving web of informal, semi-structured, or processable information resources. This web results

from the hyperlinking and cross-referencing that interrelate the contents of different informalisms

together. Subsequently, these FOSS informalisms are produced, used, consumed, or reused within

and across FOSS development projects. They also serve to act as both a distributed virtual repository

of FOSS project assets, as well as the continually adapted distributed knowledge base through which

project participants evolve what they know about the software systems they develop and use.

Overall, it appears that none of these software informalisms would defy an effort to formalize them in

some mathematical logic or analytically rigorous notation. Nonetheless, in the four software

communities examined in this study, there is no perceived requirement for such formalization, nor no

unrecognized opportunity to somehow improve the quality, usability, or cost-effectiveness of the

open source software systems, that has been missed. If formalization of these software benefits has

demonstrable benefit to members of these communities, beyond what they already realize from

13

http://www.bugzilla.org/

current practices, these benefits have yet to be articulated in the discourse that pervades each

community.

4. Open source software processes for developing requirements

In contrast to the world of classic software engineering, open source software development

communities do not seem to readily adopt or practice modern software engineering or requirements

engineering processes. Perhaps this is no surprise. However, these communities do develop software

that is extremely valuable, generally reliable, often trustworthy, and readily used within its associated

user community. So, what processes or practices are being used to develop the requirements for open

source software systems?

We have found many types of software requirements activities being employed within or across the

four communities. However, what we have found is different from common prescriptions for

requirements engineering processes.

4.1 Requirements elicitation vs. assertion of open source software requirements

It appears that open source software requirements are articulated in a number of ways that are

ultimately expressed, represented, or depicted on the Web. On closer examination, requirements for

open source software can appear or be implied within an email message or within a discussion thread

that is captured and/or posted on a Web site for open review, elaboration, refutation, or refinement.

Consider the following example found on the Web site for the KDE system (http://www.kde.org/),

14

http://www.kde.org/

within the Internet/Web Infrastructure community. This example displayed in Exhibit 15 reveals

asserted capabilities for the Qt3 subsystem within KDE.

These capabilities (identified in the exhibit as the "Re: Benefits of Qt3?" discussion thread) highlight

implied requirements for multi-language character sets (Arabic and Hebrew, as well as English),

database support (“…there is often need to access data from a database and display it in a GUI, or

vice versa…”), and others. These requirements are simply asserted without reference to other

documents, sources, standards, or joint application development (JAD) focus groups--they are

requirements because some developers wanted these capabilities.

5 Each exhibit appears as a screenshot of a Web browsing session. It includes contextual information, following the second
research principle, thus requiring and benefiting from a more complete display view.

15

16

Exhibit 1. A sample of implicit requirements for the KDE software subsystem Qt3 expressed in a

threaded email discussion. Source: http://dot.kde.org/996206041/, July 2001.

17

http://dot.kde.org/996206041/

Asserted system capabilities are post hoc requirements characterizing a functional capability that

has already been implemented. The concerned developers justify their requirements through their

provision of the required coding effort to make these capabilities operational. Senior members or

core developers in the community then voted or agreed through discussion to include the asserted

capability into the system’s distribution [Fielding 1999]. The historical record may be there,

within the email or discussion forum archive, to document who required what, where, when,

why, and how. However, once asserted, there is generally no further effort apparent to document,

formalize, or substantiate such a capability as a system requirement. Asserted capabilities then

become taken-for-granted requirements that are can be labeled or treated as obvious to those

familiar with the system's development.

Another example reveals a different kind open source software requirement. This case displayed in

Exhibit 2, finds a requirements “vision” document that conveys a non-functional requirement for both

community development and community software development in the bottom third of the exhibit.

This can be read as a non-functional requirement for the system’s developers to embrace community

software development as the process to develop and evolve the ArgoUML system, rather than say

through a process which relies on the use of system models represented as UML diagrams.

Perhaps community software development, and by extension, community development, are

recognized as being important to the development and success of this system. It may also be a

method for improving system quality and reliability when compared to existing software engineering

tools and techniques (i.e., those based on UML, or supporting UML-based software design).

18

Exhibit 2. A software requirements vision statement encouraging both the development of software

for the community and development of the community. Source: http://www.tigris.org, June 2008.

