Understanding Requirements for Open Source Software

Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425 USA

http://www.ics.uci.edu/~wscacchi

wscacchi@ics.uci.edu

June 2008

Abstract

This study presents findings from an empirical study directed at understanding the roles, forms, and
consequences arising in requirements within open source software development efforts. Four open
source software development communities are described, examined, and compared to help discover
what these differences may be. At least two dozen kinds of software informalisms are found to play a
critical role in the elicitation, analysis, specification, validation, and management of requirements for
developing open source software systems. Subsequently, understanding the roles these software
informalisms take in a new formulation of the requirements development process for open source
software is the focus of this study. This focus enables considering a reformulation of the requirements
engineering process and its associated artifacts or (in)formalisms to better account for the

requirements for developing open source software systems.

http://www.ics.uci.edu/~wscacchi
mailto:wscacchi@ics.uci.edu

1. Overview

The focus in this paper is directed at understanding the requirements processes for open source
software development efforts, and how the development of these requirements differs from those
traditional to software engineering and requirements engineering [Davis 1990 Jackson 1995, Kotonya
1998, Nuseibeh 2000]. This study is about ongoing discovery, description, and abstraction of open
source software development practices and artifacts in different settings across different
communities. It is about expanding our notions of what requirements need to address to account for
open source software development. Subsequently, these are used to understand what open source
software communities are being examined, and what characteristics distinguish one community from
another. This chapter also builds on, refines, and extends an earlier study on this topic [Scacchi
2002], as well as identifying implications for what requirements arise when developing different

kinds of open source software systems.

This study reports on findings and results from an ongoing investigation of the socio-technical
processes, work practices, and community forms found in open source software development. The
purpose of this multi-year investigation is to develop narrative, semi-structured (i.e., hypertextual),
and formal computational models of these processes, practices, and community forms [Scaccchi, et
al., 2006]. This chapter presents a systematic narrative model that characterizes the processes through
which the requirements for open source software systems are developed. The model compares in
form, and presents a contrasting account of, how software requirements differ across traditional
software engineering and open source approaches. This model is descriptive and empirically

grounded. The model is also comparative in that it attempts to characterize an open source

requirements engineering process that transcends the practice in a particular project, or within a
particular community. This comparative dimension is necessary to avoid premature generalizations
about processes or practices associated with a particular open source software system or those that
receive substantial attention in the news media (e.g., the GNU/Linux operating system). Such
comparison also allows for system projects that may follow a different form or version of open
source software development (e.g., those in the higher education computing community or networked
computer game arena). Subsequently, the model is neither prescriptive nor proscriptive in that it does
not characterize what should be or what might be done in order to develop open source software

requirements, except in the concluding discussion, where such remarks are bracketed and qualified.

Comparative case studies of requirements or other software development processes are also important
in that they can serve as foundation for the formalization of our findings and process models as a
process meta-model [Mi 1990]. Such a meta-model can be used to construct a predictive, testable,
and incrementally refined theory of open source software development processes within or across
communities or projects. A process meta-model is also used to configure, generate, or instantiate
Web-based process modeling, prototyping, and enactment environments that enable modeled
processes to be globally deployed and computationally supported [e.g., Noll 1999, Noll 2001, Jensen
2005]. This may be of most value to other academic research or commercial development
organizations that seek to adopt "best practices" for open source software development processes that
are well suited to their needs and situation. Therefore, the study and results presented in this report

denote a new foundation on which computational models of open source software requirements

processes may be developed, as well as their subsequent analysis and simulation [cf. Scacchi 2000,

Scacchi, et al., 2006].

The study reported here entails the use of empirical field study methods [Zelkowitz 1998] that follow
conform to the principles for conducting and evaluating interpretive research design [Klein 1999] as

identified earlier [Scacchi 2002].

2. Understanding open source software development across different communities

We assume there is no general model or globally accepted framework that defines how open source
software is or should be developed. Subsequently, our starting point is to investigate open source
software practices in different communities from an ethnographic perspective [Atkinson 2000

Nuseibeh 2000, Viller 2000].

We have chosen five different communities to study. These are those centered about the development
of software for networked computer games, Internet/Web infrastructure, bioinformatics and higher

education computing.

2.1 Networked computer game worlds

Participants in this community focus on the development and evolution of first person shooters (FPS)
games (e.g., Quake Arena, Unreal Tournament), massive multiplayer online role-playing games (e.g.,
World of Warcraft, Lineage, EveOnline, City of Heroes), and others (e.g., The Sims (Electronic Arts),
Grand Theft Auto (Rockstar Games)). Interest in networked computer games and gaming

environments, as well as their single-user counterparts, have exploded in recent years as a major (now

global) mode of entertainment, playful fun, and global computerization movement [Scacchi 2004,
Scacchi 2008]. The release of DOOM, an early first-person action game, onto the Web in open source
form in the mid 1990’s, began what is widely recognized the landmark event that launched the
development and redistribution of computer game mods [Cleveland 2001, Scacchi 2002]. Mods are
variants of proprietary (closed source) computer game engines that provide extension mechanisms
like game scripting languages that can be used to modify and extend a game, and these extensions are
licensed for distribution in an open source manner. Mods are created by small numbers of users who
want and are able to modify games, compared to the huge numbers of players that enthusiastically
use the games as provided. The scope of mods has expanded to now include new game types, game
character models and skins (surface textures), levels (game play arenas or virtual worlds), and

artificially intelligent game bots (in-game opponents).

2.2 Internet/Web infrastructure

Participants in this community focus on the development and evolution of systems like the Apache
web server, Mozilla Firefox Web browser', GNOME and K Development Environment (KDE) for
end-user interfaces, the Eclipse and NetBeans interactive development environments for Java-based
Web applications, and thousands of others®. This community can be viewed as the one most typically
considered in popular accounts of open source software projects. The GNU/Linux operating system

environment is of course the largest, most complex, and most diverse sub-community within this

"It is reasonable to note that the two main software systems that enabled the World Wide Web, the NCSA Mosaic Web
browser (and its descendants, like Netscape Navigator, Mozilla, Firefox, and off-shoots like K-Meleon, Konqueror,
SeaMonkey, and others), and the Apache Web server (originally know as "httpd") were originally and still remain active
open source software development projects.

2 The SourceForge community web portal (http://www.sourceforge.net) currently stores information on more than 1,750K
registered users and developers, along with nearly 200K open source software development projects, with more than 10% of
those projects indicating the availability of a mature, released, and actively supported software system.

http://www.sourceforge.net/

arena, so much so that it merits separate treatment and examination. Many other Internet or Web
infrastructure projects constitute recognizable communities or sub-communities of practice. The
software systems that are the focus generally are not standalone end-user applications, but are often
targeted at system administrators or software developers as the targeted user base, rather than the
eventual end-users of the resulting systems. However, notable exceptions like Web browsers, news
readers, instant messaging, and graphic image manipulation programs are growing in number within

the end-user community

2.3 Bioinformatics

Participants in this community focus on the development and evolution of software systems
supporting research into bioinformatics and related computing-intensive biological research efforts.
In contrast to the preceding two development oriented communities, open source software plays a
significant role in scientific research communities. For example, when scientific findings or
discoveries resulting from remotely sensed observations are reported’, then members of the relevant
scientific community want to be assured that the results are not the byproduct of some questionable
software calculation or opaque processing trick. In scientific fields like astrophysics that critically
depend on software, open source is considered an essential precondition for research to proceed, and
for scientific findings to be trusted and open to independent review and validation. Furthermore, as

discoveries in the physics of deep space are made, this in turn often leads to modification or

3 For example, see http://XXXXX. The open source software processing pipelines for each sensor are mostly distinct and are
maintained by different organizations. However, their outputs must be integrated, and the data source must be registered and
oriented for synchronized alignment or overlay, then composed into a final representation, as shown on the cited Web page.
There are dozens of open source software programs that must be brought into alignment for such an image to be produced,
and for such a scientific discovery to be claimed and substantiated [xxxx].

http://XXXXX/

extension of the astronomical software in use in order to further explore and analyze newly observed

phenomena, or to modify/add capabilities to how the remote sensing mechanisms operate.

