
 1

Socio-Technical Interaction Networks in Free/Open
Source Software Development Processes

Walt Scacchi

Institute for Software Research
School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

+1-949-824-4130 (v), +1-949-824-1715 (f)
Wscacchi@uci.edu

September 2004

Previous version: May 2004

Revised version to appear in S.T. Acuña and N. Juristo (eds.), Software Process
Modeling, pp. 1-27, Springer Science+Business Media Inc., New York, 2005.

This chapter explores patterns of social and technological interaction that emerge in
free/open source software development (F/OSSD) projects found in different research
and development communities. F/OSSD is a relatively new way for building and
deploying large software systems on a global basis, and differs in many interesting ways
from the principles and practices traditionally advocated for software engineering.
Hundreds of F/OSS systems are now in use by thousands to millions of end-users, and
some of these F/OSS systems entail hundreds-of-thousands to millions of lines of source
code. So what’s going on here, and how are F/OSSD processes that are being used to
build and sustain these projects different?

One of the more significant features of F/OSSD is the formation and enactment of
complex software development processes performed by loosely coordinated software
developers and contributors. These people may volunteer their time and skill to such
effort, and may only work at their personal discretion rather than as assigned and
scheduled. Further, these developers generally provide their own computing resources,
and bring their own software development tools with them. Similarly, F/OSS developers
work on software projects that do not typically have a corporate owner or management
staff to organize, direct, monitor, and improve the software development processes being
put into practice on such projects. But how are successful F/OSSD projects and software
development processes possible without regularly employed and scheduled software
development staff, or without an explicit regime for software engineering project
management? Why will software developers participate in F/OSSD projects? Why and
how are large F/OSSD projects sustained? How are large F/OSSD projects coordinated,
controlled or managed without a traditional project management team? Why and how
might these answers to these questions change over time? These are the core research
questions that will be addressed in this chapter.

 2

Socio-technical interaction networks (STINs) are an emerging conceptual framework for
identifying, organizing, and comparatively analyzing patterns of social interaction,
system development, and the configuration of components that constitute an information
system. More specifically, a STIN denotes a set of collective relationships among:

“…people (including organizations), equipment, data, diverse resources (money,
skill, status), documents and messages, legal arrangements and enforcement
mechanisms, and resource flows. The elements of a STIN are heterogeneous.
The network relationships between these elements include social, economic, and
political interactions.” [Kling 2003]

Subsequently, STINs provide a scheme for examining the networks of people who work
together through interrelated social and technical processes that arise to create the
complex information systems and products. STINs thus serve as a conceptual framework
through which to examine ongoing F/OSSD projects and processes.

STINs may be seen as the conceptual outgrowth of what historically was called “socio-
technical systems” (STS) [Emery 1960], informed by “actor network theory”. An STS
perspective envisions a world of complex organizations that routinely employ
technicians/engineers to develop systems for users, where success in developing a system
depends on the participation and sustained involvement of the system’s users. If people
issues in the design, deployment, and evolution of these STS are slighted or ignored, then
these systems would be problematic or unsatisfactory to use, else be outright failures.
However, understanding this pathology, or intervening to prevent it, is possible through
STS practices that can be incorporated into system development processes [Scacchi
2004c]. Historically, STS design approaches prescriptively advocated user involvement
and participation in the design and deployment of information systems, and its successors
like “participatory design” [Schuler 1993] advocate more up-to-date renditions of STS
design. Consequently, STS design was among the earliest approaches to system
development that sought to both engage and balance the interests of people (developers,
end-users), products (systems, documentation, etc.) and processes (system design and
usage) in a manner that focused on participation and involvement of all system
stakeholders. Other directions for advancing STS design include its integration with
workplace democracy movements [Bjerknes 1995, Ehn 1987] and soft systems
approaches [Atkinson 2000], as well as its reconstitution as a customer-driven system
design method [Beyer 1997].

Actor-network theory (ANT) [cf. Callon 1986, Latour 1987, Law 1999] on the other hand
draws attention to processes by which scientific disputes or technical design alternative
become closed and rationalized, ideas accepted, tools and methods adopted, or more
simply how decisions are made about what is known. ANT does not assume or encourage
prescriptive strategies or motives for why people should participate or be involved in
system design. Instead, it draws attention to need for empirical study of what people do in
their work, and what tools, resources, and artifacts they produce, use, or consume along
the way. Furthermore, ANT draws attention to the relationships that repeatedly emerge in
the ways people in different roles and with different resources in overlapping settings

 3

articulate scientific research or system development processes through situated work
practices.

STINs build on concepts from STS design and ANT by drawing attention to the web of
relationships that interlink what people do in the course of their system development
work to the resources they engage and to the products (software components,
development artifacts, and documents) they create, manipulate, and sustain. STINs thus
give us a way to better observe the contexts in which people carry out software
development processes and related work practices. In F/OSSD projects, this web is
manifest and articulated over the World-Wide Web and associated systems for creating
and updating the web, so that it can observed, navigated, and empirically studied.
Introducing and explaining how STINs appear in different F/OSSD projects, is therefore
part of the purpose of this chapter. In turn, STINs are then used as a framework to
observe and focus on why and how software developers participate in F/OSSD projects,
what sustains their interest and communities, how participation and community gives rise
to socio-technical conditions that serve to coordinate and control F/OSSD processes and
practices, and how and why they evolve over time.

This chapter seeks to explore and develop answers to questions about F/OSSD by
examining the patterns and networks of interactions among the people, products, and
processes that are found in a growing base of empirical studies of F/OSSD projects.
Exhibits from a variety of different F/OSSD projects will be presented and used to
empirically ground the analysis and findings to be presented in this chapter.

Understanding F/OSS development practices and
processes
There is growing and widespread interest in understanding the practices and processes of
F/OSS development. However, there is no prior model or globally accepted framework
that defines how F/OSS is developed in practice [Mockus 2002, Scacchi 2002, 2004].
The starting point is thus to investigate F/OSS practices in different communities.

F/OSSD projects are being empirically studied in at least six different and diverse F/OSS
communities. These six are centered about the development of software for Internet/Web
infrastructure, computer games, electronic business/commerce applications, academic
support software, software engineering design systems, and X-ray/deep space astronomy.