A third example reveals yet another kind of elicitation found in the Internet/Web infrastructure

community. In Exhibit 3, we see an overview of the MONO project. Here we see multiple statements

for would-be software component/class owners to sign-up and commit to developing the required

ideas, run-time, (object service) classes, and projects. These are non-functional requirements for

19

http://www.tigris.org/

people to volunteer to participate in community software development, in a manner perhaps

compatible with that portrayed in Exhibit 2. The systems in Exhibits 2 and 3 must also be considered

early in their overall development or maturity, since they call for functional capabilities that are

needed to help make sufficiently complete for usage.

Thus, in understanding how the requirements of open source software systems are elicited, we find

evidence for elicitation of volunteers to come forward to participate in community software

development by proposing new software development projects, but only those that are compatible

with the open source software engineering vision for the Tigris.org community. We also observe the

assertion of requirements that simply appear to exist without question or without trace to a point of

origination, rather than somehow being elicited from stakeholders, customers, or prospective end-

users of open source software systems. As previously noted, we have not yet found evidence or data

to indicate the occurrence or documentation of a requirements elicitation effort arising in an open

source software development project. However, finding such evidence would not invalidate the other

observations; instead, it would point to a need to broaden the scope of how software requirements are

captured or recorded.

20

Exhibit 3: A non-functional requirement identifying a need for volunteers to become owners for yet

to be developed software components. Source: http://www.mono-project.com/Todo, June 2008.

21

http://www.go-mono.com/ideas.html

Exhibit 4. An asserted capability (in the center) that invites would-be open source software game

developers to make new game mods, including improved versions, of whatever kind they require

among the various types of available extensions. Source: http://www.ut3modding.com/, June 2008.

22

http://www.ut3modding.com/

4.2 Requirements analysis vs. requirements reading, sense-making, and accountability

Software requirements analysis helps identify what problems a software system is suppose to address,

while requirements specifications identify a mapping of user problems to system based solutions. In

open source software development, how does requirements analysis occur, and where and how are

requirements specifications described? Though requirements analysis and specification are

interrelated activities, rather than distinct stages, we first consider examining how open source

software requirements are analyzed.

Exhibits 5 and 6 come from different points in the same source document, a single research paper

accessible on the Web, associated with the XXX-FOO research project. But how do software

developers in this community (XXXXXXXX) understand what’s involved in the functional operation

of a complex system like this? One answer lies in the observation that developers who seek such an

understanding must read this research paper quite closely, as well as being able to draw on their prior

knowledge and experience in the relevant physical, telemetric, digital, and software domains [cf.

Ackerman 2000]. A close reading likely means one that entails multiple re-readings and sense-

making relative to one’s expertise. A more casual though competent reading requires some degree of

confidence and trust in the authors’ account of how the functionality of the XXX architecture is

configured, in order to accept what is presented as plausible, accurate, and correct.

The notion that requirements for open source software system are, in practice, analyzed via the

reading of technical accounts as narratives, together with making sense of how such readings are

reconciled with one’s prior knowledge, is not unique to the XXX software community. These same

23

activities can and do occur in the other three communities. If one reviews the functional and non-

functional requirements appearing in Exhibits 1-4, it is possible to observe that none of the

descriptions appearing in these exhibits is self-contained. Instead, each requires the reader (e.g., a

developer within the community) to closely or casually read what is described, make sense of it,

consult other materials or one’s expertise, and trust that the description’s author(s) are reliable and

accountable in some manner for the open source software requirements that has been described

[Goguen 2000, Pavlicek 2000]. Analyzing open source software requirements entails little if any

automated analysis, formal reasoning, or visual animation of software requirements specifications [cf.

Nuseibeh 2000]. Yet, participants in these communities are able to understand what the functional

and non-functional requirements are in ways that are sufficient to lead to the ongoing development of

various kinds of open source software systems.

Exhibit 5. An asserted capability indicating that the requirements are very involved and

complex.

Exhibit 6. A specification of data-flow relationships among a network of software module

pipelines that constitute the processing threads that must be configured.

4.3 Requirements specification and modeling vs. continually emerging webs of software discourse

If the requirements for open source software systems are asserted rather than elicited, how are these

requirements specified or modeled? In examining data from the four communities, of which Exhibits

1-6 are instances, it is becoming increasingly apparent that open source software requirements can

emerge from the experiences of community participants through their email and discussion forums.