2.4 Higher education computing

Participants in this community focus on the development and evolution of software supporting
educational and administrative operations found in large universities or similar institutions. This
community should not in general be associated with the activities of academic computer scientists nor
of computer science departments, unless they specifically focus on higher education computing
applications (which is uncommon). People who participate in this community generally develop
software for academic teaching or administrative purposes in order to explore topics like course
management (SakaiProject.org), campuswide information systems/portals (uPortal.org), and
university financial systems (for collecting student tuition, research grants administration, payroll,
etc. -- Kuali.org). Projects in this community are primarily organized and governed through multi-
institution contracts, annual subscriptions, and dedicated staff assignments [Wheeler 2007a].
Furthermore, it appears that software developers in this community are often not the end-users of the
software the develop, in contrast to most FOSS projects. Accordingly, it may not be unreasonable to
expect that open source software developed in this community should embody or demonstrate
principles or best practices in administrative computing found in large public or non-profit
enterprises, rather than commercial for-profit enterprises. This includes the practice of developing
explicit software requirements specification documents prior to undertaking system development.
Furthermore, much like the bioinformatics community, members of this community expect that when

breakthrough technologies or innovations have been declared, such as in a refereed conference paper

or publication in an educational computing journal, the opportunity exists for other community
members to be able to access, review, or try out the software to assess and demonstrate its
capabilities. Furthermore, there appears to be growing antagonism toward commercial software
vendors whose products target the higher education computing market (e.g., WebCT,
PeopleSoft/Oracle). However, it is often unacceptable to find that higher education computing
software constitutes nothing more than a research-grade “proof of concept” demonstration or

prototype system, not intended for routine or production use by end-users.

2.5 Military computing

Participants in this community focus on the development and deployment of computing systems and
applications that support military and combat operations. Although information on specific military
systems may be limited, there are a small but growing number of sources of public information and
open source software projects that support military and combat operations, it is becoming clear that
the future of military computing, and the future acquisition of software-intensive, mission-critical
systems for military or combat applications will increasingly rely on open source software [Guertin
2007, Justice 2007, Reichers 2007, Scacchi and Alspaugh 2008 , Starrett 2007, Weathersby 2007,
Wheeler 2007b]. For example, it is now known that combat operations in the Iraq war directed by
the U.S. Army rely on tactical command and control systems hosted on thousands of Linux systems,
along with this deployment representing largest system support contract for Red Hat Linux [Justice
2007]. Other emerging applications are being developed for future combat systems, enterprise
systems (the U.S. Department of Defense is the world's largest enterprise, with more than 1 million
military and civilian employees), and various training systems, among others [Starrett 2007,

Weathersby 2007, Wheeler 2007b]. The development of software systems for developing simulators

and game-based virtual worlds [McDowell 2006] are among those military software projects that
operate publicly as a “traditional” FOSS project that employs a GPL software license, while other
projects operate as corporate source (i.e., FOSS projects behind the corporate firewall) or community

source projects, much like those identified for higher education computing [Wheeler 2007a].

2.6 Overall cross-community characteristics

In contrast to efforts that draw attention to generally one (but sometimes many) open source
development project(s) within a single community [e.g., DiBona 1999, Raymond 2001], there is
something to be gained by examining and comparing the communities, processes, and practices of
open source software development in different communities. This may help clarify what observations
may be specific to a given community (e.g., GNU/Linux projects), compared to those that span
multiple, and mostly distinct communities. In this study, two of the communities are primarily
oriented to develop software to support scholarly research or institutional administration
(bioinformatics and higher education computing) with rather small user communities. In contrast, the
other three communities are oriented primarily towards software development efforts that may
replace/create commercially viable systems that are used by large end-user communities. Thus, there

is a sample space that allows comparison of different kinds.

Each of these highlighted items point to the public availability of data that can be collected, analyzed,
and re-represented within narrative ethnographies [Hine 2000, Kling 1982], computational process
models [Mi 1990, Scacchi 2000, Scacchi, et al. 2006], or for quantitative studies [Madey 2005,
Howison 2006]. Significant examples of each kind of data have been collected and analyzed as part

of this ongoing study. This paper includes a number of examples that serve as this data.

Subsequently, we turn to review what requirements engineering is about, in order to establish a
baseline of comparison for whether what we observe with the development of open source software

system requirements is similar or different, and if so how.

3. Informalisms for describing open source software requirements

The functional and non-functional requirements for open source software systems are elicited,
analyzed, specified, validated, and managed through a variety of Web-based descriptions. These
descriptions can be treated as software informalisms. Software informalisms [Scacchi 2002] are the
information resources and artifacts that participants use to describe, proscribe, or prescribe what's
happening in a FOSSD project. They are informal narrative resources codified in lean descriptions
[cf. Yamaguchi 2000] that coalesce into online document genres (following Kwansik and Crowston
2005, Spinuzzi 2003) that are comparatively easy to use, and publicly accessible to those who want to
join the project, or just browse around. Subsequently, Scacchi [2002] demonstrates how software
informalisms can take the place of formalisms, like “requirement specifications” or software design
notations which are seen as necessary to develop high quality software according to the software
engineering community [cf. Sommerville 2004]. Yet these software informalisms often capture the
detailed rationale and debates for why changes were made in particular development activities,
artifacts, or source code files. Nonetheless, the contents these informalisms embody require extensive
review and comprehension by a developer before contributions can be made [cf. Lanzara and Morner
2005]. Finally, the choice to designate these descriptions as informalisms* is to draw a distinction

between how the requirements of open source software systems are described, in contrast to the

* As Goguen [2000] observes, formalisms are not limited to those based on a mathematical logic or state transition
semantics, but can include descriptive schemes that are formed from structured or semi-structured narratives, such as those
employed in Software Requirements Specifications documents.

10

recommended use of formal, logic-based requirements notations (“formalisms”) that are advocated in

traditional approaches [cf. Davis 1990, Jackson 1995, Kotonya 1998, Nuseibeh 2000].

In OSSD projects, software informalisms are the preferred scheme for describing or representing
open source software requirements. There is no explicit objective or effort to treat these informalisms
as "informal software requirements" that should be refined into formal requirements [Cybulski 1998
Jackson 1995, Kotonya 1998] within any of these communities. Accordingly, each of the available
types of software requirements informalisms t have been found in one or more of the four
communities in this study. Along the way, we seek to identify some of the relations that link them
together into more comprehensive stories, storylines, or intersecting story fragments that help convey

as well as embody the requirements of an open source software system.

At least two dozen types of software informalisms can be identified, and each has sub-types that can

be identified as follows.

The most common informalisms used in FOSSD projects include (i) communications and messages
within project Email [Yamaguchi 2000], (ii) threaded message discussion forums (see Exhibit 1),
bulletin boards, or group blogs, (iii) news postings, (iv) project digests, and (v) instant messaging or
Internet relay chat [Elliott 2007]. As FOSS developers and user employ these informalisms, they
have been found to also serve as carriers of technical beliefs and debates over desirable software
features, social values (e.g., reciprocity, freedom of choice, freedom of expression), project

community norms, as well as affiliation with the global FOSS social movement [Elliott 2005, 2008].

11

Other common informalisms also include (vi) scenarios of usage as linked Web pages, (vii) how-to
guides, (viii) to-do lists, (ix) FAQs, and other itemized lists, and (x) project Wikis, as well as (xi)
traditional system documentation and (xii) external publications [e.g., Fogel 1999, 2005]. FOSS
(xiii) project property licenses (whether to assert collective ownership, transfer copyrights, insure
“copyleft,” or some other reciprocal agreement) are documents that also help to define what software
or related project content are protected resources that can subsequently be shared, examined,
modified, and redistributed. Finally, (xiv) open software architecture diagrams, (xv) intra-application
functionality realized via scripting languages like Perl and PhP, and the ability to either (xvi)
incorporate externally developed software modules or “plug-ins”, or (xvii) integrate software
modules from other OSSD efforts, are all resources that are used informally, where or when needed

according to the interests or actions of project participants.

All of the software informalisms are found or accessed from (xix) project related Web sites or portals.
These Web environments where most FOSS software informalisms can be found, accessed, studied,

modified, and redistributed [Scacchi 2002].

A Web presence helps make visible the project's information infrastructure and the array of
information resources that populate it. These include FOSSD multi-project Web sites (e.g.,
SourgeForge.net, Savanah.org, Freshment.org, Tigris.org, Apache.org, Mozilla.org), community
software Web sites (PhP-Nuke.org), and project-specific Web sites (e.g., www.GNUenterprise.org),
as well as (xx) embedded project source code Webs (directories), (xxi) project repositories (CVS

[Fogel 1999]), and (xxi1) software bug reports and (xxiii) issue tracking data base like Bugzilla

12

[Ripoche 2003, http://www.bugzilla.org/]. Last, giving the growing global interest in online social
networking, it not surprising to find increased attention to documenting various kinds of social
gatherings and meetings using (xxiv) social media Web sites (e.g, YouTube, Flickr, MySpace, etc.)
where FOSS developers, users, and interested others come together to discuss, debate, or work on
FOSS projects, and to use these online media to record, and publish photographs/videos that establish

group identity and affiliation with different FOSS projects.

Together, these two dozen types of software informalisms constitute a substantial yet continually
evolving web of informal, semi-structured, or processable information resources. This web results
from the hyperlinking and cross-referencing that interrelate the contents of different informalisms
together. Subsequently, these FOSS informalisms are produced, used, consumed, or reused within
and across FOSS development projects. They also serve to act as both a distributed virtual repository
of FOSS project assets, as well as the continually adapted distributed knowledge base through which

project participants evolve what they know about the software systems they develop and use.