Rather than examine F/OSSD practices for a single system (e.g., Linux kernel) which
may be interesting but unrepresentative of most F/OSSD projects, or of related systems
from the just one community (e.g., Internet infrastructure), the focus here is to identify
general F/OSS practices shaped by STINs both within and across these diverse
communities. Thus, the F/OSS development practices that are described below have been
empirically observed in different projects in each of these communities. Further, data
exhibits in the form of screenshots displaying Web site contents from projects across the
different F/OSS project communities are used to exemplify the practices, though
comparable data from a different selection of F/OSS projects could serve equally well.

 4

From studies to date, there are at least four areas where the formation and activity of
STINs is most apparent across F/OSSD projects within and across all six communities.
These include (a) participating, joining, and contributing to F/OSS projects; (b) forming
alliances and building communities of practice through linked artifacts; (c) coordinating,
cooperating, and controlling F/OSSD projects; and (d) co-evolving social and technical
systems for F/OSS. Each can be briefly described in turn, though none should be
construed as being independent or more important than the others. Furthermore, it
appears that each can occur concurrent to one another, rather than as strictly ordered
within a traditional life cycle model, or partially ordered in a spiral model.

Participating, Joining, and Contributing in F/OSS projects
There are complex motivations for why F/OSS developers are willing to allocate their
time, skill, and effort by joining a F/OSS project [Hars 2002, Hertel 2003, von Krogh
2003]. Sometimes they may simply see their effort as something that is fun, personally
rewarding, or provides a venue where they can exercise and improve their technical
competence in a manner that may not be possible within their current job or line of work.
However, people who participate, contribute, and join F/OSS projects tend to act in ways
where building trust and reputation [Stewart 2001], achieving “geek fame” [Pavlicek
2000], being creative [Fischer 2001], as well as giving and being generous with one’s
time, expertise, and source code [Bergquist 2001] are valued traits. In the case of F/OSS
for software engineering design systems, participating in such a project is a viable way to
maintain or improve software development skills, as indicated in Exhibit 1.

Becoming a central node in a social network of software developers that interconnects
multiple F/OSS projects is also a way to accumulate social capital and recognition from
peers. One survey reports that 60% or more F/OSS developers participate in two or more
projects, and on the order of 5% participate in 10 or more F/OSS projects [Hars 2002]. In
addition, participation in F/OSS projects as a core developer can realize financial rewards
in terms of higher salaries for conventional software development jobs [Hann 2002,
Lerner 2002]. However, it also enables the merger of independent F/OSS systems into
larger composite ones that gain the critical mass of core developers to grow more
substantially and attract ever larger user-developer communities [Madey 2004, Scacchi
2004c].

People who participate in F/OSS projects do so within one or more roles. Gacek and
Arief [Gacek 2004] provide a common classification of the hierarchy of roles that people
take and common tasks they perform when participating in a F/OSS project, as shown in
Figure 1. Typically, it appears that people join a project and specialize in a role (or
multiple roles) they find personally comfortable and intrinsically motivating [von Krogh
2004]. In contrast to traditional software development projects, there is no explicit
assignment of developers to roles, though individual F/OSSD projects often post
guidelines or “help wanted here” for what roles for potential contributors are in greatest
need.

It is common in F/OSS projects to find end-users becoming contributors or developers,
and developers acting as end-users [Mockus 2002, Nakakoji 2002, Scacchi 2002, von

 5

Hippel 2002]. As most F/OSS developers are themselves end-users of the software
systems they build, they may have an occupational incentive and vested interest in
making sure their systems are really useful. However the vast majority of participants
probably simply prefer to be users of F/OSS systems, unless or until their usage
motivates them to act through some sort of contribution. Avid users with sufficient
technical skills may actually work their way through each of the roles and eventually
become a core developer, as suggested by Figure 2. As a consequence, participants within
F/OSS project often participate in different roles within both technical and social
networks [Smith 1999, Preece 2000] in the course of developing, using, and evolving
F/OSS systems.

Making contributions is often a prerequisite for advancing technically and socially within
a community, as is being recognized by other community members as having made
substantive contributions [Fielding 1999, Kim 2000]. Most commonly, F/OSS project
participants contribute different types of software representations or content (source code,
bug reports, design diagrams, execution scripts, code reviews, test case data, Web pages,
email comments, online chat, etc.) to Web sites of the F/OSS projects they join. The
contribution—the authoring, hypertext linking (when needed), and posting/uploading—of
different types of content helps to constitute an ecology [Erickson 2000, Spinuzzi 2000]
of software informalisms [Scacchi 2002] that is specific to a F/OSS project, though
individual content types are widely used across most F/OSS projects. Similarly, the
particular mix of software informalisms employed by participants on a F/OSS project
articulates an information infrastructure [Star 1996] for framing and solving problems
that arise in the ongoing development, deployment, use, and support of the F/OSS system
at the center of a project.

Administrators of open software community Web sites and source code repositories serve
as gatekeepers in the choices they make for what information to post, when and where
within the site to post it, as well as what not to post [Smith 1999]. Similarly, they may
choose to create a site map that constitutes a classification of site and domain content, as
well as community structure and boundaries [O’Mahony 2003].

Most frequently, participants in F/OSS projects engage in online discussion forums or
threaded email messages as a central way to observe, participate in, and contribute to
public discussions of topics of interest to community participants [Yamauchi 2000].
However, these people also engage in private online or offline discussions that do not get
posted or publicly disclosed, due to their perceived sensitive content.

Central to the development of F/OSS projects are software extension mechanisms and
F/OSS software copyright licenses that insure freedom and/or openness. The extension
mechanisms enable modification of the functionality or architecture of software systems
via intra-/inter-application scripting or external module plug-in architectures. Copyright
licenses, most often derived from the GNU Public License (GPL), are attached to any
project developed software, so that it might be further accessed, examined, debated,
modified, and redistributed without loss of these rights in the future. These public

 6

software licenses stand in contrast to the restricted access found in closed source software
systems and end-user license agreements.

Finally, in each of the six communities being examined, participants choose on occasion
to author and publish technical reports or scholarly research papers about their software
development efforts, which are publicly available for subsequent examination, review,
and secondary analysis.

Forming alliances and building community through participation, artifacts,
and tools
How does the gathering of individual F/OSS developers give rise to a more persistent
project team or self-sustaining community? Through choices that developers make for
their participation and contribution to an F/OSSD project, they find that there are like-
minded individuals who also choose to participate and contribute to a project. These
software developers find and connect with each other through F/OSSD Web sites and
online discourse (e.g., threaded email discussions) [Monge 1998], and they find they
share many technical competencies, values, and beliefs in common [Crowston 2002,
Espinosa 2002, Elliott 2004]. This manifests itself in the emergence of an occupational
network of F/OSS developers [Elliott 2003].

