1

A Hypertext System to

Manage Software
Life-Cycle Documents

Traditional systems
don’t handie the
documentation
requirements of
large-scale,
multiproject

software development.
But this hypertext-
based system does.

90

Pankaj K. Garg and Walt Scacchi, University of Southern California

ocumenting software systems is a
Dnecessity, since not all relevant in-

formation about the system can
be embodied in a system’s source code.
The larger the system, the more critical
the problems of documents’ consistency,
completeness, traceability, revision con-
trol, and retrieval efficiency.

For the next generation of operating
systems, Robert Balzer has envisioned an
environment' based on objects and rela-
tionships between objects, as opposed to
the conventional file-based systems. Using
this philosophy, we have constructed the
Documents Integration Facility for the de-
velopment, use, and maintenance of
large-scale systems and their life-cycle doc-
uments.

The philosophy underlying DIF is two-
fold. First, it is necessary for an effective

Garg is now at Hewlett-Packard Laboratories. An ear-
lier version of this article appeared in Proc. 21 st Hawaii
Int'l Conf. on System Sciences, CS Press, Los Alamitos,
Calif., 1988, pp. 337-346.

0740-7459/90/0500/0090/$01.00 © 1990 IEEE

engineering-information system to pre-
scribe the information that must be
stored, to ensure the completeness and
preciseness of the information. Second,
for the engineering-information system
to be generally applicable, it should be
possible to change the information re-
quirements prescribed by the system ac-
cording to the needs of different settings.

DIF helps integrate and manage the
documents produced and used through-
out the life cycle — requirements specifi-
cations, functional specifications, archi-
tectural designs (structural specifi-
cations), detailed designs, source code,
testing information, and user and mainte-
nance manuals. DIF supports informa-
tion management in large systems where
there is much natural-language text.

DIF has been used to integrate and
manage the life-cycle documents of more
than a dozen systems (in the System Fac-
tory) totaling more than 200,000 lines of
code, developed by more than a dozen
teams of three to seven people each. More

IEEE Software

than 40 Mbytes of life-cycle descriptions
have been managed by DIF. The results of
this experiment suggest DIF’s potential
usefulness for larger systems (those of
more than a million lines of code).

In a typical project’s life cycle, informa-
tion about the process and the product is
diffused among several individuals, and it
is easy both for information to be lostand
for information bottlenecks to be created.
DIF encourages the easily accessible stor-
age of relevantinformation about the pro-
cess and the product.

In DIF, we consider segments of soft-
ware documents as the objects to be
stored, processed, browsed, revised, and
reused. Links explain the relationship be-
tween the objects. DIF stores the objectsin
filesand the relationships between the ob-
jects in arelational database, resulting in a
persistent object base. This eases the reuse
of documents.

DIF also provides software-engineering
tools 1o process the information in the ob-
jects. By judiciously using links, keywords,
and information structure, DIF users can
alleviate problems of traceability, consis-
tency, and completeness. Through the
Unix RCS revision-control facility, DIF
provides revision control. Through inter-
faces to the browsing mechanisms of the
Ingres database system, DIF provides effi-
cient document retrieval. Through the
Unix mail systemn, DIF lets project partici-
pants exchange structured messages.
Through language-directed editors, DIF
cases the development of software de-
scriptions in several formal languages.
And through software-engineering tools
for functional and architectural specifica-
tions, DIF aids the analysis of formal de-
scriptions.

Documents in hypertext

Through the development process, DIF
stores all relevant information about the
target system in textual objects as nodes of
hypertext. Hypertextis a storage structure

May 1990

where information is stored in the nodes
of a graph. Links between hypertext

. nodes allow efficient browsing of the in-

formation. Attributes attached to nodes
and links provide information filtering.

No restriction is put on the nature of
information in the nodes, so the same
hypertext may contain a node of natural-
language text and a node of program
code. This is the main advantage that
hypertext systems have over conventional
database-management systems, docu-
ment bases, and knowledge bases.

Through the
development process,
DIF stores all relevant
information about the

target system in textual
objects as nodes
of hypertext.

Documentation method

To effectively manage the documents in
a large-scale software process, you must
first understand what needs to be docu-
mented. To this end, we use the System
Factory documentation method, which is
an eightyear-old laboratory project at the
University of Southern California set up
to experiment with novel ways of software-
project management and with the devel-
opment, use, and maintenance of innova-
tive software technologies. The unique-
ness of the System Factory method of doc-
umentation is the blend of organizational
and technical concerns that it advocates.

In the System Factory, the software pro-
cess is broken into activities, where each
activity culminates in the production of a
document. The eight documents that

emerge from the System Factory method
are:

® Requirements specification. This doc-
ument describes both the operational
and nonoperational requirements of the
system being developed.

Operational (testable) requirements
oudine the system’s performance charac-
teristics, interface constraints, quality-as-
surance standards, and human factors.
The operational requirements are de-
fined so you can trace them through de-
sign and implementation.