24

These communication messages in turn give rise to the development of narrative descriptions that

more succinctly specify and condense into a web of discourse about the functional and non-functional

requirements of an open source software system. This discourse is rendered in descriptions that can

be found in email and discussion forum archives, on Web pages that populate community Web sites,

and in other informal software descriptions that are posted, hyperlinked, or passively referenced

through the assumed common knowledge that community participants expect their cohorts to possess.

In Exhibit 5 from the X-ray and deep space imaging software community, we see passing reference in

the opening paragraph to “the requirements for processing Chandra (remotely sensed) telemetry

(imaging data) are very involved and complex.” To comprehend and recognize what these involved

and complex requirements are, community members who develop open source software for such

applications will often be astrophysicists (with Ph.D. degrees), and rarely would be simply a

competent software engineering professional. Subsequently, the astrophysicists that develop software

in this community do not need to recapitulate any software system requirement that would be due to

the problem domain (astrophysics). Instead, community members are already assumed to have

mastery over such topics prior to software development, rather than encountering problems in their

understanding of astrophysicists arising from technical problems in developing, operation, or

functional enhancement of remote sensing or digital imaging software.

Thus, spanning the four communities and the six exhibits, we begin to observe that the requirements

for open source software are specified in webs of discourse that reference or link:

• email or bboard discussion threads,

25

• system vision statements,

• ideas about system functionality and the non-functional need for volunteer developers to

implement the functionality,

• promotional encouragement to specify and develop whatever functionality you need, which might

also help you get a new job, and

• scholarly scientific research publications that underscore how the requirements of astronomical

imaging software though complex, are understood without elaboration, since they rely on prior

scientific knowledge and tradition of open scientific research.

Each of these modes of discourse, as well as their Web-based specification and dissemination, is a

continually emerging source of open source software requirements from new contributions, new

contributors or participants, new ideas, new career opportunities, and new research publications.

4.4 Requirements validation vs. condensing discourse that hardens and concentrates system

functionality and community development

Software requirements are validated with respect to the software’s implementation. The implemented

system can be observed to demonstrate, exhibit, or be tested in operation to validate that its functional

behavior conforms to its functional requirements. Since open source software requirements are

generally not recorded in a formal SRS document, nor are these requirements typically cast in a

mathematical logic, algebraic, or state transition-based notational scheme, then how are the software

implementations to be validated against their requirements?

In each of the four communities, it appears that the requirements for open source software are co-

mingled with design, implementation, and testing descriptions and software artifacts, as well as with

26

user manuals and usage artifacts (e.g., input data, program invocation scripts). Similarly, the

requirements are spread across different kinds of electronic documents including Web pages, sites,

hypertext links, source code directories, threaded email transcripts, and more. In each community,

requirements are described, asserted, or implied informally. Yet it is possible to observe in threaded

email discussions that community participants are able to comprehend and condense wide-ranging

software requirements into succinct descriptions using lean media that pushes the context for their

creation into the background. Goguen [Goguen 2000] suggests the metaphor of "concentrating and

hardening of requirements" as a way to characterize how software requirements evolve into forms

that are perceived as suitable for validation. His characterization seems to quite closely match what

can be observed in the development of requirements for open source software. We find that

requirements validation is a by-product, rather than an explicit goal, of how open source software

requirements are constituted, described, discussed, cross-referenced, and hyperlinked to other

informal descriptions of system and its implementations.

4.5 Communicating requirements vs. global access to open source software webs

One distinguishing feature of open source software associated with each of the four communities is

that their requirements, informal as they are, are organized and typically stored in a persistent form

that is globally accessible. This is true of community Web sites, site contents and hyperlinkage,

source code directories, threaded email and other online discussion forums, descriptions of known

bugs and desired system enhancements, records of multiple system versions, and more. Persistence,

hypertext-style organization and linkage, and global access to open source software descriptions

appear as conditions that do not receive much attention within the classic requirements engineering

approaches, with few exceptions [Cybulski 1998]. Yet, each of these conditions helps in the

27

communication of open source software requirements. These conditions also contribute to the ability

of community participants or outsiders looking in to trace the development and evolution of software

requirements both within the software development descriptions, as well as across community

participants. This enables observers or developers to navigationally trace, for example, a web of

different issues, positions, arguments, policy statements, and design rationales that support (e.g., see

Exhibit 1) or challenge the viability of emerging software requirements [cf. Conklin 1988, Lee 1990].

Each of the four communities also communicates community-oriented requirements. These non-

functional requirements may seem similar to those for enterprise modeling [Nuseibeh 2000].