Overall, it appears that none of these software informalisms would defy an effort to formalize them in
some mathematical logic or analytically rigorous notation. Nonetheless, in the four software
communities examined in this study, there is no perceived requirement for such formalization, nor no
unrecognized opportunity to somehow improve the quality, usability, or cost-effectiveness of the
open source software systems, that has been missed. If formalization of these software benefits has

demonstrable benefit to members of these communities, beyond what they already realize from

13

http://www.bugzilla.org/

current practices, these benefits have yet to be articulated in the discourse that pervades each

community.

4. Open source software processes for developing requirements

In contrast to the world of classic software engineering, open source software development
communities do not seem to readily adopt or practice modern software engineering or requirements
engineering processes. Perhaps this is no surprise. However, these communities do develop software
that is extremely valuable, generally reliable, often trustworthy, and readily used within its associated
user community. So, what processes or practices are being used to develop the requirements for open

source software systems?

We have found many types of software requirements activities being employed within or across the
four communities. However, what we have found is different from common prescriptions for

requirements engineering processes.

4.1 Requirements elicitation vs. assertion of open source software requirements

It appears that open source software requirements are articulated in a number of ways that are
ultimately expressed, represented, or depicted on the Web. On closer examination, requirements for
open source software can appear or be implied within an email message or within a discussion thread
that is captured and/or posted on a Web site for open review, elaboration, refutation, or refinement.

Consider the following example found on the Web site for the KDE system (http:/www.kde.org/),

14

http://www.kde.org/

within the Internet/Web Infrastructure community. This example displayed in Exhibit 1° reveals

asserted capabilities for the Qt3 subsystem within KDE.

These capabilities (identified in the exhibit as the "Re: Benefits of Qt3?" discussion thread) highlight
implied requirements for multi-language character sets (Arabic and Hebrew, as well as English),
database support (““...there is often need to access data from a database and display it in a GUI, or
vice versa...”), and others. These requirements are simply asserted without reference to other
documents, sources, standards, or joint application development (JAD) focus groups--they are

requirements because some developers wanted these capabilities.

> Each exhibit appears as a screenshot of a Web browsing session. It includes contextual information, following the second
research principle, thus requiring and benefiting from a more complete display view.

15

16

Kemel Cousin KDE #18 is Dut - Mozilla {Build 1D: 2001112009} =] E3
. File Edt “iew Search Go Bookmarks Taszks Help Debug G4

- @Q @O Q O |% hitp: /¢ dot kde. org/3996206041/ | [GLSEETCh] Cgo
= |

Benefits of (3t37
by Matt Perry on Friday July 27, @0%:22A1

D

“What are the benefits of mowing to Ot37
[Beply To This | View]

* Re: Benefits of Q37
by Justin on Friday July 27, @094 140

- Buppott for Arvabic and Hewbrew

- RichTesxt classes

- Database support

- Component model

- Mo more cutfpaste problems (but only between O3 apps)

Cine of the most complaned about aspects of 212 the darn clipboard, so geting KDE
based on Ot3 will solve alot of headaches. But this is from a user perspective.

From a dewveloper perspective, EDE-DEB 15 gong to utilize Gt3's database support, and this
can't happen untll they make the switch, K'Word currently uzes a backported richtest for

I uze with Ot2. So you can see that there 15 a drivelneed in EDE to use the new Ot3
” features.
I [Eeply To This | Fiew]

? Re: Benefits of Qt3?
by Miftte on Frday July 27, @12:04P1d

TWhat iz the purpose of database support in a *widget toollat™? Tan't this ust lke
placing TCPIP support in fetefpasswd or ancther similarly unrelated place?

[Beply To This | View]

" Re: Benefits of Q37
by Aaron I Seigo on Friday Tuly 27, @12:36P1

there is often a need to access data from a database and display it in a GTT,
ot vice versa it those cases having a db APT that abstracts the detatls of the
actual data access away (connecting, sending queries, retrieving results, details
spectic to a given db unplementatton, ete) that worlcs mcely with yveur widgets
(even so far as to make the widgets aware of the database) 15 very very mice.

making such things simple and convement opens the door to making more
applications database aware (e.g financial packages, emal apps, contact
wformation systems)

[Reply To This | View] —
[l & 9F EH | Document Done (0,300 secs) =I= é"T

Exhibit 1. A sample of implicit requirements for the KDE software subsystem Qt3 expressed in a

threaded email discussion. Source: http://dot.kde.org/996206041/, July 2001.

17

http://dot.kde.org/996206041/

Asserted system capabilities are post hoc requirements characterizing a functional capability that
has already been implemented. The concerned developers justify their requirements through their
provision of the required coding effort to make these capabilities operational. Senior members or
core developers in the community then voted or agreed through discussion to include the asserted
capability into the system’s distribution [Fielding 1999]. The historical record may be there,
within the email or discussion forum archive, to document who required what, where, when,
why, and how. However, once asserted, there is generally no further effort apparent to document,
formalize, or substantiate such a capability as a system requirement. Asserted capabilities then
become taken-for-granted requirements that are can be labeled or treated as obvious to those

familiar with the system's development.

Another example reveals a different kind open source software requirement. This case displayed in
Exhibit 2, finds a requirements “vision” document that conveys a non-functional requirement for both
community development and community software development in the bottom third of the exhibit.
This can be read as a non-functional requirement for the system’s developers to embrace community
software development as the process to develop and evolve the ArgoUML system, rather than say

through a process which relies on the use of system models represented as UML diagrams.

Perhaps community software development, and by extension, community development, are
recognized as being important to the development and success of this system. It may also be a
method for improving system quality and reliability when compared to existing software engineering

tools and techniques (i.e., those based on UML, or supporting UML-based software design).

18

File Edit Wiew History

3 Tigris.org: Open Source Software Engineering - Mozilla Firefox
Bookmarks

ScrapBook Tools Help

@-o-&

Q hikbp:) e kigris, org)

[~[®] [CF]

Tigris.org

My pages Projects

Search

I

Advanced search
Powered by

OLLABNET.

Howt do I...

Get release notes for
CollabMet 4.5.17

Community

Get help?

Category Featured
projects

SCIm Subversion,
Subclipse,
TortoiseSvh,
Rapidswi

issuetrack Scarab

requirements xmlbasedsrs

design ArgolIML

techcomm SubEtha,
eyebrowse,

midgard, cowiki

construction | antelope, scons,

framewors,
huild-interceptar,
propel, phing
testing maxg, aut
deployment | current
process ReadySET
libraries GEF, Azion,

Style, S5Tree
Over 500 more tools...

Eclipse
1Developer
MNetBeans
Visual Studio

subversion and IDEs |

D sourcER. RGE

- ENTERPRISE EDITION

Open Source Software Engineering Tools I‘
OULABNET

openCollabNet

Tigris.org Community Scope

+ Tigris.org is @ mid-sized open source community focused on
building better tools for collaborative software development.

« You will not find thousands of unrelated projects here: every
project fits into the Tigris mission,

« You will not find dead projects here: every project Is welcomed
into the community with a commitment to see it through and
active developers cycle among related projects.

+ Tigris.org is hosted by CollabMNet, but the Tigris mission is one
for the entire open source movement and one that has attracted
senior open source developers from many organizations.

The Tigris Mission: Building Open Source Software

Engineering Tools

Tigris.org provides information resources for software
engineering professionals and students, and a home
for open source software engineering tool projects.

Software engineering practices are key to any large
development project. Unfortunately, software
engineering tools and methods are not widely used today. Even
after over 20 years as a engineering profession, most software
developers still use few software engineering tools, Some of the
reasons are that tools are expensive and hard to leam and use,
also many developers have never seen software enginesring tools
used effactively,

The open source software development movement has produced 5
number of very powerful and useful software development tools,
but it has also evolved g software development process that
works well under conditions where normal development processes
fail. The software engineering field can learm much from the way
that successful open source projects gather requirements, make
design decisions, achieve quality, and support users, Open source
projects are also a great for developers to keep their skills current
and plug into a growing base of shared experience for everyong in
the field.