Nonoperational requirements outline
the organizational resources available to
supportsystem development, the package
of resources being builtinto the target sys-
tem, forethoughts about the system’s de-
velopment life cycle, assumptions about
the system’s operation in its target envi-
ronment, and expected changes in the
system’s operational requirements over
its lifetime.

The requirements-specification docu-
ment is written in a natural language, for
which DIF provides an interface to text-
editing and formatting systems. DIF pro-
vides mechanisms like keyword associa-
tion and linking that help you browse
through the requirements. By defining a
form for the requirements document, the
manager of several projects can standard-
ize the contents of the requirements doc-
ument at the level of sections and subsec-
tions. By judiciously choosing keywords
and links, the manager can set up the re-
quirements to ease the tracing of opera-
tional requirements through the system’s
design and implementation.

® Functional specification. This docu-
ment details the computational functipns
the target system will perform in terms of

' the computation objects, their attributes,

attribute-value ranges, object and attri-
bute relationships, the actions that ma-
nipulate them, constraints on the actions,
global stimulus/response monitors, and
the system agents that organize and

91

(Superuser)

System Factory

Software
engineer 2

Software
engineer 1

General users

Figure 1. System Factory structure.

embed these into a system environment.

You write these formal functional speci-
fications in the specification language
Gist,' which promotes the incremental de-
velopment, refinement, and rapid pro-
totyping of operational system specifica-
tions.

In incremental development, you first
give an informal, narrative specification.
Next, you describe the objects (both ac-
tive and passive) in the target system and
its environment in a graphical form. Fi-
nally, you give the formal description of
the objects and agents in Gist.

DIF recognizes the formal Gist text and
lets you send it for processing through the
Gist specifications analyzer and simulator.
It also automatically activates the Gist lan-
guage-directed editor.

¢ Architectural specification. This docu-
ment describes the system modules’ inter-
connection structure with defined data-
resource interfaces, arranged to facilitate
parallel detailed design and implementa-
tion. You use the NuMIL module-inter-
connection language? to descibe this doc-
ument. You can also formally define
system-timing and concurrency con-
straints in this document.

DIF provides access to the NuMIL edi-
tor and processing environment, which
lets you define modules and their re-
source dependencies as well as check and
track changes in the modules. It also pro-
vides access to a structure visualizer that
graphically displays the module intercon-
nections.

¢ Detailed-design specification. This
document describes (in Gist and NuMIL)
the behavioral algorithms and system-de-
pendent operations consistent with the
computational modules and resource in-
terfaces defined in the architectural speci-
fication.

* Source-code document. This contains
the target system’s source code and re-
flects the system structure as detailed in

92

the earlier documents.

® Testing and quality-assurance docu-
ment. This document stores test cases that
specify how you can trace the operational
requirements to test-case runs to validate
the system’s performance. You can use
keywords and links in DIF to link the test
cases to the operational requirements.

¢ User manual. This document de-
scribes the commands, error messages,
and example uses of the system in a stan-
dard user-manual format.

¢ System-maintenance guide. This doc-
ument describes how the system can be
enhanced, how its performance can be
better tuned, known system bugs, and
porting constraints.

Coupling this documentation method
with DIF lets you produce, organize, and

Interfaces to Latex, spell
checkers, and other
tools provide a
text-processing
environment akin to
the Unix documenter’s
workbench.

store encyclopedic volumes of lifecycle
information for subsequent browsing,
reuse, and revision.

DIF structure

Figure 1 shows the organizational struc-
ture supported by DIF in the System Fac-
tory. In the System Factory, the project
manager prescribes what needs to be de-
scribed in each document. There are po-
tentially several projects in the factory at
the same time, and several software engi-
neers work on each project.

Operation modes. Corresponding to

the type of users in the System Factory,
DIF allows two modes of operations: a
superuser mode and a general-user
mode. The two modes are comparable to
the database administrator and the user,
respectively. In superuser mode, you de-
fine the factory structure (what projects

are in the factory and who is responsible
for each one) and the structure of the
documents (what needs to be docu-
mented). In general-user mode, you cre-
ate, modify, and browse through the
hypertext base. The general user can op-
erate at two levels: the information level
and information-structure level.

Forms and basic templates. The super-
user defines the forms and the basic tem-
plates in the factory. One concern of the
System Factory was to ensure that all the
projects have a standard document struc-
ture. Thus, each document is defined as a
Jform, which is a treestructured organiza-
tion of basic templates to be instantiated
with project-specific information. Figure
2 shows an example requirements-specifi-
cations form. Such forms provide a way of
defining the process that is to be followed
by the project members.

The superuser defines each form only
once; all projects inherit that form. This
allows standardization of documents
across projects. It also lets the software en-
gineers concentrate on the content of the
documents without being bothered about
their structure.