However, there are some differences, though they may be minor. First, each community is interested

in sustaining and growing the community as a development enterprise [cf. Noll 1999]. Second, each

community is interested in sustaining and growing the community’s open source software artifacts,

descriptions, and representations. Third, each community is interested in updating and evolving the

community's information sharing Web sites. In recognition of these community requirements, it is not

surprising to observe the emergence of commercial efforts (e.g., SourceForge and CollabNet) that

offer community support systems that are intended to address these requirements, such as is used in

the ArgoUML community site, http://www.tigris.org.

4.6 Identifying a common foundation for the development of open source software requirements

Based on the data and analysis presented above, it is possible to begin to identify what items,

practices, or capabilities may better characterize how the requirements for open source software are

developed. This centers of the emergent creation, usage, and evolution of informal software

descriptions as the vehicle for developing open source software requirements.

28

http://www.tigris.org/

5. Understanding open source software requirements

First, there is no single correct, right, or best way/method for constructing software system

requirements. The requirements engineering approach long advocated by the software engineering

and software requirements community does not account for the practice nor results of FOSS system,

project, or community requirements. FOSSD requirements (and subsequent system designs) are

different. Thus, given the apparent success of sustained exponential growth for certain FOSS

systems, and for the world-wide deployment of FOSSD practices, it is save to say that the ongoing

development of FOSS systems points to the continuous development, articulation, adaptation, and

reinvention of their requirements [cf. Scacchi 2006].

Second, the traditional virtues of high-quality software system requirements, namely, their

consistency, completeness, traceability, and internal correctness are not so valued in FOSSD projects.

FOSSD projects focus attention and practice to other virtues that emphasize community development

and participation, as well as other socio-technical concerns. Thus, as with the prior observation,

FOSS system requirements are different, and therefore may represent an alternative paradigm for

how to develop robust systems that are open to both their developers and users.

Third, FOSS developers are generally also end-users of the systems they develop. Thus, there is no

“us-them” distinction regarding the roles of developers and end-users, as is commonly assumed in

traditional system development practices. Because the developers are also end-users, communication

gaps or misunderstandings often found between developers and end-users are typically minimized.

29

Fourth, FOSS requirements tend to be distributed across space, time, people, and the artifacts that

interlink them. FOSS requirements are thus decentralized—that is, decentralized requirements that

co-exist and co-evolve within different artifacts, online conversations, and repositories, as well as

within the continually emerging interactions and collective actions of FOSSD project participants and

surrounding project social world. To be clear, decentralized requirements are not the same as the

(centralized) requirements for decentralized systems or system development efforts. Traditional

software engineering and system development projects assume that their requirements can be elicited,

captured, analyzed, and managed as centrally controlled resources (or documentation artifacts) within

a centralized administrative authority and a centralized repository—that is, centralized requirements.

Once again, FOSS projects represent an alternative paradigm to that long advocated by software

engineering and software requirements engineering community.

Last, given that FOSS developers are frequently the source for the requirements they realize in

hindsight (i.e., what they have successfully implemented and released denote what was required)

rather than in foresight, perhaps it is better to characterize such software system requirements as

instead “software system capabilities” (and not software development practices associated with

capability maturity models). FOSS capabilities embody requirements that have been found

retrospectively to be both implementable and sustainable across releases. Software capabilities

specification is thus perhaps a new engineering practice and methodology that can be investigated,

modeled, supported, and refined in leading towards eventual principles for how best to specify

software system capabilities.

30

6. Conclusions

The paper reports on a study that investigates, compares, and describes how the requirements

engineering processes occurs in open source software development projects found in different

communities. A number of conclusions can be drawn from the findings presented.

First, this study sought to discover and describe the practices and artifacts that characterize how the

requirements for developing open source software systems. Perhaps the processes and artifacts that

were described were obvious to the reader. This might be true for those scholars and students of

software requirements engineering who have already participated in open source software projects,

though advocates who have do not report on the processes described here [DiBona 1999, Pavlicek

2000, Raymond 2001]. For the majority of students who have not participated, it is disappointing to

not find such descriptions, processes, or artifacts within the classic or contemporary literature on

requirements engineering [Davis 1990, Jackson 1995, Kotonya 1998, Nuseibeh 2000]. In contrast,

this study sought to develop a baseline characterization of the how the requirements process for open

source software occurs and the artifacts (and other mechanisms). Given such a baseline of the "as-is"

process for open source software requirements engineering, it now becomes possible to juxtapose one

or more "to-be" prescriptive models for the requirements engineering process, then begin to address

what steps are needed to transform the as-is into the to-be [Scacchi 2000]. Such a position provides a

basis for further studies which seek to examine how to redesign open source software practices into

those closer to advocated by classic or contemporary scholars of software requirements engineering.