Getuptospeedon
Subversion®
with training from

COLIABNET, -

Site announcements

Jun 2, 2008 - SVN Motifier 1,7.0
released

May 5, 2008 - Subversion 1.5.0
Release Candidate 5

Mar 12, 2008 - SvHNChecker 0.2
released

Feb 4, 2008 - SWNControl 1.4.2
Released

Jan 23, 2008 - SN Motifier
1.5.0 Released

Dec 3, 2007 - SWNControl 1.4.1
released

MNov 13, 2007 - SWNControl 1.4
Releaszed

Sep 24, 2007 - 5w Notifier
1.4.0 Released

Sep 3, 2007 - SWNControl 1.1
released

Aug 27, 2007 - Subversion
1.4.5 Released (Win32 security
relesse)

Aug 21, 2007 - 5w Motifier
1.3.0 released

Jun 27, 2007 - Subclipse 1.2.3
Releaszed

Jun 13, 2007 - Platypus
milestone 1 released

Jun 9, 2007 - Subclinse 1.2.2

Releaszed
May 2, 2007 - Subclinse 1.2.1
Released
Apr 28, 2007 - SubEtha 1.0.2
released
Mar 31, 2007 - Antelope 3.4.1
released
Mar 24, 2007 - Antelope 3.4.0
Releaszed

Mar 12, 2007 - Scarab 0.21
Mar 1, 2007 - SubEthaSMTP 1.2
released

Feb 20, 2007 - ArgolUML 0.24
Feb 13, 2007 - Subdipse 1.2.0
Jan 14, 2007 - Anti-spam
Improvements

Moy 19, 2006 - SubEtha 1.0

MHow 10, 2006 - Oracle Chooses
Current

Il site announcements M

Exhibit 2. A software requirements vision statement encouraging both the development of software

for the community and development of the community. Source: http://www.tigris.org, June 2008.

A third example reveals yet another kind of elicitation found in the Internet/Web infrastructure

community. In Exhibit 3, we see an overview of the MONO project. Here we see multiple statements

for would-be software component/class owners to sign-up and commit to developing the required

ideas, run-time, (object service) classes, and projects. These are non-functional requirements for

19

http://www.tigris.org/

people to volunteer to participate in community software development, in a manner perhaps
compatible with that portrayed in Exhibit 2. The systems in Exhibits 2 and 3 must also be considered
early in their overall development or maturity, since they call for functional capabilities that are

needed to help make sufficiently complete for usage.

Thus, in understanding how the requirements of open source software systems are elicited, we find
evidence for elicitation of volunteers to come forward to participate in community software
development by proposing new software development projects, but only those that are compatible
with the open source software engineering vision for the Tigris.org community. We also observe the
assertion of requirements that simply appear to exist without question or without trace to a point of
origination, rather than somehow being elicited from stakeholders, customers, or prospective end-
users of open source software systems. As previously noted, we have not yet found evidence or data
to indicate the occurrence or documentation of a requirements elicitation effort arising in an open
source software development project. However, finding such evidence would not invalidate the other
observations; instead, it would point to a need to broaden the scope of how software requirements are

captured or recorded.

20

J Todo - Mono - Mozilla Firefox

File Edit “iew History Bookmarks ScrapBook Tools Help
@ b = @ fa ||_| htkp: sy, mono-project. comf Todo L_J| v| [}] -v| u\]
T Ll
odo 1
Mono Tasks Table of contents [hide]
Fram time to time people that want to contribute to 1 Mono Tas_ks
Maono ask on the mailing list what they can help 2 JIT Compiler
with. The generic answer is always: 3 Garbage Collector
4 VM Runtime
+ Write documentation. 5 Tools
* VWrite regression tests. 6 Class Libraries
+« Complete the implementations of the class 7 Documentation
libraries. 8 Other
+ Help fix the bugs filed in our bugzilla
database.
The proposed tazks are wery impartant for the Mona project and are suitahle for people that can dedicate
ewven just an hour per week to contribute. But some people may need something more focused toowark an,
such as students that want to do a thesis on their contribution to Mono. For such people {and also for
professors who want ideas for thesis regarding JIT or WM technologies), here is a list of tasks that need
attention.
The estimated time to complete any of the tasks iz between 1 week to several months to accomodate for
different hacking possibilities.
Mote on the time estimates: they are very rough estimates, a smart and dedicated hacker can complete the
tasks in half of the minimum time, a part-time hacker that also has a social life can take maore than double the
max time, but there's nothing to worry as long as progress is being done.
If some people (or group of people) want to take on a task, they should write to the mono-devel mailing list
and in the relative bugzilla bug repart. Discussions about haw to implement a feature or additional information
on the task should be mailed to the list ar in the bugzilla report as well so that peaple can keep infarmed on
the progress or have the information needed to start contributing. Mono is an excellent platfarm far research
on JITs, wirtual machines and specifically the CLR because it provides an advanced free software
implementation that can be used as a basis for more optimizations, new approaches to problems and new
features.
There are different areas of interest where high-level contributions can be made:
+ JIT compiler: tasks can be: adding more optimizations, reducing compile time, porting to different
architectures.
+ AOT compiler: optimizing the compiler output and the ADT loader, better support for multiple
application domains.
+ VM runtime:optimizing the runtime data structures, experimenting with different garbage caollectars,
integration with different component models.
+ Class library:many opportunities in the implementation of regular expressions, Xml related
technologies (*Path, XLST, etc).
+ Compilersywriting compilers, interpreters and runtimes for langauges so that they run on the CLR
(using Reflection Emit suppart, for example).
Happy hacking! w

Exhibit 3: A non-functional requirement identifying a need for volunteers to become owners for yet

to be developed software components. Source: http:/www.mono-project.com/Todo, June 2008.

21

http://www.go-mono.com/ideas.html

9 UT3 Modding - UT3 Modding Forum & Community | UT3 Mods | Maps | Mutators | Skins - Mozilla Firefox
File Edit ew History Bookmarks ScrapBook Tools Help

@-»-& | ¥ http ffwiw, ut3madding. com/

Main Menu Recent

Help making

jones

by king_zazu
[June 01, 2008,
11:10:11 PM]

When testing: can't
by Syphix

[June 01, 2008,
10:00:56 PM]

Terrain Collision or

" A N a
User S’]’OO0,000 g , eakingFuel
MAKE SOMETHING o ' = s Re

Welcome, Guest.

b'l]l.l miss your
activat ail? i
June 05, 2008, . - e)]

08:50:22 PM - s i et & Members
] # Total Members:

1163
= Latest: kwash

Forever . L

Login with username, Stats

password and session . . of : alf of the people wl s Total Posts: 1323

length . - . = Total Topics: 344
Online Today: 278
Online Ever: 1037

1 ’ (March 25, 2008,
Mod Updates 07:49:25 AM)

s Total: 232

Announcements = HeyltsBattleKid

Exhibit 4. An asserted capability (in the center) that invites would-be open source software game
developers to make new game mods, including improved versions, of whatever kind they require

among the various types of available extensions. Source: http:/www.ut3modding.com/, June 2008.

22

http://www.ut3modding.com/

4.2 Requirements analysis vs. requirements reading, sense-making, and accountability

Software requirements analysis helps identify what problems a software system is suppose to address,
while requirements specifications identify a mapping of user problems to system based solutions. In
open source software development, how does requirements analysis occur, and where and how are
requirements specifications described? Though requirements analysis and specification are
interrelated activities, rather than distinct stages, we first consider examining how open source

software requirements are analyzed.

Exhibits 5 and 6 come from different points in the same source document, a single research paper
accessible on the Web, associated with the XXX-FOO research project. But how do software
developers in this community (XXXXXXXX) understand what’s involved in the functional operation
of a complex system like this? One answer lies in the observation that developers who seek such an
understanding must read this research paper quite closely, as well as being able to draw on their prior
knowledge and experience in the relevant physical, telemetric, digital, and software domains [cf.
Ackerman 2000]. A close reading likely means one that entails multiple re-readings and sense-
making relative to one’s expertise. A more casual though competent reading requires some degree of
confidence and trust in the authors’ account of how the functionality of the XXX architecture is

configured, in order to accept what is presented as plausible, accurate, and correct.

The notion that requirements for open source software system are, in practice, analyzed via the

reading of technical accounts as narratives, together with making sense of how such readings are

reconciled with one’s prior knowledge, is not unique to the XXX software community. These same

23

activities can and do occur in the other three communities. If one reviews the functional and non-
functional requirements appearing in Exhibits 1-4, it is possible to observe that none of the
descriptions appearing in these exhibits is self-contained. Instead, each requires the reader (e.g., a
developer within the community) to closely or casually read what is described, make sense of it,
consult other materials or one’s expertise, and trust that the description’s author(s) are reliable and
accountable in some manner for the open source software requirements that has been described
[Goguen 2000, Pavlicek 2000]. Analyzing open source software requirements entails little if any
automated analysis, formal reasoning, or visual animation of software requirements specifications [cf.
Nuseibeh 2000]. Yet, participants in these communities are able to understand what the functional
and non-functional requirements are in ways that are sufficient to lead to the ongoing development of

various kinds of open source software systems.

Exhibit 5. An asserted capability indicating that the requirements are very involved and

complex.

Exhibit 6. A specification of data-flow relationships among a network of software module

pipelines that constitute the processing threads that must be configured.