When defining the basic templates, the
superuser also defines the nature of infor-
mation that needs to be given in each
basic template. This entails providing the
type of the basic template (narrative,
graphical, NuMIL, Gist, C code, execut-
able code, or object code) and a text tem-
plate that the general user can use to
enter information in the instances for that
basic template.

General users can define additional
project-specific basic templates, but they
cannot modify the basic templates de-
fined by the superuser. Instead, they cre-
ate instances of the superuser-defined
basic templates and enter information in
those instances. In a project, a basic tem-
plate can have many instances.

Project information. The superuser
provides project information. Project-re-
lated information in DIF consists of a list
of projects and the software engineers
working on them. This information lets
DIF check users’ read and write privileges.
There is no restriction on who may read
the information of any project. The super-

|IEEE Software

user has read and write privileges for all
information.

A general user can add links, keywords,
and annotations to other users’ and other
projects’ basic templates. (The links, key-
words, and annotations are tools that
allow easier later browsing of the project
information — something we call “infor-
mation trailblazing.”)

Adding more project information like
tasks, schedules, and progress reports is a
natural extension to DIF hypertext. We
have described this issue at length else-
where.?

Information level. DIF facilities let users
enter, modify, and use the information re-
quired by the forms as dictated by the
superuser. DIF provides language-di-
rected editors for all the formal languages
used in the System Factory. The general
user need not worry about the files that
must be created when entering informa-
tion in basic templates because DIF auto-
matically generates a file name based on
the projectand the basic template.

For backup, DIF can store entire forms
in RCS. DIF lets you check formsin to and
out of RCS. Options like retrieving revi-
sions through user-defined identifiersand
cut-off dates are available through the DIF
interface.

You can request that a software tool pro-
cess the information in a basic template
from within DIF itself, without entering
the operating system. For example, if a
basic template contains C code, you can
request that the code be compiled.

Interfaces to Latex, spell checkers, and
other tools provide a text-processing envi-
ronment akin to the Unix documenter’s
workbench.

Information-structure level. The infor-
mation-structure lets the general user nav-
igate through the information hypertext
stored in DIF. (This level is different from
a database schema because, in a schema,
the structure does not change with the in-
formation. Here, the structure depends
on the currently defined links.) DIF pro-
vides these navigation mechanisms:

¢ Links. The user (either superuser or
general user) can define links between
basic templates. You can link the system’s
operational requirements to the code

May 1990

Sectionnumber Sectionheading

1. Overview and summary

2. Problem definition

2.1 Technology in use

22. System diagram

2.3. Theory of system operation
2.4. Intended application

2.5. User skills

3. Operational requirements
3.1. Performance characteristics
3.2. Standard interfaces

33 Software quality-assurance plans

Software portability

User orientation

4. Nonoperational requirements

Resources available for development

Package of resources built into the system
Forethoughts about the system’s life cycle
Assumptions about system operation

Expected changes in operational requirements

ic-template number i

h

Figure 2. Requirements-specification form.

modules that support the capability. Links
may be operationallinks, which readily sup-
port situations where executable descrip-
tions must be linked to the source code.
For example, you can link a C-code basic
template to the executable basic template
derived from that code. Visiting that oper-
ational link results in the execution of the
linked basic template. Future versions of
DIF will supportarbitrary shell-procedure
attachments.

DIF supports two types of links: node-to-
node links, which are relationships be-
tween the definition of two basic tem-
plates, and point-to-point links, which link
one point in a basic template to a pointin
another basic template.

* Keywords. For each basic template,
you can define keywords that describe the
semantics of the information contained in
that basic template. DIF stores the key-
words associated with basic templatesin a
relation maintained in the Ingres data-
base. Thislets you use the Ingres querying
facilities to navigate through documents.

For example, you can look for all basic
templates (within and across projects)
that have a particular keyword, list the key-
words of a basic template, or search for
basic templates that have keywords satisfy-
ing a pattern. DIF also has standard brows-
ing functions for users not trained in the
Ingres mechanisms.

In creating DIF, we were mainly con-
cerned with the efficient storage and
usage of keywords, not how they are de-
rived. You can attach automatic keyword-
generation tools to DIF if you want.

DIF lets a document’s readers create

keywords of their own. This lets new per-
sonnel in a project team quickly tune the
documents to their needs.

® Forms and compositions. Forms are a
convenient way to view the documents re-
lated to each lifecycle activity.

To fully use the potential of the
hypertext information in DIF, you can de-
fine your own composition of basic tem-
plates. A composition is similar to a form,
except that it is not enforced on all proj-
ects but is associated with the user who is
browsing the documents. You define com-
positions, as you do forms, by defining the
constituent basic templates. You can also
define compositions on the basis of the
trail you have followed while browsing
through the hypertext.