This would enable students or scholars of software requirements engineering, for example, to

31

determine whether or not open source software development would benefit from more rigorous

requirements elicitation, analysis, and management, and if so, how.

Second, this study reports on the centrality and importance of software informalisms to the

development of open source software systems, projects, and communities. This result might be

construed as an advocacy of the 'informal' over the 'formal' in how software system requirements are

or should be developed and validated, though it is not so intended. Instead, attention to software

informalisms used in open source software projects, without the need to coerce or transform them

into more mathematically formal notations, raises the issue of what kinds of engineering virtues

should be articulated to evaluate the quality, reliability, or feasibility of open source software system

requirements so expressed. For example, traditional software requirements engineering advocates the

need to assess requirements in terms of virtues like consistency, completeness, traceability, and

correctness [Davis 1990, Jackson 1995]. From the study presented here, it appears that open source

software requirements artifacts might be assessed in terms of virtues like encouragement of

community building; freedom of expression and multiplicity of expression; readability and ease of

navigation; and implicit versus explicit structures for organizing, storing and sharing open source

software requirements. "Low" measures of such virtues might potentially point to increased

likelihood of a failure to develop a sustainable open source software system. Subsequently,

improving the quality of such virtues for open source software requirements may benefit from tools

that encourage community development; social interaction and communicative expression; software

reading and comprehension; community hypertext portals and Web-based repositories. Nonetheless,

resolving such issues is an appropriate subject for further study.

32

Overall, open source software development practices are giving rise to a new view of how complex

software systems can be constructed, deployed, and evolved. open source software development does

not adhere to the traditional engineering rationality found in the legacy of software engineering life

cycle models or prescriptive standards. The development open source software system requirements

is inherently and undeniably a complex web of socio-technical processes, development situations,

and dynamically emerging development contexts [Atkinson 2000, Goguen 2000, Kling 1982, Truex

1999, Viller 2000]. In this way, the requirements for open source software systems continually

emerge through a web of community narratives. These extended narratives embody discourse that is

captured in persistent, globally accessible, open source software informalisms that serve as an

organizational memory [Ackerman 2000], hypertextual issue-based information system [Conklin

1988, Lee 1990], and a networked community environment for information sharing, communication,

and social interaction [Kim 2000, 30, , Truex 1999]. Consequently, ethnographic methods are needed

to elicit, analyze, validate, and communicate what these narratives are, what form they take, what

practices and processes give them their form, and what research methods and principles are employed

to examine them [Goguen 2000, Hine 2000, 19, Kling 1982 Nuseibeh 2000, Viller 2000]. This report

thus contributes a new study of this kind.

Acknowledgements

The research described in this report is supported by grants #0534771 from the U.S. National Science

Foundation, the Acquisition Research Program and the Center for the Edge Research Program at the

Naval Postgraduate School. No endorsement implied. Chris Jensen, Thomas Alspaugh, John Noll,

33

Margaret Elliott, and other st the Institute for Software Research are collaborators on the research

project described in this paper.

7. References

● ACKERMAN, M.S. and HALVERSON, C.A.: 'Reexamining Organizational Memory',

Communications ACM, 43, (1), pp. 59-64, January 2000.

● ATKINSON, C.J.: 'Socio-Technical and Soft Approaches to Information Requirements Elicitation

in the Post-Methodology Era', Requirements Engineering, 5, pp. 67-73, 2000.

● Bollinger, T., (2003). Use of Free and Open-Source Software (FOSS) in the U.S. Department of

Defense, The MITRE Corporation, 2 January. Available at

http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html

● CLEVELAND, C.: 'The Past, Present, and Future of PC Mod Development', Game Developer, pp.

46-49, February 2001.

● CONKLIN, J. and BEGEMAN, M.L.: 'gIBIS: A Hypertext Tool for Effective Policy Discussion',

ACM Transactions Office Information Systems, 6, (4), pp. 303-331, October 1988.