4.3 Requirements specification and modeling vs. continually emerging webs of software discourse
If the requirements for open source software systems are asserted rather than elicited, how are these
requirements specified or modeled? In examining data from the four communities, of which Exhibits
1-6 are instances, it is becoming increasingly apparent that open source software requirements can

emerge from the experiences of community participants through their email and discussion forums.

24

These communication messages in turn give rise to the development of narrative descriptions that
more succinctly specify and condense into a web of discourse about the functional and non-functional
requirements of an open source software system. This discourse is rendered in descriptions that can
be found in email and discussion forum archives, on Web pages that populate community Web sites,
and in other informal software descriptions that are posted, hyperlinked, or passively referenced

through the assumed common knowledge that community participants expect their cohorts to possess.

In Exhibit 5 from the X-ray and deep space imaging software community, we see passing reference in
the opening paragraph to “the requirements for processing Chandra (remotely sensed) telemetry
(imaging data) are very involved and complex.” To comprehend and recognize what these involved
and complex requirements are, community members who develop open source software for such
applications will often be astrophysicists (with Ph.D. degrees), and rarely would be simply a
competent software engineering professional. Subsequently, the astrophysicists that develop software
in this community do not need to recapitulate any software system requirement that would be due to
the problem domain (astrophysics). Instead, community members are already assumed to have
mastery over such topics prior to software development, rather than encountering problems in their
understanding of astrophysicists arising from technical problems in developing, operation, or

functional enhancement of remote sensing or digital imaging software.

Thus, spanning the four communities and the six exhibits, we begin to observe that the requirements

for open source software are specified in webs of discourse that reference or link:

e email or bboard discussion threads,

25

* system vision statements,

* ideas about system functionality and the non-functional need for volunteer developers to
implement the functionality,

* promotional encouragement to specify and develop whatever functionality you need, which might
also help you get a new job, and

* scholarly scientific research publications that underscore how the requirements of astronomical
imaging software though complex, are understood without elaboration, since they rely on prior
scientific knowledge and tradition of open scientific research.

Each of these modes of discourse, as well as their Web-based specification and dissemination, is a

continually emerging source of open source software requirements from new contributions, new

contributors or participants, new ideas, new career opportunities, and new research publications.

4.4 Requirements validation vs. condensing discourse that hardens and concentrates system

functionality and community development

Software requirements are validated with respect to the software’s implementation. The implemented
system can be observed to demonstrate, exhibit, or be tested in operation to validate that its functional
behavior conforms to its functional requirements. Since open source software requirements are
generally not recorded in a formal SRS document, nor are these requirements typically cast in a
mathematical logic, algebraic, or state transition-based notational scheme, then how are the software

implementations to be validated against their requirements?

In each of the four communities, it appears that the requirements for open source software are co-

mingled with design, implementation, and testing descriptions and software artifacts, as well as with

26

user manuals and usage artifacts (e.g., input data, program invocation scripts). Similarly, the
requirements are spread across different kinds of electronic documents including Web pages, sites,
hypertext links, source code directories, threaded email transcripts, and more. In each community,
requirements are described, asserted, or implied informally. Yet it is possible to observe in threaded
email discussions that community participants are able to comprehend and condense wide-ranging
software requirements into succinct descriptions using lean media that pushes the context for their
creation into the background. Goguen [Goguen 2000] suggests the metaphor of "concentrating and
hardening of requirements" as a way to characterize how software requirements evolve into forms
that are perceived as suitable for validation. His characterization seems to quite closely match what
can be observed in the development of requirements for open source software. We find that
requirements validation is a by-product, rather than an explicit goal, of how open source software
requirements are constituted, described, discussed, cross-referenced, and hyperlinked to other

informal descriptions of system and its implementations.

4.5 Communicating requirements vs. global access to open source software webs

One distinguishing feature of open source software associated with each of the four communities is
that their requirements, informal as they are, are organized and typically stored in a persistent form
that is globally accessible. This is true of community Web sites, site contents and hyperlinkage,
source code directories, threaded email and other online discussion forums, descriptions of known
bugs and desired system enhancements, records of multiple system versions, and more. Persistence,
hypertext-style organization and linkage, and global access to open source software descriptions
appear as conditions that do not receive much attention within the classic requirements engineering

approaches, with few exceptions [Cybulski 1998]. Yet, each of these conditions helps in the

27

communication of open source software requirements. These conditions also contribute to the ability
of community participants or outsiders looking in to trace the development and evolution of software
requirements both within the software development descriptions, as well as across community
participants. This enables observers or developers to navigationally trace, for example, a web of
different issues, positions, arguments, policy statements, and design rationales that support (e.g., see

Exhibit 1) or challenge the viability of emerging software requirements [cf. Conklin 1988, Lee 1990].

Each of the four communities also communicates community-oriented requirements. These non-
functional requirements may seem similar to those for enterprise modeling [Nuseibeh 2000].
However, there are some differences, though they may be minor. First, each community is interested
in sustaining and growing the community as a development enterprise [cf. Noll 1999]. Second, each
community is interested in sustaining and growing the community’s open source software artifacts,
descriptions, and representations. Third, each community is interested in updating and evolving the
community's information sharing Web sites. In recognition of these community requirements, it is not
surprising to observe the emergence of commercial efforts (e.g., SourceForge and CollabNet) that
offer community support systems that are intended to address these requirements, such as is used in

the ArgoUML community site, http:/www.tigris.org.

4.6 Identifying a common foundation for the development of open source software requirements

Based on the data and analysis presented above, it is possible to begin to identify what items,
practices, or capabilities may better characterize how the requirements for open source software are
developed. This centers of the emergent creation, usage, and evolution of informal software

descriptions as the vehicle for developing open source software requirements.

28

http://www.tigris.org/

5. Understanding open source software requirements

First, there is no single correct, right, or best way/method for constructing software system
requirements. The requirements engineering approach long advocated by the software engineering
and software requirements community does not account for the practice nor results of FOSS system,
project, or community requirements. FOSSD requirements (and subsequent system designs) are
different. Thus, given the apparent success of sustained exponential growth for certain FOSS
systems, and for the world-wide deployment of FOSSD practices, it is save to say that the ongoing
development of FOSS systems points to the continuous development, articulation, adaptation, and

reinvention of their requirements [cf. Scacchi 2006].

Second, the traditional virtues of high-quality software system requirements, namely, their
consistency, completeness, traceability, and internal correctness are not so valued in FOSSD projects.
FOSSD projects focus attention and practice to other virtues that emphasize community development
and participation, as well as other socio-technical concerns. Thus, as with the prior observation,
FOSS system requirements are different, and therefore may represent an alternative paradigm for

how to develop robust systems that are open to both their developers and users.

Third, FOSS developers are generally also end-users of the systems they develop. Thus, there is no
“us-them” distinction regarding the roles of developers and end-users, as is commonly assumed in
traditional system development practices. Because the developers are also end-users, communication

gaps or misunderstandings often found between developers and end-users are typically minimized.

29

Fourth, FOSS requirements tend to be distributed across space, time, people, and the artifacts that
interlink them. FOSS requirements are thus decentralized—that is, decentralized requirements that
co-exist and co-evolve within different artifacts, online conversations, and repositories, as well as
within the continually emerging interactions and collective actions of FOSSD project participants and
surrounding project social world. To be clear, decentralized requirements are not the same as the
(centralized) requirements for decentralized systems or system development efforts. Traditional
software engineering and system development projects assume that their requirements can be elicited,
captured, analyzed, and managed as centrally controlled resources (or documentation artifacts) within
a centralized administrative authority and a centralized repository—that is, centralized requirements.
Once again, FOSS projects represent an alternative paradigm to that long advocated by software

engineering and software requirements engineering community.

Last, given that FOSS developers are frequently the source for the requirements they realize in
hindsight (i.e., what they have successfully implemented and released denote what was required)
rather than in foresight, perhaps it is better to characterize such software system requirements as
instead “software system capabilities” (and not software development practices associated with
capability maturity models). FOSS capabilities embody requirements that have been found
retrospectively to be both implementable and sustainable across releases. Software capabilities
specification 1s thus perhaps a new engineering practice and methodology that can be investigated,
modeled, supported, and refined in leading towards eventual principles for how best to specify

software system capabilities.

30

6. Conclusions

The paper reports on a study that investigates, compares, and describes how the requirements
engineering processes occurs in open source software development projects found in different

communities. A number of conclusions can be drawn from the findings presented.