You use compositions to print hard-
copy documents, much like the path facil-
ity in a typical hypertext system. We have
developed special-purpose tools to cor-
rectly compose different types of basic
templates and to generate appropriate
markup code for the Latex textformat-
ting system. You can also use compositions
to generate make files for different system
configurations.

Document integration and parallel de-
velopment. DIF provides several features
that let you view system information in an
integrated manner within and across pro-
jects. The documents are organized in a
tree of Unix directories and files, as Figure
3 shows. Although you enter information
in DIF at the file level, DIF invisibly han-
dlesall the routine file-management func-
tions (like creating directories for related

93

Organization | Projects Forms

Dif88

RequirementsSpecification

SoftwareSystem
RequirementsSpecification

Basic templates Instances of basic templates
2.1 Technology in use 2.1.1 Technology in use
/ 2.1.1 X Windows — | 2.5.1 User skills
/ / copy
J 21,2 Ingres database :/’/ 2.5.1.1 X Windows usage |————
\ 25 User.skllls //’/ 2.5.2.1 Ingres database usage |
\ 2.5.1 X Windows usage 4:/ 2.5.2.2 Ingres Query-by-Forms usage |
2.5.2 Ingres database usage 4
implementation
implementation
A 1.0 Header module = 104 Xiib header module | oo
~= 2.0 Source module " 2.0.1 User-interface source
N30 Object module N 2.02 Database-manipulation code |
» 25 User skills \{3.0‘1 User-interface routines
~— 251 X Windows usage 12511 X Windows usage J=—

Figure 3. Hypertext structure for life-cycle documents. At the far left is an organization (System Factory) with two projects (Dif88 and
Niviz). Each project has forms like Requirement Specifications and Software System. Each form has basic templates defined by the
superuser (common to all projects) or general user (specific to one project). Each basic template may have more than one instance in
a project. Objects in ovals are mapped to Unix directories, while those in rectangles are mapped into Unix files.

documents).

For example, when entering informa-
tion for the system’s operational require-
ments, you do not have to create the file to
store the text associated with the opera-
tional requirements; DIF does it automati-
cally. You need only be concerned with
creating or manipulating software de-
scriptions. This provides an object-ori-
ented environment of persistent descrip-
tions rather than simply a loose collection
offiles and directories.

DIF lets the engineers in the System Fac-
tory develop parts of documents in paral-
lel without worrying about integration is-
sues. Thus, one person could be writing
the target system’s operational require-
ments while another person is writing its
nonoperational requirements. The indi-
vidual efforts are automatically merged in
the same hypertext document.

File structure. At the heart of DIF’s im-
plementation are the Unix file system and
the Ingres database system. The file sys-
tem provides a repository for the textual
and graphical information; Ingres stores
information-structure-level and project-
level information. DIF builds a file struc-
ture (on Unix) that models the System
Factory structure (see Figure 1). Figure 3
shows an example file structure.

At the root of this file structure is the
System Factory directory that contains di-
rectories for each project. Under every
project directory is a directory for each
form defined in the factory. Under the di-
rectory for each form are files for the basic
templates in the form. For example, Fig-

94

ure 3 shows part of the requirements-spec-
ifications directory in the System Factory.
Files in this directory represent basic tem-
plates, like 2.1 (Technology in Use) and
2.5 (User Skills).

User-defined instances of basic tem-
plates are also maintained as files. For ex-
ample, in Figure 3’s Dif88 project, basic
template 2.0 (Source Module) has at least
two instances: User-Interface Code and
Database-Manipulation Code.

Using DIF

Figure 4 shows DIF’s top-level interface,
which shows a snapshot of the system with
the user editing three basic templates.
The workstation screen is divided into
three main window types: command, sta-
tus, and workspace. You issue commands
to DIF by clicking one of the command
windows. DIF handles textual I/0
through pop-up windows. The status win-
dow shows information like the current
project, the number of basic templates vis-
ited in this session, the version numbers of
the systems being used, the current user,
and the current mode. DIF creates all
browsing windows in the workspace win-
dow.

In Figure 4, Editor Window 1 shows an
annotation example. The basic template
(2.5 User Skills) in Editor Window 2 is
linked to the basic template (2.5.1 X Win*
dows) in Editor Window 3 with the link
ElaboratedIn. Editor Window 3 was
opened by clicking the Target File part of
the link window that in turn was obtained
by clicking the link icon in Editor Window
2.

Hypertext editing. We have extended
the X Windows editor to provide two
kinds of hypertext functions: the capabili-
ties to annotate the text at any point and
to link two points in two basic templates.

To add an annotation at a point in the
text, you place the mouse pointer at the
point and press F2. This opens a dialogue
window with an editor window in which
you can enter an annotation.

In the text, annotations are marked with
aspecial character icon. Any user can look
up an annotation by placing the mouse at
this icon and pressing the F1 key. You can
have multiple annotations at a single
point; this supports group discussions.
DIF automatically records attributes like
the annotation’s creation date and au-
thor.