● Crowston, K., & Howison, J. (2006). Hierarchy and centralization in Free and Open Source

Software team communications. Knowledge, Technology & Policy, 18(4), 65–85.

● Crowston, K., Howison, J., & Annabi, H. (2006). Information systems success in Free and Open

Source Software development: Theory and measures. Software Process--Improvement and

Practice, 11(2), 123–148.

● Crowston, K., Wei, K., Li, Q., Eseryel, U. Y., & Howison, J. (2007). Self-organization of teams in

free/libre open source software development. Information and Software Technology Journal, 49,

564-575.

● CYBULSKI, J.L. and REED, K.: 'Computer-Assisted Analysis and Refinement of Informal

Software Requirements Documents', Proceedings Asia-Pacific Software Engineering Conference

(APSEC'98), Taipei, Taiwan, R.O.C., pp. 128-135, December 1998.

● DAVIS, A.M.: 'Software Requirements: Analysis and Specification', Prentice-Hall, 1990.

● DIBONA, C. OCKMAN, S. and STONE, M.: 'Open Sources: Voices from the Open Source

Revolution', O'Reilly Press, Sebastopol, CA, 1999.

34

http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html

● Elliott, M. & Scacchi, W. (2005). Free Software Development: Cooperation and Conflict in A

Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source Software Development,

152-172, IGI Publishing, Hershey, PA.

● Elliott, M. & Scacchi, W. (2008). Mobilization of Software Developers: The Free Software

Movement, Information, Technology and People, 21(1), 4-33, 2008.

● Elliott, M., Ackerman, M.S. & Scacchi, W. (2007). Knowledge Work Artifacts: Kernel Cousins for

Free/Open Source Software Development, Proc. ACM Conf. Support Group Work (Group07),

Sanibel Island, FL, 177-186, November 2007.

● FIELDING,R.T.: 'Shared Leadership in the Apache Project', Communications ACM, 42, (4), pp.

42-43, April 1999.

● Fogel, K., (1999). Open Source Development with CVS, Coriolis Press, Scottsdale, AZ.

● Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free Software

Project, O'Reilly Press, Sebastopol, CA.

● Guertin N., (2007). (Director, Open Architecture, Program Executive Office IWS 7B). Naval Open

Architecture: Open Architecture and Open Source in DOD, Presentation at “Open Source - Open

Standards - Open Architecture,” Association for Enterprise Integration Symposium, Arlington VA,

14 March 2007.

● GOGUEN, J.A.: 'Formality and Informality in Requirements Engineering (Keynote Address)',

Proc. 4th. Intern. Conf. Requirements Engineering, pp. 102-108, IEEE Computer Society, 1996.

● HINE, C.: 'Virtual Ethnography', SAGE Publishers, London, 2000.

● Howison, J., Conklin, M., and Crowston, K. (2006). Flossmole: A collaborative repository for floss

research, data, and analysis.. Intern. J. Information Technology and Web Engineering. 1(3):17-26.

● Howison, J., Wiggins, A. & Crowston, K. (2008). eResearch workflows for studying free and open

source software development. In Proc. 4th Intern. Conf. Open Source Software (IFIP 2.13), Milan,

Italy, 7-10 September.

● JACKSON, M.: 'Software Requirements & Specifications: Practice, Principles, and Prejudices',

Addison-Wesley Pub. Co., Boston, MA, 1995.

● Jensen, C. & Scacchi,W. (2005). Process Modeling Across the Web Information Infrastructure,

Software Process--Improvement and Practice, 10(3), 255-272, July-September 2005.

35

● Jensen, C. & Scacchi,W. (2007). Role Migration and Advancement Processes in OSSD Projects: A

Comparative Case Study, in Proc. 29th. Intern. Conf. Software Engineering, Minneapolis, MN,

ACM Press, May 2007, 364-374.

● Justice, Brig. General Nick (2007). (Program Executive Office, C3T), Open Source Software

Challenge: Delivering Warfighter Value, Presentation at “Open Source - Open Standards - Open

Architecture,” Association for Enterprise Integration Symposium, Arlington VA, 14 March.

● Kwansik, B. and Crowston, K., (2005). Introduction to the special issue: Genres of digital

documents, Information, Technology and People, 18(2).

● KIM, A.J.: 'Community-Building on the Web: Secret Strategies for Successful Online Communities',

Peachpit Press, 2000.