First, this study sought to discover and describe the practices and artifacts that characterize how the
requirements for developing open source software systems. Perhaps the processes and artifacts that
were described were obvious to the reader. This might be true for those scholars and students of
software requirements engineering who have already participated in open source software projects,
though advocates who have do not report on the processes described here [DiBona 1999, Pavlicek
2000, Raymond 2001]. For the majority of students who have not participated, it is disappointing to
not find such descriptions, processes, or artifacts within the classic or contemporary literature on
requirements engineering [Davis 1990, Jackson 1995, Kotonya 1998, Nuseibeh 2000]. In contrast,
this study sought to develop a baseline characterization of the how the requirements process for open
source software occurs and the artifacts (and other mechanisms). Given such a baseline of the "as-is"
process for open source software requirements engineering, it now becomes possible to juxtapose one
or more "to-be" prescriptive models for the requirements engineering process, then begin to address
what steps are needed to transform the as-is into the to-be [Scacchi 2000]. Such a position provides a
basis for further studies which seek to examine how to redesign open source software practices into
those closer to advocated by classic or contemporary scholars of software requirements engineering.

This would enable students or scholars of software requirements engineering, for example, to

31

determine whether or not open source software development would benefit from more rigorous

requirements elicitation, analysis, and management, and if so, how.

Second, this study reports on the centrality and importance of software informalisms to the
development of open source software systems, projects, and communities. This result might be
construed as an advocacy of the 'informal' over the 'formal' in how software system requirements are
or should be developed and validated, though it is not so intended. Instead, attention to software
informalisms used in open source software projects, without the need to coerce or transform them
into more mathematically formal notations, raises the issue of what kinds of engineering virtues
should be articulated to evaluate the quality, reliability, or feasibility of open source software system
requirements so expressed. For example, traditional software requirements engineering advocates the
need to assess requirements in terms of virtues like consistency, completeness, traceability, and
correctness [Davis 1990, Jackson 1995]. From the study presented here, it appears that open source
software requirements artifacts might be assessed in terms of virtues like encouragement of
community building; freedom of expression and multiplicity of expression; readability and ease of
navigation; and implicit versus explicit structures for organizing, storing and sharing open source
software requirements. "Low" measures of such virtues might potentially point to increased
likelihood of a failure to develop a sustainable open source software system. Subsequently,
improving the quality of such virtues for open source software requirements may benefit from tools
that encourage community development; social interaction and communicative expression; software
reading and comprehension; community hypertext portals and Web-based repositories. Nonetheless,

resolving such issues is an appropriate subject for further study.

32

Overall, open source software development practices are giving rise to a new view of how complex
software systems can be constructed, deployed, and evolved. open source software development does
not adhere to the traditional engineering rationality found in the legacy of software engineering life
cycle models or prescriptive standards. The development open source software system requirements
is inherently and undeniably a complex web of socio-technical processes, development situations,
and dynamically emerging development contexts [Atkinson 2000, Goguen 2000, Kling 1982, Truex
1999, Viller 2000]. In this way, the requirements for open source software systems continually
emerge through a web of community narratives. These extended narratives embody discourse that is
captured in persistent, globally accessible, open source software informalisms that serve as an
organizational memory [Ackerman 2000], hypertextual issue-based information system [Conklin
1988, Lee 1990], and a networked community environment for information sharing, communication,
and social interaction [Kim 2000, 30, , Truex 1999]. Consequently, ethnographic methods are needed
to elicit, analyze, validate, and communicate what these narratives are, what form they take, what
practices and processes give them their form, and what research methods and principles are employed
to examine them [Goguen 2000, Hine 2000, 19, Kling 1982 Nuseibeh 2000, Viller 2000]. This report

thus contributes a new study of this kind.

Acknowledgements

The research described in this report is supported by grants #0534771 from the U.S. National Science
Foundation, the Acquisition Research Program and the Center for the Edge Research Program at the

Naval Postgraduate School. No endorsement implied. Chris Jensen, Thomas Alspaugh, John Noll,

33

Margaret Elliott, and other st the Institute for Software Research are collaborators on the research

project described in this paper.

7. References

ACKERMAN, M.S. and HALVERSON, C.A.: 'Reexamining Organizational Memory',
Communications ACM, 43, (1), pp. 59-64, January 2000.

ATKINSON, C.J.: 'Socio-Technical and Soft Approaches to Information Requirements Elicitation
in the Post-Methodology Era', Requirements Engineering, S, pp. 67-73, 2000.

Bollinger, T., (2003). Use of Free and Open-Source Software (FOSS) in the U.S. Department of
Defense, The MITRE Corporation, 2 January. Available at
http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html

CLEVELAND, C.: 'The Past, Present, and Future of PC Mod Development', Game Developer, pp.
46-49, February 2001.

CONKLIN, J. and BEGEMAN, M.L.: 'gIBIS: A Hypertext Tool for Effective Policy Discussion',
ACM Transactions Office Information Systems, 6, (4), pp. 303-331, October 1988.

Crowston, K., & Howison, J. (2006). Hierarchy and centralization in Free and Open Source
Software team communications. Knowledge, Technology & Policy, 18(4), 65-85.

Crowston, K., Howison, J., & Annabi, H. (2006). Information systems success in Free and Open
Source Software development: Theory and measures. Software Process--Improvement and
Practice, 11(2), 123-148.

Crowston, K., Wei, K., Li, Q., Eseryel, U. Y., & Howison, J. (2007). Self-organization of teams in
free/libre open source software development. Information and Software Technology Journal, 49,
564-575.

CYBULSKI, J.L. and REED, K.: 'Computer-Assisted Analysis and Refinement of Informal
Software Requirements Documents', Proceedings Asia-Pacific Software Engineering Conference
(APSEC'98), Taipei, Taiwan, R.O.C., pp. 128-135, December 1998.

DAVIS, A.M.: 'Software Requirements: Analysis and Specification', Prentice-Hall, 1990.
DIBONA, C. OCKMAN, S. and STONE, M.: 'Open Sources: Voices from the Open Source
Revolution', O'Reilly Press, Sebastopol, CA, 1999.

34

http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html

Elliott, M. & Scacchi, W. (2005). Free Software Development: Cooperation and Conflict in A
Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source Software Development,
152-172, 1GI Publishing, Hershey, PA.

Elliott, M. & Scacchi, W. (2008). Mobilization of Software Developers: The Free Software
Movement, Information, Technology and People, 21(1), 4-33, 2008.

Elliott, M., Ackerman, M.S. & Scacchi, W. (2007). Knowledge Work Artifacts: Kernel Cousins for
Free/Open Source Software Development, Proc. ACM Conf. Support Group Work (Group07),
Sanibel Island, FL, 177-186, November 2007.

FIELDING,R.T.: 'Shared Leadership in the Apache Project', Communications ACM, 42, (4), pp.
42-43, April 1999.

Fogel, K., (1999). Open Source Development with CVS, Coriolis Press, Scottsdale, AZ.

Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free Software
Project, O'Reilly Press, Sebastopol, CA.

Guertin N., (2007). (Director, Open Architecture, Program Executive Office IWS 7B). Naval Open
Architecture: Open Architecture and Open Source in DOD, Presentation at “Open Source - Open
Standards - Open Architecture,” Association for Enterprise Integration Symposium, Arlington VA,
14 March 2007.

GOGUEN, J.A.: 'Formality and Informality in Requirements Engineering (Keynote Address)',
Proc. 4th. Intern. Conf. Requirements Engineering, pp. 102-108, IEEE Computer Society, 1996.
HINE, C.: '"Virtual Ethnography', SAGE Publishers, London, 2000.

Howison, J., Conklin, M., and Crowston, K. (2006). Flossmole: A collaborative repository for floss
research, data, and analysis.. Intern. J. Information Technology and Web Engineering. 1(3):17-26.
Howison, J., Wiggins, A. & Crowston, K. (2008). eResearch workflows for studying free and open
source software development. In Proc. 4" Intern. Conf. Open Source Software (IFIP 2.13), Milan,
Italy, 7-10 September.

JACKSON, M.: 'Software Requirements & Specifications. Practice, Principles, and Prejudices’,
Addison-Wesley Pub. Co., Boston, MA, 1995.

Jensen, C. & Scacchi,W. (2005). Process Modeling Across the Web Information Infrastructure,
Software Process--Improvement and Practice, 10(3), 255-272, July-September 2005.

35

Jensen, C. & Scacchi,W. (2007). Role Migration and Advancement Processes in OSSD Projects: A
Comparative Case Study, in Proc. 29th. Intern. Conf. Sofiware Engineering, Minneapolis, MN,
ACM Press, May 2007, 364-374.

Justice, Brig. General Nick (2007). (Program Executive Office, C3T), Open Source Software
Challenge: Delivering Warfighter Value, Presentation at “Open Source - Open Standards - Open
Architecture,” Association for Enterprise Integration Symposium, Arlington VA, 14 March.
Kwansik, B. and Crowston, K., (2005). Introduction to the special issue: Genres of digital
documents, Information, Technology and People, 18(2).

KIM, A.J.: 'Community-Building on the Web. Secret Strategies for Successful Online Communities’,
Peachpit Press, 2000.