Sharing beliefs, values, communications, artifacts and tools among F/OSS developers
enables not only cooperation, but also provides a basis for shared experience,
camaraderie, and learning [cf. Brown 1991, Fischer 2001, George 1995]. F/OSS
developers participate and contribute by choice, rather than by assignment, since they
find that conventional software development work provides the experience of working
with others who are assigned to a development effort, whether or not they find that share
technical approaches, skills, competencies, beliefs or values. As a result, F/OSS
developers find they get to work with people that share their many values and beliefs in
common, at least as far as software development. Further, the values and beliefs
associated with free software or open source software are both signaled and
institutionalized in the choice of intellectual property licenses (e.g., GPL) that F/OSSD
projects adopt and advocate. These licenses in turn help establish norms for developing
free software or open source software, as well as for an alliance with other F/OSSD
projects that use the same licenses.

More than half of the 80K F/OSS projects registered at SourceForce.net Web portal
employ the GNU General Public License (GPL) for free (as in freedom) software. The
GPL seeks to preserve and reiterate the beliefs and practices of sharing, examining,
modifying and redistributing F/OSS systems and assets as property rights for collective
freedom. A few large F/OSSD project that seek to further protect the collective free/open
intellectual property rights do so through the formation of legally constituted non-profit
organizations or foundations (e.g., Free Software Foundation, Apache Software
Foundation, GNOME Foundation) [O’Mahony 2003]. Other OSS projects, because of the
co-mingling of assets that were not created as free property, have adopted variants that
relax or strengthen the rights and conditions laid out in the GPL. Dozens of these licenses
now exist, with new ones continuing to appear (cf. www.opensource.org). An example of

 7

such a variant appears in Exhibit 2. Finally, when OSSD projects seek to engage or
receive corporate sponsorship, and the possible co-mingling of corporate/proprietary
intellectual property, then some variation of a non-GPL open source license is employed,
as a way to signal a “business friendly” OSSD project, and thus to encourage
participation by developers who want to work in such a business friendly and career
enhancing project [Hann 2002, Sharma 2002].

Developing F/OSS systems is a community and project team building process that must
be institutionalized within a community [Sharma 2002, Smith 1999, Preece 2000] for its
software informalisms (artifacts) and tools to flourish. Downloading, installing, and using
F/OSS systems acquired from other F/OSS Web sites is also part of a community
building process [Kim 2000]. Adoption and use of F/OSS project Web sites are a
community wide practice for how to publicize and share F/OSS project assets. These
Web sites can be built using F/OSS Web site content management systems (e.g., PhP-
Nuke) to host project contents that can be served using F/OSS Web servers (Apache),
database systems (MySQL) or application servers (JBoss), and increasingly accessed via
F/OSS Web browsers (Mozilla). Furthermore, ongoing F/OSS projects may employ
dozens of F/OSS development tools, whether as standalone systems like the software
version control system CVS, as integrated development environments like NetBeans or
Eclipse, or as sub-system components of their own F/OSS application in development.
These projects similarly employ asynchronous systems for project communications that
are persistent, searchable, traceable, public and globally accessible.

F/OSS systems, hyperlinked artifacts and tools, and project Web sites serve as venues for
socializing, building relationships and trust, sharing and learning with others. “Linchpin
developers” [Madey 2004] act as community forming hubs that enable independent small
F/OSS projects to come together as a larger social network with the critical mass
[Marwell 1993] needed for their independent systems to be merged and experience more
growth in size, functionality, and user base. Whether this trend is found in traditional or
closed source software projects is unclear. F/OSSD Web sites also serve as hubs that
centralize attention for what is happening with the development of the focal F/OSS
system, its status, participants and contributors, discourse on pending/future needs, etc.
Furthermore, by their very nature, these Web sites (those accessible outside of a
corporate firewall) are generally global in reach and accessibility. This means the
potential exists for contributors to come from multiple remote sites (geographic
dispersion) at different times (24/7), from multiple nations, representing the interests of
multiple cultures or ethnicity.

All of these conditions point to new kinds of requirements—for example, community
building requirements, community software requirements, and community information
sharing system (Web site and interlinked communication channels for email, forums, and
chat) requirements. These requirements may entail both functional and non-functional
requirements, but they will most typically be expressed using open software
informalisms, rather than using formal notations based on some system of mathematical
logic.

 8

Community building, alliance forming, and participatory contributing are essential and
recurring activities that enable F/OSSD projects to persist without central corporate
authority. Figure 3 depicts an example of a social network of 24 F/OSS developers within
5 F/OSS projects that are interconnected through two linchpin developers [Madey 2004].
Thus, linking people, systems, and projects together through shared artifacts and
sustained online discourse enables a sustained socio-technical community, information
infrastructure [Star 1996], and network of alliances [Kling 2003, Monge 1998] to emerge.

Cooperating, coordinating, and controlling F/OSS projects
Getting software developers to work together, even when they desire to cooperate is not
without its challenges for coordinating and controlling who does what when, and to what
they do it to. Conflicts arise in both F/OSSD [Elliott 2003, Elliott 2004, Jensen 2004] and
traditional software development projects [Sawyer 2001], and finding ways to resolve
conflicts becomes part of the cost (in terms of social capital) that must be incurred by
F/OSS developers for development progress to occur. Minimizing the occurrence,
duration, and invested effort in such conflicts quickly becomes a goal for the core
developers in an F/OSSD project. Similarly, finding tools and project organizational
forms that minimize or mitigate recurring types of conflicts also becomes a goal for
experienced core developers.

Software version control tools such as the concurrent versions system CVS--itself an
F/OSS system and document base [Fogel 1999]--have been widely adopted for use within
F/OSS projects. Tools like CVS are being used as both a centralized mechanism for
coordinating and synchronizing F/OSS development, as well as a venue for mediating
control over what software enhancements, extensions, or upgrades will be checked-in and
made available for check-out throughout the decentralized community as part of the
publicly released version.