To add a link from one basic template to
another, you open the two templates in
two separate editor windows. You then po-
sition the mouse pointer at the link’s
source position and press ¥3. DIF asks for
the link name to be added. After entering
the name, you position the mouse pointer
at the second template and press F4. As
with annotations, DIF displays links in the
text as special character icons (the icon is
different from the annotation icon).

To display the details of a link, you posi-
tion the mouse at the link icon and press
F5. To follow a link, you click the Target
File item in this display of link details; DIF
then opens another window that contains
an editor for the link target. You can asso-
ciate link names with special-purpose
scripts that will be executed when the link
is traced.

IEEE Software

Editor window 1
Documents Integration | :Yulil\4 GeneralUser |§dﬁerUser lewse | Query Projects Table IQuery Fams Table |Bye Bye \Command
ProjectDif 88 #O0OfBTs Vistted X Version: 11;/ Dif Version: 20User: cs577b DIF Mode: Command'Wait windows
(i I T I I Status
= window
ProjoctDIF Forn: userManual Bt Hamber: 2.0 0jo 2% a0 Spe tors B g 2
This is part of the user manual of DIF stored in The user of DIF should be slightly familiar with the
DIF. At this point we would like to show the Ingres Database SKstem Browsing facliites, In
annotation feature of this system. An anrotation is articulay we use the query by forms browsing
marked in thetext as | . To indicate how an acility of— Ingres.
annotation can be viewed, we clicked onthe I l
annatation icon above and obtained the following -
window Editor
ProjectD Ro e Spo ation B wind0W2
This section— explains the use of Ingres query by
Authar: ¢s577h forms. Basically the user is presented with a frame
of information & one particiar time. Below the
f| Date Tue Jul 1221:34 15 1988 frame of information is a list of commands that can
=1 1s an arnotation be invoked by pressing the <escape> key followed by
a unique command prefix string.
The fr(gme displays Ehe[;nforrgation for atuple & a
= time., Querying can be done by entering patterns at
[Okay?] X the approprige fields. i 9 \W ”
) orkspace
A%’.mt?ho" window
isplay
window E rm?l:: aéoraié § \
Authar: ¢s577h
ly||Date Sat Apr 14 16:4224 1990 i
Target file: Jusr/g ¥ tabcs57 70D ifDIfD iff ReguirementsSpedificatiory25.212 | © win d';?]z 3
Links Okay?
display S 1 HEL
window

Figure 4. DIF screen layout.

Command modes. There are six modes
available in DIF’s command-windows title
bar: general-user, superuser, browse, pro-
jects-table query, form-table query, and
session-end (the Bye Bye window).

General-user mode. By clicking the gen-
eral-user command window, you get a
menu as shown in Figure 5a. This provides

functions at the general-user level like cre-
ating or deleting an instance of a basic
template, creating or deleting a project-
specific basic template, editing the infor-
mation contained in a basic template, pro-
cessing the information in a basic tem-
plate through a software-engineering
tool, mailing a basic template to another
project participant, and various opera-

tions on compositions of basic templates.

To edit a basic template, you select the
Edit Btitem from the menu. DIF presents
a menu of available forms and basic tem-
plates. Once you select the appropriate
form and its constituent basic template,
DIF opens a window with an editor pro-
cess to edit the corresponding file. This
reflects the buffering that DIF provides

Create an Instance of a BT
Delete an Instance ofa BT
Create aBT

Delete a BT

Edita BT

Invoke a Tool

Define a Composition

Add aBT to a Composition
Delete a BT from a Composition
Show a Composition Definition
Print a Composition

Delete a Composition

Change Project

HELP

(a)

Add Project
Delete Project

Rename Project List
Add Project Users List
Delete Project Users

Create Form

Delete Form List
Delete BT List
Add BT

Change Password

Clear Database Step through Links of a BT
Printa Screen Dump HELP

HELP

(b) (c)

Browse Links Table
Browse Keywords Table

List BTs having a Keyword, within project
List BTs having a Keyword, across projects

List Keywords of a Compositions
List Projects having a Keyword

Keywords of Current Project
Keywords of Another Project

Forms having a Keyword, within project
Forms having a Keyword, across projects

Figure 5. Menus for (a) general-user, (b) superuser, and (¢) browse functions.