KLEIN, H. AND MYERS, M.D.: 'A Set of Principles for Conducting and Evaluating Intrepretive
Field Studies in Information Systems', MIS Quarterly, 23, (1), pp. 67-94, March 1999.

KLING, R. and SCACCHI, W.: 'The Web of Computing: Computer technology as social
organization'. In M. Yovits (ed.), Advances in Computers, 21, pp. 3-90. Academic Press, New York,
1982.

KOTONYA, G. and SOMMERVILLE, I.: 'Requirements Engineering.: Processes and Techniques',
John Wiley and Sons, Inc, New York, 1998.

Lanzara, G. F. and Morner, M. (2005). Artifacts rule! how organizing happens in open software
projects. In Czarniawska, B. and Hernes, T., editors, Actor Network Theory and Organizing.
Copenhagen Business School Press, Copenhagen.

LEE, J.: 'SIBYL: a tool for managing group design rationale', Proceedings of the Conference on
Computer-Supported Cooperative Work, Los Angeles, CA, ACM Press, pp. 79-92, 1990.

Madey, G., Freeh, V., and Tynan, R., (2005). Modeling the F/OSS Community: A Quantitative
Investigation, in S. Koch (ed.), Free/Open Source Software Development, 203-221, Idea Group
Publishing, Hershey, PA.

McDowell, P., Darken, R., Sullivan, J. and Johnson, E., (2006). Delta3D: A Complete Open Source
Game and Simulation Engine for Building Military Training Systems, J. Defense Modeling and
Simulation: Applications, Methodology, Technology, 3(3), 143-154. July.

36

MI, P. and SCACCHI, W.: 'A Knowledge-based Environment for Modeling and Simulating
Software Engineering Processes'. IEEE Transactions on Knowledge and Data Engineering, 2, (3),
pp- 283-294, Sept 1990.

NOLL, J. and SCACCHI, W.: 'Supporting Software Development in Virtual Enterprises'. J. Digital
Information, 1, (4), February 1999, http://jodi.ecs.soton.ac.uk/Articles/v01/i04/Noll/

NOLL, J. and W. SCACCHI.: 'Specifying Process-Oriented Hypertext for Organizational

Computing', J. Network and Computer Applications, 24, (1), pp. 39-61, 2001.

NUSEIBEH, R. and EASTERBROOK, S.: 'Requirements Engineering: A Roadmap', in A.
Finkelstein (ed.), The Future of Software Engineering, ACM and IEEE Computer Society Press,
http://www.softwaresystems.org/future.html, 2000.

PAVLICEK, R.: 'Embracing Insanity: Open Source Software Development’, SAMS Publishing,
Indianapolis, IN, 2000.

RAYMOND, E.: 'The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary', O’Reilly and Associates, Sebastopol, CA, 2001.

Riechers, C., (2007). (Principal Deputy, Asst. Sect. of the Air Force, Acquisition). The Role of

Open Technology in Improving USAF Software Acquisition, Presentation at “Open Source - Open
Standards - Open Architecture,” Association for Enterprise Integration Symposium, Arlington VA,
14 March.

Ripoche, G. and Gasser, L., (2003). Scalable Automatic Extraction of Process Models for
Understanding F/OSS Bug Repair, Proc. 16™ Intern. Conf. Software Engineering & its Applications
(ICSSEA-03), Paris, France, December, 2003.

Robinson, W., (2006). A Requirements Monitoring Framework for Enterprise Systems,
Requirements Engineering, 11(1), 17-41.

SCACCHI, W.: 'Understanding Software Process Redesign using Modeling, Analysis and
Simulation , Software Process--Improvement and Practice, S, (2/3), pp. 183-195, 2000.

Scacchi, W. (2002). Understanding the Requirements for Developing Open Source Software
Systems, IEE Proceedings--Software, 149(1), 24-39, February 2002.

Scacchi, W. (2004). Free/Open Source Software Development Practices in the Computer Game

Community, IEEE Software, 21(1), 59-67, January/February 2004.

37

http://www.softwaresystems.org/future.html
http://jodi.ecs.soton.ac.uk/Articles/v01/i04/Noll/

Scacchi, W. (2005). Socio-Technical Interaction Networks in Free/Open Source Software
Development Processes, in S.T. Acufia and N. Juristo (eds.), Software Process Modeling, 1-27,
Springer Science+Business Media Inc., New York.

Scacchi, W. (2006). Understanding Free/Open Source Software Evolution, in N.H. Madhavji, J.F.
Ramil and D. Perry (eds.), Software Evolution and Feedback: Theory and Practice, 181-206, John
Wiley and Sons Inc, New York, 2006.

Scacchi, W. (2007). Free/Open Source Software Development: Recent Research Results and
Methods, in M.V. Zelkowitz (ed.), Advances in Computers, 69, 243-295.

Scacchi, W. (2007). Understanding the Development of Free E-Commerce/E-Business Software: A
Resource-Based View, in S.K. Sowe, 1. Stamelos, and 1. Samoladas (eds.), Emerging Free and
Open Source Software Practices, IGI Publishing, Hershey, PA, 170-190.

Scacchi, W. (2008). Emerging Patterns of Intersection and Segmentation when Computerization
Movements Interact in K.L. Kraemer and M. Elliott (eds.), Computerization Movements and
Technology Diffusion: From Mainframes to Ubiquitous Computing, Information Today, Inc.
Scacchi, W. & Alspaugh, T. (2008). Emerging Issues in the Acquisition of Open Source Software
within the U.S. Department of Defense, Proc. 5" Annual Acquisition Research Symposium, Naval
Postgraduate School, Monterey, CA.

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., & Lakhani, K. (2006). Understanding Free/Open
Source Software Development Processes, Software Process--Improvement and Practice, 11(2),
95-105, March/April.

Scacchi, W., Jensen, C., Noll, J. and Elliott, M. (2006). Multi-Modal Modeling, Analysis and
Validation of Open Source Software Development Processes, Intern. J. Internet Technology and
Web Engineering, 1(3), 49-63.

SMITH, M. and KOLLOCK, P. (eds.): 'Communities in Cyberspace’, Routledge, London, 1999.
Spinuzzi, C., (2003). Tracing Genres through Organizations: A Sociocultural Approach to
Information Design, MIT Press, Cambridge, MA.

Starrett, E., (2007). Software Acquisition in the Army, Crosstalk: The Journal of Defense Software
Engineering, 4-8, May.

TRUEX, D., BASKERVILLE, R. and KLEIN, H.: 'Growing Systems in an Emergent Organization',
Communications ACM, 42, (8), pp. 117-123, 1999.

38

VILLER, S. and SOMMERVILLE, I.: 'Ethnographically informed analysis for software engineers',
Int. J. Human-Computer Studies, 53, pp. 169-196, 2000.

Weathersby, J.M., (2007). Open Source Software and the Long Road to Sustainability within the
U.S. DoD IT System, The DoD Software Tech News, 10(2), 20-23, June.

Wheeler, B. (2007a). Open Source 2010: Reflections on 2007, EDUCAUSE, January/February
49-67.

Wheeler, D.A., (2007b). Open Source Software (OSS) in U.S. Government Acquisitions, The DoD
Software Tech News, 10(2), 7-13, June.

YAMAGUCHI, Y., YOKOZAWA, M., SHINOHARA, T., and ISHIDA, T.: 'Collaboration with
Lean Media: How Open-Source Software Succeeds', Proceedings of the Conference on Computer
Supported Cooperative Work, (CSCW'00), pp. 329-338, Philadelphia, PA, ACM Press, December
2000.

ZELKOWITZ, M.V. and WALLACE, D.: 'Experimental Models for Validating Technology',
Computer, 31, (5), pp. 23-31, May 1998.