● KLEIN, H. AND MYERS, M.D.: 'A Set of Principles for Conducting and Evaluating Intrepretive

Field Studies in Information Systems', MIS Quarterly, 23, (1), pp. 67-94, March 1999.

● KLING, R. and SCACCHI, W.: 'The Web of Computing: Computer technology as social

organization'. In M. Yovits (ed.), Advances in Computers, 21, pp. 3-90. Academic Press, New York,

1982.

● KOTONYA, G. and SOMMERVILLE, I.: 'Requirements Engineering: Processes and Techniques',

John Wiley and Sons, Inc, New York, 1998.

● Lanzara, G. F. and Morner, M. (2005). Artifacts rule! how organizing happens in open software

projects. In Czarniawska, B. and Hernes, T., editors, Actor Network Theory and Organizing.

Copenhagen Business School Press, Copenhagen.

● LEE, J.: 'SIBYL: a tool for managing group design rationale', Proceedings of the Conference on

Computer-Supported Cooperative Work, Los Angeles, CA, ACM Press, pp. 79-92, 1990.

● Madey, G., Freeh, V., and Tynan, R., (2005). Modeling the F/OSS Community: A Quantitative

Investigation, in S. Koch (ed.), Free/Open Source Software Development, 203-221, Idea Group

Publishing, Hershey, PA.

● McDowell, P., Darken, R., Sullivan, J. and Johnson, E., (2006). Delta3D: A Complete Open Source

Game and Simulation Engine for Building Military Training Systems, J. Defense Modeling and

Simulation: Applications, Methodology, Technology, 3(3), 143-154. July.

36

● MI, P. and SCACCHI, W.: 'A Knowledge-based Environment for Modeling and Simulating

Software Engineering Processes'. IEEE Transactions on Knowledge and Data Engineering, 2, (3),

pp. 283-294, Sept 1990.

● NOLL, J. and SCACCHI, W.: 'Supporting Software Development in Virtual Enterprises'. J. Digital

Information, 1, (4), February 1999, http://jodi.ecs.soton.ac.uk/Articles/v01/i04/Noll/

● NOLL, J. and W. SCACCHI.: 'Specifying Process-Oriented Hypertext for Organizational

Computing', J. Network and Computer Applications, 24, (1), pp. 39-61, 2001.

● NUSEIBEH, R. and EASTERBROOK, S.: 'Requirements Engineering: A Roadmap', in A.

Finkelstein (ed.), The Future of Software Engineering, ACM and IEEE Computer Society Press,

http://www.softwaresystems.org/future.html, 2000.

● PAVLICEK, R.: 'Embracing Insanity: Open Source Software Development', SAMS Publishing,

Indianapolis, IN, 2000.

● RAYMOND, E.: 'The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary', O’Reilly and Associates, Sebastopol, CA, 2001.

● Riechers, C., (2007). (Principal Deputy, Asst. Sect. of the Air Force, Acquisition). The Role of

Open Technology in Improving USAF Software Acquisition, Presentation at “Open Source - Open

Standards - Open Architecture,” Association for Enterprise Integration Symposium, Arlington VA,

14 March.

● Ripoche, G. and Gasser, L., (2003). Scalable Automatic Extraction of Process Models for

Understanding F/OSS Bug Repair, Proc. 16th Intern. Conf. Software Engineering & its Applications

(ICSSEA-03), Paris, France, December, 2003.

● Robinson, W., (2006). A Requirements Monitoring Framework for Enterprise Systems,

Requirements Engineering, 11(1), 17-41.

● SCACCHI, W.: 'Understanding Software Process Redesign using Modeling, Analysis and

Simulation , Software Process--Improvement and Practice, 5, (2/3), pp. 183-195, 2000.

● Scacchi, W. (2002). Understanding the Requirements for Developing Open Source Software

Systems, IEE Proceedings--Software, 149(1), 24-39, February 2002.

● Scacchi, W. (2004). Free/Open Source Software Development Practices in the Computer Game

Community, IEEE Software, 21(1), 59-67, January/February 2004.

37

http://www.softwaresystems.org/future.html
http://jodi.ecs.soton.ac.uk/Articles/v01/i04/Noll/

● Scacchi, W. (2005). Socio-Technical Interaction Networks in Free/Open Source Software

Development Processes, in S.T. Acuña and N. Juristo (eds.), Software Process Modeling, 1-27,

Springer Science+Business Media Inc., New York.