Software version control, as part of a software configuration management activity, is a
recurring situation that requires coordination but enables stabilization and
synchronization of dispersed and somewhat invisible development work [Grinter 1996].
This coordination is required due to the potential tension between centralized decision-
making authority of a project's core developers and decentralized work activity of project
contributors when two or more autonomously contributed software source code/content
updates are made which overlap, conflict with one another, or generate unwanted side-
effects [Grinter 2003]. It is also practiced as a way to manage, track, and control both
desired and undesired dependencies within the source code [deSouza 2003], as well as
among its surrounding informalisms [Scacchi 2002, 2004]. Tools like CVS thus serve to
help manage or mitigate conflicts over who gets to modify what, at least as far as what
changes or updates get included in the next software release from a project. However, the
CVS administrator or configuration control policies provide ultimate authority and
control mediated through such systems.

Each project team, or CVS repository administrator in it, must decide what can be
checked in, and who will or will not be able to check-in new or modified software source
code content. Sometimes these policies are made explicit through a voting scheme

 9

[Fielding 1999], while in others they are left informal, implicit, and subject to
negotiation. In either situation, version updates must be coordinated in order for a new
system build and release to take place. Subsequently, those developers who want to
submit updates to the community's shared repository rely extensively on online
discussions that are supported using "lean media" such as threaded email messages
posted on a Web site [Yamauchi 2000], rather than through onerous system configuration
control boards. Thus, software version control, system build and release is a coordination
and control process mediated by the joint use of versioning, system building, and
communication tools [Erenkrantz 2003].

F/OSSD projects teams can take the organizational form of a layered meritocracy
[Fielding 1999, Kim 2000] operating as a dynamically organized virtual enterprise
[Crowston 2002, Noll 1999]. A layered meritocracy is a hierarchical organizational form
that centralizes and concentrates certain kinds of authority, trust, and respect for
experience and accomplishment within the team. However, it does not imply a single
authority, since decision-making may be shared among core developers who act as peers
at the top layer.

Figure 2 illustrates the form of a meritocracy common to many F/OSS projects. In this
form, software development work appears to be logically centralized, while being
physically distributed in an autonomous and decentralized manner [Noll 1999]. However,
it is neither simply a "cathedral" or a "bazaar", as these terms have been used to describe
alternative ways of organizing software development projects. Instead, when layered
meritocracy operates as a virtual enterprise, it relies on virtual project management
(VPM) to mobilize, coordinate, control, build, and assure the quality of F/OSS
development activities. It may invite or encourage system contributors to come forward
and take a shared, individual responsibility that will serve to benefit the F/OSS collective
of user-developers. VPM requires multiple people to act in the roles of team leader, sub-
system manager, or system module owner in a manner that may be short-term or long-
term, based on their skill, accomplishments, availability and belief in community
development. This implied requirement for virtual project management can be seen in the
text appearing within Exhibit 3.

Project participants higher up in the meritocracy have greater perceived authority than
those lower down. But these relationships are only effective as long as everyone agrees to
their makeup and legitimacy. Administrative or coordination conflicts that cannot be
resolved may end up either by splitting or forking a new system version with the
attendant need to henceforth take responsibility for maintaining that version, by reducing
one’s stake in the ongoing project, or by simply conceding the position in conflict.

Virtual project management exists within F/OSS communities to enable control via
community decision-making, Web site administration, and CVS repository administration
in an effective manner. Similarly, VPM exists to mobilize and sustain the use of privately
owned resources (e.g., Web servers, network access, site administrator labor, skill and
effort) available for shared use or collective reuse by the community.

 10

Traditional software project management stresses planning and control activities. In
contrast, Lessig and others [Lessig 1999, Shah 2003] observe that source code is an
institution for collective action [O’Mahony 2003, Ostrom 1990] that intentionally or
unintentionally realizes a mode of social control on those people who develop or use it. In
the case of F/OSS development, Lessig’s observation would suggest that the source code
controls or constrains end-user and developer interaction, while the code in software
development tools, Web sites, and project assets accessible for download controls,
constrains, or facilitates developer interaction with the evolving F/OSS system code.
CVS is a tool that enables some form of social control. However, the fact that the source
code to these systems is available in a free and open source manner offers the opportunity
to examine, revise, and redistribute patterns of social control and interaction in ways that
favor one form of project organization, system configuration control, and user-developer
interaction over others.

Beyond this, the ability for the eyes of many developers to review or look over source
code, system build and preliminary test results, and responses to bug reports, also realizes
peer review and the potential for embarrassment as a form of indirect social control over
the timely actions of contributing F/OSS developers. Thus, F/OSSD allows for this
dimension of VPM to be open for manipulation by the core developers, so as to
encourage certain patterns of software development and social control, and to discourage
others that may not advance the collective needs of F/OSSD project participants.
Subsequently, F/OSSD projects are managed, coordinated and controlled, though without
the roles for traditional software project managers.

Co-evolving socio-technical systems for F/OSS
Software maintenance, in the form of the addition/subtraction of system functionality,
debugging, restructuring, tuning, conversion (e.g., internationalization), and migration
across platforms, is a widespread, recurring process in F/OSS development communities.
Perhaps this is not surprising since maintenance is generally viewed as the major cost
activity associated with a software system across its life cycle. However, this traditional
characterization of software maintenance does not do justice for what can be observed to
occur within different F/OSS communities. Instead, it may be better to characterize the
overall evolutionary dynamic of F/OSS as reinvention. Reinvention is enabled through
the sharing, examination, modification, and redistribution of concepts and techniques that
have appeared in closed source systems, research and textbook publications, conferences,
and the interaction and discourse between developers and users across multiple F/OSS
projects. Thus, reinvention is a continually emerging source of improvement in F/OSS
functionality and quality, as well as also a collective approach to organizational learning
in F/OSS projects [Brown 1991, Fischer 2001, Huntley 2003, George 1995].

Many of the largest and most popular F/OSS systems like the Linux Kernel [Godfrey
2000, Schach 2002], GNU/Linux distributions [Gonzalez-Barahona 2001, O’Mahony
2003], GNOME user interface [Koch 2002] and others are growing at an exponential
rate, as is their internal architectural complexity [Schach 2002]. On the other hand the
vast majority of F/OSS projects are small, short-lived, exhibit little/no growth, and often
only involve the effort of one developer [Capiluppi 2003, Madey 2004]. In this way, the

 11

overall trend derived from samples of 400-40K F/OSS projects registered at the
SourceForge.net Web portal reveals a power law distribution common to large self-
organizing systems. This means a few large projects have a critical mass of at least 5-15
core F/OSS developers [Mockus 2002] that act in or share project leadership roles
[Fielding 1999] that are surrounded by dozens to hundreds of other contributors, and
hundreds to millions of end users. These F/OSS projects that attain and sustain such
critical mass are those that inevitably garner the most attention, software downloads, and
usage. On the other hand, the vast majority of F/OSS projects are small, lacking in critical
mass, and thus unlikely to thrive and grow.