39

31 - Mozilla Firefox

I T T T T T T ————————

Eile

& -

Edit ‘iew History Bookmarks ScrapBook Tools Help

- @_‘I ﬁ\j L http: e, acedipus.nekfsdk. hkml

Software Development Kit Features
Engine

. Robust side scrolling action EPG game engine

. Support for terrain maps with parallax scrolling

. Support for multiple simultaneous npc and player characters with highly customizable behaviors
. Sophisticated fast-paced combat system

Complex inventory and equipment management

_ Wide range of abilities and spells which can be designed from scratch

. Particle effects system

. Shaortcut and hot-key access to inventongdeguipment items

. Robust quest system supporting kill, collect, escort, and special quest types

. Adjustable quality settings

==

Environment

- AL script support for all environmental definitions

. Ability to create levels from scratch using bitmap images or other flash based graphic assets
. A looping background forms the base of a layer

. Static objects can be placed on top of a looping background

. Static objects can be chosen as key points for display on an in-game map

_ lcon definition for NP Cs for in-game mapping

. Speed of layer scrolling can be defined independently

. Layer scrolls automatically based on pre-defined speed

. Time of day definitions with customizeable tinting for every individual layer and object

10. Caolor tint blending based on the player's system clock time

11. Weather table, weather specific layer tinting, and layer specific special effects

12, Spawn location definition far transition from other maps

13. Exit location definition for transition to other maps

14. Location and area specification for character and item spawn paints

15, Spawn rate and reguirement definition (level/classiquestietc) for NP Cs, players, and items
16. Background music definition and automatic fading during map transitions

17. Event sound definition attacched to NPCs, players, and items

W00~ I W ha—

Characters

. Ability to create and place characters into the game with defined animation types via XML scripts
A free form identity list that defines the parameters to categorize characters in game

. Faction definitions to identify characters that cannot attack each other via "friendly fire"

- Custom definitions for hit timing and location, hit boxes, ability activation timing and position

. Character statistics kept for strength (melee damags)

. Character statistics kept for stamina (health)

. Character statistics kept for intelligence (mana)

. Character statistics kept for spirit ihealth/mana regeneration)

. Character statistics kept for armor (melee damage reduction)

- AL support for defining the value of each basic statistic by level

[da e s B N e B) [N VR LT

a3

v| B @' wost-hoc wersus post-facto | -

W

40

File Edit Wiew History Bookmarks

© Tigris.org: Open Source Software Engineering - Mozilla Firefox

ScrapBook Tools Help

€&-o-€

Q htkps /v tigris. orgfProject CreationGuidelines, hkml |“ |>] "‘

Tigris.org ?;'r:"‘ers“)” suppart K SOURCER RGE
Open Source Software Engineering Tools rom —COLABNEL.- I‘
OULABRET

My pages Projects

Search

(I Y

Advanced search

Powered by

OLLABNET

How do I...

Get release notes for
CollabMet 4.5.17

Get help?

Category Featured
projects

Community

scm Subversion,
Subclipse,
TortoisesvN,
RapidsvN

issuetrack Scarab

requirements xmlbasedsrs

design ArgolML
techcomm SubEtha,
eyebrowse,

midgard, cowiki
construction | antelope, scons,

framewnors,
build-interceptar,
propel, phing
testing rmaxg, aut
deployment | current
process ReadySET
libraries GEF, &xion,

Style, SSTree
Cver 500 more tools...

Subversion and IDEs

Eclipze
1Developer
MetBeans
Wisual Studio

openCollabNet

Tigris.org Community Scope

+ Tigris.org Is a mid-sized open source community focused on building better tools for collaborative
software development.

o You will not find thousands of unrelated projects here: every project fits into the Tigris mission.

* You will not find dead projects here: every project is welcomed into the community with a
commitment to see it through and active developers cycle among related projects.

+ Tigris.org is hosted by CollabMet, but the Tigris mission is one for the entire open source
movement and one that has attracted senior open source developers from many organizations.

Maintaining the Tigris Vision: New Projects

In order to maintain and advance the Tigris mission, we invite new projects that strengthen the community scope.
In order to keep the community strong and focused, we have established some basic ground rules for project
creation:
+ We are no longer accepting projects on any topic other than building software engineering tools,
+ We are not accepting new student projects, unless the students are building & software
engineering tool,
+ \We do not accept "personal projects", Every project must be building & software engineering tool
that is useful to other people.
+ We are not accepting new projects on these topics: games, content management systems, chat/IM,

If yvou have a project in mind that does not fit the Tigris. org mission, we encourage you to host your
project on sourceforge net, code.google.com, or a topic-specific community such as openoffice. org,
netbeans. org, or dev.java.net.

Suggesting a project

If vou'd like to create a project in the Tigris community, email a proposal to project-proposal,
explaining your idea, Including:

What is the goal of this project?
What is the scope of this project?
For example:

+ Develop just enough functionality to scratch a particular itch
* Build a tool just like X¥Z, but less broken
+ Build the best XYZ-tool ever!

What are high-level features you are sure to build?

41

%) Bi0S-compatible Agreement Listing - Mozilla Firefox

File Edit ‘iew History Bookmarks ScrapBook Tools Help

@‘ - - @ Q hittp:] fenana, cambia . org/daisy/biosfmtafagreement-patented. html

BiOS 10|

Initiative for Openinnovation
Home | about 0% License and & i i jaCentre | About Us

BiOS-compatible Agreement Listing

The benefits of a BiOS-compatible agreement to those who execute it are both
economic and non-econamic. They include:

the ability to access the intelligence, creativity, goodwill, and testing
facilities of a larger and wider community of researchers and innowatars;

decreased transactions costs relative to out-licensing or obtaining
technology via bilateral license agreements;

>
-

the potential of portfolio growth through synergies obtained by combining
pieces of technology that may, by themselves, be too small to make a profit,
or lack sufficient freedom to operate or enablement;

high lewverage of costly investments in obtaining proofs of concept,
developing improvements, and obtaining regulatory and utility data

ability to commercialise products without an additional royalty burden

Bios—compatible agreements offered by CAMBIA

|'| [3‘] v|Goog|||3

Facilitando innovacidn

LY S-Sl

Enabling innovation

FParent Lens

BiOS License / MTA

* Introduction

e Bj
) sing
Patented Technology

® EiDS-compatible Materials
Transfer Agreetments

® EiOS Licenses & MTA FAQS

& CAMEIA Plant Molecular Enabling Technology BIOS License (to be updated) PDF Version 1.6

These agreements were developed with the input of legal and business professionals. Please feel free to make

comments on the agreements in our DISCUSSIOHFOI’Um

& service of CAMBIA | Dpnate | Disclaimer | Site Search | CAMEIA Login

i

0

¥ What is a ‘protected commons’? - Mozilla Firefox

File Edit

& -

Wiew History Bookmarks

- @

ScrapBook Tools Help

G:[ikt f v, cambia.orgidaisybios/ 404, Rl

B

Home

BIOS

FAOs — BIOS Agreements

How do BiDS-compliant agreements
wrarky

wihat is a 'protected commons'?

|5 using open source technology amy
different from putting the
technology into the public domain?

Wy bother to obtain a BiOS |license?

what happens when researchers use
patented technology without
licenses?

How can a business make a profit
using technology obtained under a
EiCs-compatible agreement?

Cio BiCS-compatible agreements
allow patenting of improvern ents?

Who would want a BiOS license?

Towhat entities is a BiOS-type
agreerment available?

What types of technology are
available under BiQS licenses now?

Can other technology be made
available for use under the license?

Cioes a BiCS license cowver anly
patented technologies?

Is there a research exemption?

Howe do | abtain a BiOS license?

Will a BiQS-compatible agreement
ErCourage inmvestmenty

Is there a humanitarian use
exemption?

O]

Initiative for Open Innovation

-] > [G-]l

Facihilando iInnovacion
syl

What is a 'protected commons'?

A protected commons provides a secure platform where discussion
Concerning an invention or improvement can take place without the
irmealidation of future patent applications, or the misappropriation of
information by third parties.

How does a “protected commons® differ from the public domain?

Information that is publicly disclosed outside the context of a patent
application has entered the public domain. Information that has been
deposited in the public dormain may be readily misappropriated, becausze
those with resources can most rapidly analyse and define utilities for it, and
then cover these utilities and anmy improvements on them with patent
applications to prevent others from using them. Thus, open access to
information "in the public domain” does not guarantee open capability to use
it.

How does a “protected commons” differ from patenting?

By placing patented and patentable technology in a protected commaons,
patents can be exploited for enabling use of technology by others instead of
preventing it. The protected commaons includes both patent owners and
licensee users of the technology in the rights to share improvements and the
capahility to use them, whether these improvements are patented or not.

Allowing licensees the option to do this sharing in a "protected” (confidential)
commons is deferring to the legal framework of patenting, which mandates
that public disclosure of an invention should occur wia the patent application.
Crwners of improvements may wish to patent them, so we provide a space for
confidential, non-public disclosure of improvements to all licensees. All
licensees have made binding agreements to the legal conditions of
maintaining the improvements accessible to all other licensees, so there is an
incentive to protect the technology for open use.

Enabling innovation

43

	June 2008
	Abstract
	1. Overview
	2. Understanding open source software development across different communities
	2.5 Military computing
	2.6 Overall cross-community characteristics
	3. Informalisms for describing open source software requirements
	At least two dozen types of software informalisms can be identified, and each has sub-types that can be identified as follows.

	4. Open source software processes for developing requirements
	4.1 Requirements elicitation vs. assertion of open source software requirements
	4.2 Requirements analysis vs. requirements reading, sense-making, and accountability
	4.3 Requirements specification and modeling vs. continually emerging webs of software discourse
	4.4 Requirements validation vs. condensing discourse that hardens and concentrates system functionality and community development
	4.5 Communicating requirements vs. global access to open source software webs
	4.6 Identifying a common foundation for the development of open source software requirements

	5. Understanding open source software requirements
	6. Conclusions
	Acknowledgements
	7. References

