Integrating Diverse

Information Repositories:
A Distributed
Hypertext Approach

John Noll and Walt Scacchi, University of Southern California

A distributed
hypertext architecture
provides transparent
access to autonomous,
heterogeneous
information
repositories. The result
is a powerful
organizational tool and
a simple yet effective
integration mechanism.

38

n today’s networked computing environment, powerful workstations sup-
port a variety of sophisticated, graphics-oriented applications. Local area

f. nctworks connect these workstations to file servers; the LANs are them-
selves linked by wide area networks, enabling access to information around the
globe. This abundance leads to diverse access protocols, storage managers, data
formats, and user interfaces — rendering much data inaccessible to any single user
simply because too many things must be known even to begin. Furthermore,
finding an item once is not necessarily the same as finding it again. The original
discovery process may be lengthy and involved, or even accidental.

How can we provide transparent access to heterogeneous information reposito-
ries. while maintaining their autonomy? In this article, we address key problems of
support for multiple, heterogeneous repositories, each under separate and auton-
omous administration with a variety of incompatible interfaces; diverse, uncon-
ventional data types; and different ways of viewing relations among the same
information items. We present a solution to these problems that is radically
different from existing systems. It is based on our distributed hypertext (DHT)
architecture, which combines transparent access to autonomous, heterogeneous
information repositories and a powerful, flexible organization technique. This
approach requires no change to the structure or content of participating reposito-
ries.

Related work

To what extent do existing systems address current problems? There are two
broad approaches: distributed file systems and heterogeneous databases.

Distributed file systems provide file access through a network of distributed file
servers that may have different architectures. The resulting file space on the server
canbe extremely large. One problem with these systems is that a file name can have
several meanings: it can indicate the file’s location in the file system hierarchys; it

COMPUTER

0018-9162/91/1200-0038%01.00 © 1991 IEEE

(] (test object)

Developing an ap,
steps. First, t
DHT format.
and contents.
the

server to

cation. Final

client requests for objects.

ly,
These nrovide the

Start Link End Link Follow Link Name Close
"object” .
This is an annotation node about objects.
m (tast attrites)
Start Link End Link Follow Link Name Close
"attributes” .
This is an annotation about attributes.
1 (test contents) 2]
Start Link End Link Follow Link Name Close
"contents”
This is an annotation about contents.
0 (starchive 24)
Start Link End Link Follow Link Name
tents.
2. Using the DHT Library.
The DHT library is primarily a communications facility; there-
fore, the task of application designers is to transform objects
from the server’s storage format into DHT format, and then to the
client’s format on the receiving end. The library makes no
assumption about how objects are actually stored or ultimately
used, although performance considerations will probably rule out

some applications.

R

This involves specifying
server must be constructed to handle
involve
existing storage manager (such as a DBMS)
developing an entirely new storage manager specific to the appli-
applications

each
Second, a
This step may
an

client
interface

one or more

user

lication using the DHT library
e application’s objects must be transformed into
object’s

involves three

attributes

interfacing
or
must be

and functions

l)ud > wd.ddesianed.
1d.s0: war] I

Figure 1. Displaying links.

can express the file’s purpose; it often
contains file name extensions that indi-
cate the file type; and it may include
some notion of the file’s relation to
other files in the same directory. This
overloading can lead to complex, cum-
bersome file names that are difficuit to
manage and evolve.

Attributed file systems' attempt to
solve this problem by attaching attributes
to files. These attributes express addi-
tional information, such as type, cre-
ation and access methods, and relations.
In addition, they provide a way of locat-
ing relevant files by associative search
against attribute values.

All file systems share the drawback
that relations among objects can only
be expressed by grouping them into di-
rectories, or,in attribute-based systems,
by attachingattributes that pointto other
files. Directories can only express mem-
bership in a set; attributes force rela-
tions among separate entities to be ex-
pressed as participation in one or more
other objects.

December 1991

Databasc management systems ad-
dress the problem of associating objects
by providing primitives that model rela-
tions explicitly. Heterogeneous database
systems add the ability tointegrate many
separate databases into logically uni-
fied worlds. This can result in a single
global schema or in many application-
specific schemas, as in federated archi-
tectures.”

The chief problem with heterogeneous
database systcms is preserving autono-
my while providing transactions. A trans-
action is typically controlled by a trans-
action manager. If the transaction
involves objects from more than one
database, then some or all participating
databases bccome subordinate to the
transaction manager, violating their
autonomy.

In summary, file systems offer flexi-
bility and ease of use, but limit organi-
zation to hierarchies of directorics.
Databases offer many high-level fea-
tures, including powerful organization
primitives and multiple views. but sacri-

fice autonomy for transactions. Yet,
there is a gap between the two — a gap
that DHT can fill.

Distributed hypertext:
A solution

Hypertext is a simple concept for or-
ganizing and viewing information. It
stores chunks of text in objects called
nodes, which may be individual files,
database entries, or possibly text gener-
ated on demand at each access. These
nodes can be logically connected by us-
ing named relations called links. Links
can represent such concepts as seman-
ticrelations between nodes, logical pro-
gressions from one node to another,
citations in an article, or cross referenc-
es. They can be anchored, in which case
the cndpoints of the link are represent-
ed by an icon or other indicator in the
contents of the linked nodes. For exam-
ple, Figure | highlights the anchors in

39

the displayed node. Usually, the links
are one-way; the resulting structure
forms a directed graph called a corpus.
Users navigate through the corpus by
following links from node to node.
Our integration solution is based on
the hybrid nature of hypertext. Con-
klin® describes the essence of hypertext
as a combination of three components:

¢ a database method, that is, a partic-
ular way of accessing information
by following links to information
nodes;

* arepresentationscheme, a technique
for structuring information; and

¢ an interface modality, a style of user
interaction based on direct manipu-
lation of link buttons.