May 1990

95

JE T SELTER BVRRGE Bl SR TS Garral User [Supar User [Browss | Quary Prolects Taok [Quan Forms Taske [Bys By

Keyword: XWindows

Pojact OFf 28 # Of BTs Mshad X\amlon 11.2 i Varslon: 2.0 Usor cx577b DIFMods Command Walt
Browse through keywords
Praject Difgg Form: Requirem infsSpedfication
BT Number2.1 Instance Number: 1 Docurmerts inthe System Faclory

Form: Requirem antsSpecification
Bt Hoading: Ucor Skille

Browse TLinks table

Src Prgect: Difgs
Src. BT Number2.1
Target Prgjact Difss
Target BT Mo. 2@

Sre Instance: @
Target Form: SeftwareSystam
Target instance: 1

Link Nams: Implementation

Next Query Halp End :0

ScFarm: RequiramertsSpadification

Bt Number: 26
BtTwpe: t

Bt Status: @

Query Help End :Q

X

Prajects in System Faclory

Propct User
Difeg Tom
Difeg cs677b
NivizZ $E77b
Niviz Harry
Query Help End :Q0
Figure 6. Browsing through Query Forms Table.
Gist
specifications
analyzer
NuMil
RCS DIF processor

Ingres

database

Niviz visualizer

Information bank

Unix tools:
Mail, Make, Latex
editors, Talk

Figure 7. DIF’s organization.

from the operating system’s file-manage-
ment facilities. You can change the default
editor through a parameter supplied to
DIF on its invocation. While you are edit-
ing a basic template, you can choose to
edit another basic template in another
window by either the same selection
mechanism or by following a link from
any of the previous basic templates being
edited.

Superuser mode. By clicking the superuser
command window, you are presented with
the menu shown in Figure 5b that lets you
act as the administrator of the hypertext
document, providing functions to create,
modify, and delete forms, projects, and
project members. When defining forms,
the superuser can define the process

96

model that is to be followed in the life
cycle of the various projects.

Browsing. The next three command
windows — Browse, Query Projects Table,
and Query Forms Table — provide brows-
ing facilities for the hypertext storage
structure. The Query Projects Table and
Query Forms Table command windows
provide interfaces to Ingres query-by-
forms facility, which gives you access to sev-
eral methods to make queries about the
projectsand the forms’ structure.

Figure 6 shows a typical usage of this fa-
cility. The windows in the workspace were
created per user requests. For example,
when you click the Query Projects Table
command, the window labeled Projects In
The System Factory opens. In this window,

you can query the database about the
projects in the System Factory by specify-
ing patterns for either projects or users.
The position and sizes of the windows are
always under user control, a feature pro-
vided by X Windows.

The Browse command window provides
many predefined browsing facilities for
the hypertext document. Figure 5c shows
the menu of these facilities. You can cre-
ate, delete, or browse through links be-
tween basic templates. Using keywords,
you can search for appropriate projects,
forms, compositions, or basic templates.

DIF environment

Because DIF can accommodate all life-
cycle activities, we consider it to be a soft-
ware-engineering environment. With the
progress of the target system through the
various life-cycle activities, DIF offers a
uniform interface to access the appropri-
ate tools, like a functional specification
analyzer and an architectural design pro-
cessor, at each phase. In the interfaces to
these tools, it supports the notion of inter-
face transparency: DIF provides unobtru-
sive use of the tool that it interfaces to
while providing mechanisms that the tool
itself lacks.

Figure 7 shows the organization of DIF
with respect to the other tools in the Sys-
tem Factory. The basic set of tools, de-
scribed in detail elsewhere,* contains

* a Gist specification analyzer and simu-
lator that aids the development and use of
the formal functional specifications of
(sub)systems under development,

* a module-interconnection and inter-
face-definition processor that supports
the design and evolution of multiversion
system configurations described in the
NuMIL language,

¢ an Emacs-like language-directed edic
ing environment for constructing and re-
vising structured documents and system
description languages like Gist, NuMIL,
and C,

¢ a systems visualizer that graphically
presents system configurations, and

¢ Unix tools like RCS, Make, Spell,
Nroff/Troff, Talk, and Mail. The inter-
face 1o the mailing system helps people
coordinate their activities via structured
messages consisting of basic templates.

IEEE Software

Design issues

In designing DIF, several issues con-
cerned us, including tools interface, con-
sistency and completeness, reuse, scaling
up, ondine information, multiproject sup-
port, and revision control:

¢ Tools interface. Although the Unix
philosophy of providing loosely coupled
tools and using them either indepen-
dently or coupled through piping mecha-
nisms has been fruitful, the plethora of
tools now commonly available has thwar-
ted their efficient use. Developers need a
structured way to access the tools. Systems
like DIF that organize the tools according
to their usage will improve the utility of
the underlying tools and thus software
engineers’ productivity. The ease of add-
ing tools to DIF is also an advantage to en-
gineers.

* Consistency, completeness, and trace-
ability. A natural concern for document
management is to provide mechanisms
that help maintain documents’ consis-
tency and completeness over time and
that provide traceability mechanisms
across different life-cycle documents.

DIF addresses consistency through its
keyword and link mechanisms. You can
use keywords to locate related documents
to propagate changes. You can use auto-
mated links to define how changes in the
source basic template should be propa-
gated to the target basic template.