The layered meritocracies that arise in F/OSS projects tend to embrace incremental
innovations such as evolutionary mutations to an existing software code base over radical
innovations. Radical change involves the exploration or adoption of untried or
sufficiently different system functionality, architecture, or development methods. Radical
software system changes might be advocated by a minority of code contributors who
challenge the status quo of the core developers. However, their success in such advocacy
usually implies creating and maintaining a separate version of the system, and the
potential loss of a critical mass of other F/OSS developers. Thus, incremental mutations
tend to win out over time.

F/OSS systems seem to evolve through minor improvements or mutations that are
expressed, recombined, and redistributed across many releases with short duration life
cycles. End-users of F/OSS systems who act as developers or maintainers continually
produce these mutations. These mutations appear initially in daily system builds. These
modifications or updates are then expressed as a tentative alpha, beta, release candidate,
or stable release versions that may survive redistribution and review, then subsequently
be recombined and re-expressed with other new mutations in producing a new stable
release version. As a result, these mutations articulate and adapt an F/OSS system to what
its developer-users want it to do in the course of evolving and continually reinventing the
system.

Last, closed source software systems that were thought to be dead or beyond their useful
product life or maintenance period may be revitalized through the redistribution and
opening of their source code. However, this may only succeed in application domains
where there is a devoted community of enthusiastic user-developers who are willing to
invest their time and skill to keep the cultural heritage of their former experience with
such systems alive. Exhibit 4 provides an example for vintage arcade games now
numbering in the thousands that are being revitalized and evolved through F/OSS
systems.

Overall, F/OSS systems co-evolve with their development communities. This means the
evolution of one depends on the evolution of the other. Said differently, an F/OSS project
with a small number of developers (most typically one) will not produce and sustain a
viable system unless/until the team reaches a larger critical mass of 5-15 core developers.
However, if critical mass is achieved, then it may be possible for the F/OSS system to
grow in size and complexity at a sustained exponential rate, defying the laws of software

 12

evolution that have held for decades [Lehman 1980, Scacchi 2004b]. Furthermore, user-
developer communities co-evolve with their systems in a mutually dependent manner
[Elliott 2004, Nakakoji 2002, O’Mahony 2003, Scacchi 2002], and system architectures
and functionality grow in discontinuous jumps as independent F/OSS projects decide to
join forces [Godfrey 2000, Nakakoji 2002, Scacchi 2002b]. Whether this trend is found in
traditional or closed source software projects is unclear. But what these findings and
trends do indicate is that it appears that the practice of F/OSS development processes is
different from the processes traditionally advocated for software engineering.

Limitations and Constraints of STINs on F/OSS
Development Processes
F/OSS is certainly not a panacea for developing complex software systems, nor is it
simply software engineering done poorly. Instead, it represents an alternative community-
intensive approach to develop software systems and related artifacts, as well as social
relationships. However, it is not without its limitations and constraints. Thus, we should
be able to help see these limits as manifest within or through STINs for each of the four
types of processes examined above.

First, in terms of participating, joining, and contributing to F/OSS projects, a developer’s
interest, motivation, and commitment to a project and its contributors is dynamic and not
indefinite. F/OSS developers are loathe to find themselves contributing to a project that is
realizing commercial or financial benefits that are not available to all contributors, or that
are concentrated to benefit a particular company, again without some share going to the
contributors. Some form of reciprocity seems necessary to sustain participation, whereas
a perception of exploitation by others can quickly dissolve a participant’s commitment to
further contribute, or worse to dissuade other participants to abandon an open source
project that has gone astray. If linchpin developers lose interest, then unless another
contributor comes forward to fill in or take over role and responsibility for the
communication and coordination activities of such key developers, then the F/OSS
system may quickly become brittle, fragile, and difficult to maintain. Thus, participation,
joining, and contributing must become sustained activities on an ongoing basis within
F/OSS projects for them to succeed.

Second, in terms of forming alliances and building community through participation,
artifacts, and tools points to a growing dependence on other F/OSS projects. The
emergence of non-profit foundations that were established to protect the property rights
of large multi-component F/OSS project creates a demand to sustain and protect such
foundations. If a foundation becomes too bureaucratic as a result to streamline its
operations, then this may drive contributors away from a project. So, these foundations
need to stay lean, and not become a source of occupational careers, in order to survive
and evolve. Similarly, as F/OSS projects give rise to new types of requirements for
community building, community software, and community information sharing systems,
these requirements need to be addressed and managed by F/OSS project contributors in
roles above and beyond those involved in enhancing the source code of a F/OSS project.
F/OSS alliances and communities depend on a rich and growing web of socio-technical
relations. Thus, if such a web begins to come apart, or if the new requirements cannot be

 13

embraced and satisfied, then the F/OSS project community and its alliances will begin to
come apart.

Third, in terms of cooperation, coordination, and control, F/OSS projects do not escape
conflicts in technical decision-making, or in choices of who gets to work on what, or who
gets to modify and update what. As F/OSS projects generally lack traditional project
managers, then they must become self-reliant in their ability to mitigate and resolve
outstanding conflicts and disagreements. Beliefs and values that shape system design
choices, as well as choices over which software tools to use, and which software artifacts
to produce or use, are determined through negotiation rather than administrative
assignment. Negotiation and conflict management then become part of the cost that
F/OSS developers must bear in order for them to have their beliefs and values fulfilled. It
is also part of the cost they bear in convincing and negotiating with others often through
electronic communications to adopt their beliefs and values. Time, effort, and attention
spent in negotiation and conflict management are not spent building and improving
source code, but they do represent an investment in building and sustaining a negotiated
socio-technical network of dependencies.