● Scacchi, W. (2006). Understanding Free/Open Source Software Evolution, in N.H. Madhavji, J.F.

Ramil and D. Perry (eds.), Software Evolution and Feedback: Theory and Practice, 181-206, John

Wiley and Sons Inc, New York, 2006.

● Scacchi, W. (2007). Free/Open Source Software Development: Recent Research Results and

Methods, in M.V. Zelkowitz (ed.), Advances in Computers, 69, 243-295.

● Scacchi, W. (2007). Understanding the Development of Free E-Commerce/E-Business Software: A

Resource-Based View, in S.K. Sowe, I. Stamelos, and I. Samoladas (eds.), Emerging Free and

Open Source Software Practices, IGI Publishing, Hershey, PA, 170-190.

● Scacchi, W. (2008). Emerging Patterns of Intersection and Segmentation when Computerization

Movements Interact in K.L. Kraemer and M. Elliott (eds.), Computerization Movements and

Technology Diffusion: From Mainframes to Ubiquitous Computing, Information Today, Inc.

● Scacchi, W. & Alspaugh, T. (2008). Emerging Issues in the Acquisition of Open Source Software

within the U.S. Department of Defense, Proc. 5th Annual Acquisition Research Symposium, Naval

Postgraduate School, Monterey, CA.

● Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., & Lakhani, K. (2006). Understanding Free/Open

Source Software Development Processes, Software Process--Improvement and Practice, 11(2),

95-105, March/April.

● Scacchi, W., Jensen, C., Noll, J. and Elliott, M. (2006). Multi-Modal Modeling, Analysis and

Validation of Open Source Software Development Processes, Intern. J. Internet Technology and

Web Engineering, 1(3), 49-63.

● SMITH, M. and KOLLOCK, P. (eds.): 'Communities in Cyberspace', Routledge, London, 1999.

● Spinuzzi, C., (2003). Tracing Genres through Organizations: A Sociocultural Approach to

Information Design, MIT Press, Cambridge, MA.

● Starrett, E., (2007). Software Acquisition in the Army, Crosstalk: The Journal of Defense Software

Engineering, 4-8, May.

● TRUEX, D., BASKERVILLE, R. and KLEIN, H.: 'Growing Systems in an Emergent Organization',

Communications ACM, 42, (8), pp. 117-123, 1999.

38

● VILLER, S. and SOMMERVILLE, I.: 'Ethnographically informed analysis for software engineers',

Int. J. Human-Computer Studies, 53, pp. 169-196, 2000.

● Weathersby, J.M., (2007). Open Source Software and the Long Road to Sustainability within the

U.S. DoD IT System, The DoD Software Tech News, 10(2), 20-23, June.

● Wheeler, B. (2007a). Open Source 2010: Reflections on 2007, EDUCAUSE, January/February

49-67.

● Wheeler, D.A., (2007b). Open Source Software (OSS) in U.S. Government Acquisitions, The DoD

Software Tech News, 10(2), 7-13, June.

● YAMAGUCHI, Y., YOKOZAWA, M., SHINOHARA, T., and ISHIDA, T.: 'Collaboration with

Lean Media: How Open-Source Software Succeeds', Proceedings of the Conference on Computer

Supported Cooperative Work, (CSCW'00), pp. 329-338, Philadelphia, PA, ACM Press, December

2000.

● ZELKOWITZ, M.V. and WALLACE, D.: 'Experimental Models for Validating Technology',

Computer, 31, (5), pp. 23-31, May 1998.

39

40

41

42

43

	June 2008
	Abstract
	1. Overview
	2. Understanding open source software development across different communities
	2.5 Military computing
	2.6 Overall cross-community characteristics
	3. Informalisms for describing open source software requirements
	At least two dozen types of software informalisms can be identified, and each has sub-types that can be identified as follows.

	4. Open source software processes for developing requirements
	4.1 Requirements elicitation vs. assertion of open source software requirements
	4.2 Requirements analysis vs. requirements reading, sense-making, and accountability
	4.3 Requirements specification and modeling vs. continually emerging webs of software discourse
	4.4 Requirements validation vs. condensing discourse that hardens and concentrates system functionality and community development
	4.5 Communicating requirements vs. global access to open source software webs
	4.6 Identifying a common foundation for the development of open source software requirements

	5. Understanding open source software requirements
	6. Conclusions
	Acknowledgements
	7. References