DIF addresses completeness through
the notion of forms for defining the life-
cycle documents. They let the superuser
ensure that critical system aspects have
been documented at the appropriate
places.

DIF addresses traceability through the
use of links and of keyword-searching and
navigation mechanisms.

® Reuse. System documentation is a
time-consuming process, and it is impera-
tive that we find ways to reuse documents.
DIF is a first step in this direction, since it
provides a hypertext-based persistent re-
pository of document objects with facili-
ties for efficient browsing and retrieval.
Thus, you can locate and reuse basic tem-
plates. In an empirical study done in the
System Factory, we found DIF to be used
frequently to retrieve and convert old doc-
uments into new ones, especially when the

May 1990

Other hypertext systems

DIF is in some ways similar to current hypertext systems, including commercial systems
like Guide' and research projects like Sodos,? Textnet,® Planetext, Notecards, and Nep-
tune.® All share the goal of managing textual information.

But DIF differs from most other hypertext systems in that it is geared toward facilitating
information management in the software process. It can define the activities of a software
process so that you can easily produce, use, and revise the appropriate information.

We have integrated DIF with several tools in the System Factory to provide an integrated
software-engineering environment. For example, you can enter a system’s functional spec-
ifications through a Gist editor that is syntactically tuned for the Gist specification language.
Through an interface with RCS, DIF provides a revision-management facility. As such, DIF
can serve as a basis for configuring several software-engineering (CASE) tools. The other
hypertext systems cannot, since they are mostly closed systems.

DIF lets you store the documentation for multiple projects in the same hypertext base. It
allows manipulation of links between documents across and within projects. It maintains
project-user information for access control. Keywords associated with the nodes in the
hypertext let you browse documents within and across projects.

The project most similarto DIF is the Sodos system designed by Ellis Horowitz and Ronald
Williamson. Sodos was implemented in Smalltalk and, like DIF, managed life-cycle docu-
ments in an object-oriented fashion. But key differences set the two systems apart: Sodos
manages documents for single projects only. Its revision mechanism is limited to letting you
define the revision numbers for parts of the documents stored. Sodos was not built as part of
a software-engineering environment and thus did not provide interfaces to any development
tools.

Textnet, Notecards, and Planetext support the notion of building hypertext systems to
support the management of textual information. Because they are not oriented toward soft-
ware documents, their concern for relevance and completeness of information, maintaining
different versions concurrently, and providing access to other tools to process the information
contained in the nodes is minimal.

The Dynamic Design environment built on top of Neptune is designed as an engineering-
information system. The concepts of basic templates and compositions in DIF are similar to
the concepts of project components and contexts in Dynamic Design. However, Dynamic
Design does not support multiple projects and does not support concepts similar to forms and
instances of basic templates, which are very importantin DIF.

References
1. PJ. Brown, “Presenting Information on Workstation Screens,” in Workstation and Publication
Systems, R.A. Eamshaw, ed., Springer-Veriag, New York, 1987, pp. 122-128.
2. J.Conklin, “Hypertext: An Introduction and Survey,” Computer, Sept. 1987, pp. 17-41.

3. R.H. Trigg and M. Weiser, “Textnet: A Network-Based Approach to Text Handling,” ACM Trans.
Office Information Systems, Jan. 1986, pp. 1-23.

4. J. Bigelow, “Hypertext and CASE," /[EEE Software, March 1988, pp. 23-27.

. F.G. Halasz, “Reflections on Notecards: Seven Issues for the Next-Generation Hypermedia Sys-
tems,” Comm. ACM, July 1988, pp. 836-855.

. E. Horowitz and R. Williamson, “Sodos: A Software-Documentation Support Environment: Its
Definition,” IEEE Trans. Software Eng., Aug. 1986, pp. 849-859.

o

o

old documents were from a closely related
project.

® Scaling up. To support large-scale sys-
tems engineering, we tried to choose
wisely between what information goes
into the database and what information
goes into the file system. Most of the tex-
tual information (except keywords) is
stored in the Unix file system. In fact, we
exploited the Unix file system’s structural

mechanisms to encode some of the

documents’ structural information.

The information stored in the database
is therefore minimal. Throughout the Sys-
tem Factory experiment, we have found
that the size of information in the data-
base system is no greater than 1 percent of

the information in the file system. This re-
quires further experimentation but if the
results are at all indicative, DIF has been
able to achieve the kind of storage distri-
bution that we wanted —and it did so with
existing file and database systems.

¢ Ondine information. One thrust of
the DIF philosophy is to shift the medium
of information exchange in the software
process from paper to on-line form. This
has the obvious advantage of being a dy-
namic medium, since documents can be
modified very easily. On the other hand,
paper documents have advantages like
physical feel, the ability to be written on,
and ability to be read almost anywhere.
DIF has covered both bases by providing

97

sophisticated mechanisms for hard-copy
rendition of documents and hypertext
mechanisms for on-line text manage-
ment. With DIF, you can potentially get
the best of both worlds by not having to
worry about storing paper documents
and at the same time being able to use
paper documents when convenient.