Last, in terms of the co-evolution of F/OSS systems and community, as already noted,
individual and shared resources of people’s time, effort, attention, skill, sentiment (beliefs
and values), and computing resources are part of the socio-technical web of F/OSS.
Reinventing existing software systems as F/OSS coincides with the emergence or
reinvention of a community who seeks to make such system reinvention occur. F/OSS
systems are common pool resources [Ostrom 1990] that require collective action for their
development, mobilization, use, and evolution. Without the collective action of the
F/OSS project community, the common pool will dry up, and without the common pool,
the community begins to fragment and disappear, perhaps to search for another pool
elsewhere.

Conclusions
Free/open source software development practices are giving rise to a new view of how
complex software systems can be constructed, deployed, and evolved on a global basis.
F/OSS development does not adhere to the traditional rationality found in the legacy of
software engineering life cycle models or prescriptive standards. F/OSS development is
inherently a complex web of socio-technical processes, development situations, and
dynamically emerging interaction networks. This paper examines and analyzes results
from empirical studies that begin to outline some of the socio-technical activities that
situate how F/OSS systems are developed in different communities. In particular,
examples drawn from different F/OSS project communities reveal how processes and
practices for the development and propagation of F/OSS technology are intertwined and
mutually situated to the benefit of those motivated to use and contribute to it.

The future of research in the development and use of STINs as a conceptual framework
for observing and analyzing F/OSSD processes and practices seems likely to focus
attention to the following topics.

 14

First, the focus of software process research is evolving to include attention to socio-
technical processes of people, resources, organizational forms, and institutional rules that
embed and surround an F/OSS system, as well as how they interact and interface with
one another. Such a focus draws attention to the web of socio-technical relations that
interlink people in particular settings to a situated configuration of globally available
Web-based artifacts and locally available resources (skills, time, effort, computing) that
must collectively be mobilized or brought into alignment in order for a useful F/OSS
system to be continuously (re)designed to meet evolving user needs.

Second, participation in F/OSS system design, assertion of system requirements, or
design decision-making is determined by effort, willingness, and prior public experience
in similar situations, rather than by assignment by management or some other
administrative authority. Similarly, the openness of the source code/content of a F/OSS
system encourages and enables many forms of transparency, access, and ability to
customize/localize a system’s design to best address user/developer needs in a particular
site or installation.

Third, people who participate in the development, deployment, and evolution of F/OSS
often do it on a voluntary or self-selected basis. These people quickly recognize the need
to find ways to cooperate and collaborate in order to minimize individual effort and
conflict while maximizing collective accomplishment. This is most easily observed in the
online (or Web-based) communications, shared source code files and directories,
application invocation or system configuration scripts, Web pages and embedded
hyperlinks, and other textual artifacts that people in free/open source software project
communities employ as the media, content, and (hyperlinked) context of system design
and evolution. However, there is a continually emerging need to minimize and mitigate
conflicts that arise in F/OSSD projects due to the absence of a traditional project
management regime that might otherwise act to competently resolve (or to incompetently
bungle) such software development conflicts. As a result, F/OSSD projects have adapted
or evolved the use of tools, interlinked artifacts, and organizational forms that effectively
create a project management capability and socio-technical control framework without
(traditional) project managers.

Fourth, the world of F/OSSD is different in many interesting ways and means when
compared to the world of software engineering within corporate or centralized enterprise
settings. Knowing and understanding one does not provide a sufficient basis for assuming
an understanding of the other, yet both worlds develop complex software systems and
artifacts using development processes that may (or may not) be well understood. This
analysis of the socio-technical interaction networks that facilitate and constrain F/OSSD
processes and practices points to new concepts, situations, events, and data for
understanding how large software systems are developed, deployed, and evolved within
F/OSSD communities of practice. Each merits further study, articulation, and refinement.

Last, the four preceding research directions collectively begin to draw attention to matters
beyond software development processes, as traditionally addressed. Instead, future STIN
and software process research can employ Web analyses [Kling 1982, Kling 2003],

 15

ethnographic methods [Elliott 2004, Scacchi 2002, Viller 2000] and contemporary socio-
technical system design techniques [Scacchi 2004c] to study and model how people
accomplish software development processes and practices in an organizational setting
using F/OSS systems, artifacts, tools, people, and circumstances at hand. Understanding
the F/OSS system or interaction network will need to include understanding the
workplace, inter-organizational networks, social worlds and cultural milieu that embed
and situate how people interact with and through the F/OSS systems at hand in the course
of their work and workflows. Similarly, there is a basic need to discover new ways and
means that enable traditional software developers to understand and become users of
F/OSSD practices so as to empower and sustain both traditional and F/OSS developers in
their collective effort to continuously improve their software development skills,
practices, and processes. This chapter therefore represents a step in this direction.

Acknowledgements: The research described in this report is supported by
grants #ITR-0083075, #ITR-0205679, #ITR-0205724, and #ITR-0350754 from the U.S.
National Science Foundation. No endorsement implied. Mark Ackerman at University of
Michigan, Ann Arbor; Les Gasser at University of Illinois, Urbana-Champaign; John
Noll at Santa Clara University; and Margaret Elliott and Chris Jensen at the UCI Institute
for Software Research are collaborators on the research described in this chapter.

References
Atkinson, C.J., Socio-Technical and Soft Approaches to Information Requirements Elicitation
in the Post-Methodology Era, Requirements Engineering, 5, 67-73, 2000.

Bjerknes, G. and Bratteteig, T., User Participation and Democracy. A Discussion of
Scandinavian Research on System Development. Scandinavian Journal of Information
Systems. 7(1), 73-98, 1995.

Bergquist, M. and Ljungberg, J., The power of gifts: organizing social relationships in
open source communities, Info. Systems J., 11, 305-320, 2001.

Beyer, H. and Holtzblatt, K., Contextual Design: A Customer-Centered Approach to
Systems Designs, Morgan Kaufmann Publishers, San Francisco, CA, 1997.

Brown, J.S. and Duguid, P., Organizational learning and communities-of-practice:
Toward a unified view of working, learning, and innovation. Organization Science,
2(1):40-57, 1991.

Callon, M., Law, J., and Rip, J., (eds.), Mapping the Dynamics of Science and
Technology: Sociology of Science in the Real World. London: Macmillan Press, 1986.

Capilupppi, A., Lago, P. and Morisio, M., Evidences in the Evolution of OS projects
through Changelog Analyses, Proc. 3rd Workshop on Open Source Software Engineering,
Portland, OR, May 2003.

 16

Crowston, K., Annabi, H., and Howison, J., Defining Open Source Software Project
Success, Proc. 24th Intern. Conf. Information Systems (ICIS-2003), December 2003.

Crowston, K., and Scozzi, B., Open Source Software Projects as Virtual Organizations:
Competency Rallying for Software Development, IEE Proceedings--Software, 149(1), 3-
17, 2002.

Ehn, P. and Kyng, M., The Collective Resource Approach to System Design, in G.
Bjerknes, P. Ehn, and M. Kyng (eds.), Computers and Democracy—a Scandinavian
Challenge, Avebury, Aldershot, 1987.

Emery, F.E. and Trist, E.L., Socio-Technical Systems. In C.W. Churchman & M.
Verhurst (Eds), Management Science, Models and Techniques, Vol. 2, 83-97. London:
Pergamon Press, 1960.

Elliott, M. and Scacchi, W., Free Software Developers as an Occupational Community:
Resolving Conflicts and Fostering Collaboration, Proc. ACM Intern. Conf. Supporting
Group Work, 21-30, Sanibel Island, FL, November 2003.

Elliott, M. and Scacchi, W., Free Software Development: Cooperation and Conflict in A
Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source Software
Development, Idea Publishing, to appear, 2004.

Erenkrantz, J., Release Management within Open Source Projects, Proc. 3rd. Workshop
on Open Source Software Engineering, 25th. Intern. Conf. Software Engineering,
Portland, OR, May 2003.

Erickson, T., Making Sense of Computer-Mediated Communication (CMC): CMC
Systems as Genre Ecologies, Proc. 33rd Hawaii Intern. Conf. Systems Sciences, IEEE
Press, 1-10, January 2000.

Espinosa, J. A., Kraut, R.E., Slaughter, S. A., Lerch, J. F., Herbsleb, J. D., Mockus, A.
Shared Mental Models, Familiarity, and Coordination: A multi-method study of
distributed software teams. Intern. Conf. Information Systems, 425-433, Barcelona,
Spain, December 2002.

Fielding, R.T., Shared Leadership in the Apache Project. Communications ACM,
42(4):42-43, 1999.

Fischer, G., External and shareable artifacts as opportunities for social creativity in
communities of interest, in J. S. Gero and M. L. Maher (eds), Proc. Computational and
Cognitive Models of Creative Design, 67-89, Heron Island, Australia, December 2001.

Fogel, K., Open Source Development with CVS, Coriolis Press, Scottsdale, AZ, 1999.

 17

Gacek, C. and Arief, B., The Many Meanings of Open Source, IEEE Software, 21(1), 34-
40, January/February 2004.

George, J.F., Iacono, S., and Kling, R., Learning in Context: Extensively Computerized
Work Groups as Communities-of-Practice, Accounting, Management and Information
Technology, 5(3/4):185-202, 1995.

Godfrey, M.W. and Tu, Q., Evolution in Open Source Software: A Case Study, Proc.
2000 Intern. Conf. Software Maintenance (ICSM-00), San Jose, CA, October 2000.

Gonzalez-Barahona, J.M., Ortuno Perez, M.A., de las Heras Quiros, P., Centeno
Gonzalez, J., and Matellan Olivera, V., Counting Potatoes: The Size of Debian 2.2,
Upgrade Magazine, II(6), 60-66, December 2001.

Grinter, R.E., Supporting Articulation Work Using Software Configuration Management
Systems. Computer Supported Cooperative Work, 5(4): 447-465, 1996.

Grinter, R.E., Recomposition: Coordinating a Web of Software Dependencies, Computer
Supported Cooperative Work, 12(3), 297-327, 2003.

Hann, I-H., Roberts, J., Slaughter, S., and Fielding, R., Economic Incentives for
Participating in Open Source Software Projects, in Proc. Twenty-Third Intern. Conf.
Information Systems, 365-372, December 2002.

Hars, A. and Ou, S., Working for Free? Motivations for participating in open source
projects, Intern. J. Electronic Commerce, 6(3), 2002.

Hertel, G., Neidner, S., and Hermann, S., Motivation of software developers in Open
Source projects: an Internet-based survey of contributors to the Linux kernel, Research
Policy, 32(7), 1159-1177, July 2003.

Huntley, C.L., Organizational Learning in Open-Source Software Projects: An Analysis
of Debugging Data, IEEE Trans. Engineering Management, 50(4), 485-493, 2003.

Jensen, C. and Scacchi, W., Collaboration, Leadership, and Conflict Negotiation in the
NetBeans.org Community, Proc. 4th Workshop on Open Source Software Engineering,
Edinburgh, UK, May 2004.

Kim, A.J., Community-Building on the Web: Secret Strategies for Successful Online
Communities, Peachpit Press, 2000.

Kling, R., Kim, G., and King, R., A Bit More to IT: Scholarly Communication Forums as
Socio-Technical Interaction Networks, Journal American Society for Information Science
and Technology, 54(1), 47-67, 2003.

 18

Kling, R. and Scacchi, W. The Web of Computing: Computer Technology as Social
Organization, in A. Yovits (ed.), Advances in Computers, 21, Academic Press, 3-85,
1982.

Koch, S. and Schneider, G., Effort, Co-operation and Co-ordination in an Open Source
Software Project: GNOME, Info. Sys. J., 12(1), 27-42, 2002.

Latour, B., Science in Action, Cambridge, MA, Harvard University Press, 1987.

Law, J. and Hassard, J., (eds.), Actor Network Theory and After, Blackwell Publishers,
1999.

Lehman, M.M., Programs, Life Cycles, and Laws of Software Evolution, Proc. IEEE, 68,
1060-1078, 1980.

Lerner, J. and Tirole, J., Some Simple Economics of Open Source, J. Industrial
Economics, 50(2), 197-234, 2002.

Lessig, L., CODE and Other Laws of Cyberspace, Basic Books, New York, 1999.

Madey, G., Freeh, V., and Tynan, R., Modeling the F/OSS Community: A Quantative
Investigation, in Koch, S., (ed.), Free/Open Source Software Development, Idea
Publishing, to appear, 2004.

Marwell, G. and Oliver, P., The Critical Mass in Collective Action: A Micro-Social
Theory. Cambridge University Press, 1993.

Mockus, A., Fielding, R., & Herbsleb, J.D., Two Case Studies of Open Source Software
Development: Apache and Mozilla, ACM Transactions on Software Engineering and
Methodology, 11(3), 309-346, 2002.