® Multiproject support. DIF is unique
among the current hypertext systems for
software documents in that it provides
support for multiple projects through the
same hypertext base. (The box on p. 97
describes some other hypertext-based sys-
tems.) This is an advantage in large proj-
ect environments where related subsys-
tems are developed almost independently
and the efforts must later be merged.
Through the use of appropriate attribute
links and keywords, you can use the infor-
mation-structure-level information in DIF
to tie together otherwise independently
developing projects.

¢ Revisions. The interface to the RCS re-
vision-management facility lets you man-
age revisions on complete forms. Only
one revision of a form is active at a time,
and the database reflects the information
structure for that form. However, DIF
does not provide mechanisms to manage

Acknowledgments

We thank Salah Bendifallah for extensive
comments on earlier versions of this article and
the design of DIF. Comments from the anony-
mous reviewers have clarified some misconcep-
tions and helped improve the presentation. We
thank Amitabh Agrawal and John Leggett for
their comments on the article. We thank
Abdulaziz Jazzar for his contributions to DIF.
We acknowledge the contribution of all those
people who helped develop and use DIF in the
system-factory class at USC in the 1985-86 and
1986-87 academic years.

The work reported here has been supported
by AT&T through research grants and con-
tracts, Hughes Radar Systems Group under
contract KSR576195-SN8, Pacific Bell, and
Eastman Kodak. Garg was also supported in
part by the USC graduate school through the
All-University Predoctoral Merit Fellowship.

98

revisions of the information in the
database. This means that the informa-
tion in the file system has revision trees
but the database system has no such corre-
sponding structure. We are planning to
remedy this deficiency by offering revi-
sion management for both the database
and file systems in future versions of DIF.

xperience with the prototype usage

in the System Factory has con-

vinced us of DIF’s utility. DIF, as an
active medium, lets you capture much of
the information related to a system'’s de-
sign, development, use, and mainte-
nance. You can change the process model
built into DIF. You can easily manage sev-
eral project documents and even ex-
change information across projects.

But DIF is not complete. We are now in-
vestigating the issues of incorporating
into the system more knowledge about
the activities that the participants in a
project perform. The granularity at which
DIF considers activities is very coarse; for
example, as requirements specifications
and functional specifications. If we could
determine finer grained actions, we could
support them better.

For example, after defining a new re-

Pankaj K. Garg is a member of the technical
staff at Hewlett-Packard Laboratories. He was
at the University of Southern California as a
student and research associate when conduct-
ing the work described here. His research in-
terests include artificial intelligence, hypertext
systems, and software engineering.

Garg received a PhD in computer science
from the University of Southern California and
a bachelor of technology in computer science
from the Indian Institute of Technology in
Kanpur,

quirement, the user of the target system
normally wants to communicate the defi-
nition to the developers. If this knowledge
is precoded in the support environment,
the communication act does not have to
be carried out explicitly by the users but
can be carried out by the support environ-
ment as soon as the requirement is de-
fined. Similarly, the users can subscribe to
events. For example, if someone has sub-
scribed to the event Change Bt X, every
time someone else changes basic tem-
plate X, that person can be informed of
the change. Our group is pursuing efforts
in this direction. >

References

1. R. Balzer, “Living in the Next-Generation
Operating System,” [EEE Software, Nov.
1987, pp. 7785.

2. K. Naryanaswamy and W. Scacchi, “Main-
taining Configurations of Evolving Soft
ware Systems,” [EEE Trans. Software Eng.,
March 1987, pp. 324-334.

3. P. Garg and W. Scacchi, “Ishys: Designing
an Intelligent Hypertext System,” JEEE Ex-
pert, Fall 1989, pp. 52-62.

4. W.Scacchi, “The System Factory Approach
to Large-Scale Software Engineering,”
Proc. MCC University Research Symp., Micro-
electronics and Computer Technology
Corp., Austin, Texas, 1987.

Walt Scacchi is a member of the computer-sci-
ence faculty at the University of Southern Cali-
fornia and director of the System Factory proj-
ect there. His research interests include
very-large-scale software engineering, knowl-
edge-based systems supporting software devel-
opment, and organizational analysis of system-
development projects.

Scacchireceived a BA in mathematicsand BS
in computer science from California State Uni-

- versity at Fullerton and a PhD in information

and computer science from the University of
California at Irvine. He is a member of the
IEEE, ACM, American Association for Artificial
Intelligence, and Society for the History of
Technology.

Address questions about thisarticle to Garg at Hewlett-Packard Laboratories, 1501 Page Mill Rd.,
Palo Alto, CA 94303; Internet garg@ hplabs.hp.com.

IEEE Software