Monge, P.R., Fulk, J., Kalman, M.E., Flanagin, A.J., Parnassa, C., and Rumsey, S.,
Production of Collective Action in Alliance-Based Interorganizational Communication
and Information Systems, Organization Science, 9(3), 411-433, 1998.

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., and Ye,Y., Evolution Patterns
of Open-Source Software Systems and Communities, Proc. 2002 Intern. Workshop
Principles of Software Evolution, 76-85, 2002.

Noll, J. and Scacchi, W., Supporting Software Development in Virtual Enterprises, J.
Digital Information, 1(4), February 1999.

O’Mahony, S., Guarding the Commons: How community managed software projects
protect their work, Research Policy, 32(7), 1179-1198, July 2003.

 19

O’Mahony, S., Developing Community Software in a Commodity World, in M. Fisher
and G. Downey (eds.), Frontiers of Capital: Ethnographic Reflections on the New
Economy, Social Science Research Council, to appear, 2004.

Ostrom, E., Calvert, R., and T. Eggertsson (eds.), Governing the Commons: The
Evolution of Institutions for Collective Action, Cambridge University Press, 1990.

Paulson, J.W., Succi, G., and Eberlein, A., An Empirical Study of Open-Source and
Closed-Source Software Products, IEEE Trans. Software Engineering, 30(4), 246-256,
April 2004.

Pavelicek, R., Embracing Insanity: Open Source Software Development, SAMS
Publishing, Indianapolis, IN, 2000.

Preece, J., Online Communities: Designing Usability, Supporting Sociability. Chichester,
UK: John Wiley & Sons, 2000.

Sawyer, S., Effects of intra-group conflict on packaged software development team
performance, Information Systems J., 11, 155-178, 2001.

Scacchi, W., Understanding the Requirements for Developing Open Source Software
Systems, IEE Proceedings--Software, 149(1), 24-39, February 2002.

Scacchi, W., Free/Open Source Software Development Practices in the Computer Game
Community, IEEE Software, 21(1), 59-67, January/February 2004a.

Scacchi, W., Understanding Free/Open Source Software Evolution, in N.H. Madhavji,
M.M. Lehman, J.F. Ramil and D. Perry (eds.), Software Evolution, John Wiley and Sons
Inc, New York, to appear, 2004b.

Scacchi, W., Socio-Technical Design, to appear in W. S. Bainbridge (ed.), The
Encyclopedia of Human-Computer Interaction, Berkshire Publishing Group, 2004c.

Schuler, D. and Namioka, A.E., Participatory Design: Principles and Practices,
Mahwah, NJ, Lawrence Erlbaum Associates, 1993.

Schach, S.R., Jin, B., Wright, D.R., Heller, G.Z., and Offutt, A.J., Maintainability of the
Linux Kernel, IEE Proceedings – Software, 149(1), 18-23, February 2002.

Shah, R.C. and Kesan, J.P., Manipulating the governance characteristics of code, Info,
5(4), 3-9, 2003.

Sharma, S., Sugumaran, and Rajagopalan, B., A Framework for Creating Hybrid Open-
Source Software Communities, Information Systems J., 12(1), 7-25, 2002.

 20

Sim, S.E. and Holt, R.C., “The Ramp-Up Problem in Software Projects: A Case Study of
How Software Immigrants Naturalize,” Proc. 20th Intern. Conf. Software Engineering,
Kyoto, Japan, 361-370, 19-25 April, 1998.

Smith, M. and Kollock, P. (eds.), Communities in Cyberspace, Routledge, London, 1999.

Spinuzzi, C. and Zachry, M., Genre Ecologies: An open-system approach to
understanding and constructing documentation, J. Computer Documentation, 24(3), 169-
181, 2000.

de Souza, C.R.B., Redmiles, D., Mark, G., Penix, J. and Sierhuis, M., Management of
interdependencies in collaborative software development, Proc. 2003 Intern. Symp.
Empirical Software Engineering (ISESE 2003), IEEE Computer Society, 294–303, 2003.

Star, S.L. and Ruhleder, K., Steps Toward an Ecology of Infrastructure: Design and
Access for Large Information Spaces, Information Systems Research, 7(1), 111-134,
March 1996.

Stewart, K.J. and Gosain, S., An Exploratory Study of Ideology and Trust in Open Source
Development Groups, Proc. 22nd Intern. Conf. Information Systems (ICIS-2001), in New
Orleans, LA. 2001.

Truex, D., Baskerville, R., and Klein, H., Growing Systems in an Emergent Organization,
Communications ACM, 42(8), 117-123, 1999

Viller, S. and Sommerville, I., Ethnographically informed analysis for software
engineers, Intern. J. Human-Computer Studies, 53, 169-196, 2000.

von Hippel, E. and Katz, R., Shifting Innovation to Users via Toolkits, Management
Science, 48(7), 821-833, July 2002.

von Krogh, G., Spaeth, S., and Lakhani, K., Community, joining, and specialization in
open source software innovation: a case study, Research Policy, 32(7), 1217-1241, July
2003.

Yamauchi, Y., Yokozawa, M., Shinohara, T., and Ishida, T., Collaboration with Lean
Media: How Open-Source Software Succeeds, Proc. Computer Supported Cooperative
Work Conf. (CSCW'00), 329-338, Philadelphia, PA, ACM Press, December 2000.

 21

Exhibit 1. An example near the bottom highlighting career/skill development
opportunities arising from participation in F/OSS projects

(source: http://www.tigris.org/ March 2004).

 22

Figure 1. A classification of roles and associated activities that contributing F/OSS

participants can perform [Gacek 2004].

Figure 2. A layered meritocracy and role hierarchy [cf. Kim 2000].

 23

Exhibit 2. An example of an open license insuring software redistribution and
modification freedoms like the GPL, as well as other rights specific to computer games

(source: http:www.wizards.com/D20/, February 2003).

 24

Figure 3. A social network that links 24 developers in five projects through two key

developers into a larger F/OSS project community [cf. Madey 2004].

 25

Exhibit 3. An example statement for how a F/OSS computer game development project
seeks to organize and manage itself.

(Source: http://www.planeshift.it/helpus_recruit.html, March 2004).

 26

Exhibit 4. A graphic display depicting sustained growth in the number of vintage arcade

ROM sets and games migrated into open source for use on contemporary computer
platforms. (source: http://www.mame.net/chart.html, March 2004).