We exploit these three features of
hypertext to achieve integration while
preserving autonomy. Specifically, we
address issues of organization and flex-
ibility, transparency, and autonomy.

Organization and flexibility. Hyper-
text offers a simple, natural method for
organizing textual data. It can be ex-
tended to handle multiple media types,
or hypermedia. (Henceforth, we will
use the terms hypertext and hypermedia

Survey of distributed hypertext systems

Most hypertext systems are single-user, centralized designs.' There are sever-
al examples, however, of distributed hypertext systems. Most of them employ a
single server to store the links and nodes for a hypertext. Client programs run-
ning on workstations connected by a local area network access this server to ma-
nipulate portions of the hypertext. Examples include Neptune,? which stores
nodes and links in a single database, and Intermedia,® Document Integration
Facility (DIF),* and Knowledge Management System,5 which store links in a data-
base and nodes in files.

Multiple server designs aliow nodes to reside on several different server ma-
chines and links to be made between such nodes. This category includes Sun’s
Link Service,® Distributed DIF, and Virtual Notebook System,” which store links
and node locations in a database, and PlaneText," which stores both links and
nodes in Unix files.

Other distributed systems like Telesophy® and those proposed for Xanadu® and
Open Hyperdocument Systems'? are intended to link the knowledge base of a
large organization, community, or nation.

References
1. J. Conklin, “Hypertext: An Introduction and Survey,” Computer, Vol. 20, No. 9, Sept.
1987, pp. 17-41.

2. N.M. Delisle and M.D. Schwartz, “Neptune: A Hypertext System for CAD Applications,”
SIGMod Record, Vol. 15, No., 2, June, 1986, pp. 132-142,

3. N. Yankelovich et al., “Intermedia: The Concept and the Construction of a Seamless In-
formation Environment,” Computer, Vol. 21, No. 1, Jan. 1988, pp. 81-96.

4. P.K. Garg and W. Scacchi, “A Hypertext System for Software Life Cycle Documents,
IEEE Software, Vol. 7, No. 3, May 1990, pp. 90-99.

5. R.M. Akscyn, D.L. McCracken, and E.A. Yoder, “KMS: A Distributed Hypermedia Sys-
tem for Managing Knowledge in Organizations, Comm. ACM, Vol. 31, No. 7, July 1988,
pp. 820-835.

6. A. Pearl, “Sun’s Link Service: A Protocol for Open Linking, Proc. Hypertext 89, ACM,
New York, 1989, pp. 137-146.

7. F.M. Shipman Iil, “Distributed Hypertext for Collaborative Research: The Virtual Note-
book System,” Proc. Hypertext 89, ACM, New York, pp. 29-35.

8. B.R. Schatz, “Telesophy: A System for Manipulating the Knowledge of a Community,”
Proc. Globecom 87, ACM, New York, 1987, pp. 1181-1186.

9. T. Nelson, “Managing Immense Storage,” Byte, Vol. 13, No. 1, 1988, pp. 225-233.

10. D.C. Englebart, “Knowledge-Domain Interoperability and an Open Hyperdocument Sys-
tem,” Proc. Computer Supported Cooperative Work, ACM, New York, 1990, pp. 143-156.

40

interchangeably.) User interaction is
simple and straightforward, based on a
common command set applying to all
object types. Yet the data elements can
be organized into complex structures
by linking them together. Furthermore,
data elements typically have attributes,
so the hypertext can be searched by
querying against node attributes, links,
or contents.

Transparency. Schatz’ describes three
types of transparency that an informa-
tion environment must provide:

e type transparency, that is, the abili-
ty use the same interaction tech-
nique to manipulate an object inde-
pendently of its type;

e location transparency, whereby an
object should be uniformly accessi-
ble, whether it is local or remote;
and

escale transparency, which requires
objects to behave the same whether
there are 100 or 100,000 in the sys-
tem.

A heterogeneous environment must
also address source transparency: Ob-
jects should be accessed uniformly re-
gardless of the type of repository that
manages them.

Hypermedia systems have demon-
strated type transparency by presenting
seamless access to diverse media types,
including text, graphics, sound, and im-
ages. Distributed hypertext systems have
demonstrated location transparency (see
the sidebar “Survey of distributed hy-
pertext systems™). [t remains to be seen
whether hypertext can achieve scale
transparency in a very large system con-
taining hundreds of thousands of ob-
jects. Our approach is discussed under
“An architecture for distributed hyper-
text.”

Autonomy. Hypertext transactions
are simpler than those of databases. A
hypertext transaction typically involves
reading or editing a node, or traversing
a link. These operations are performed
on a single object: a node or a link.
Thus, a single repository manages a sin-
gle transaction. Because transactions do
not cross administrative boundaries, they
can be supported without global con-
trol. This makes hypertext ideally suit-
ed to integrating autonomous informa-
tion sources.

Hypertext nodes and links can be com-

COMPUTER

Client applications

Local area network

Local area network | I | |
I I [

| Gateway I I Gateway I I Gateway |,’ Wide area

Object-oriented

In-memory
database

database

Name
server

Bibliography
database

WA Software
\ ‘_,‘-"“' e, archive
¢ ': Ingres
o twork H relational
H networ : database
Ty 3
File system T)
Local area network
| Gateway I | Gateway l d) d) é
Client applications
Link B-tree B-tree Annotation
server server

Figure 2. Components of the distributed hypertext architecture.

bined to form complex structures. This
capability can be exploited to accom-
modate design autonomy, whereby lo-
cal databases preserve the ability to
maintain their structure and content for
existing applications. By providing dy-
namic gateway processes, local objects
can be transformed into hypertext struc-
tures, and hypertext operations can be
transformed into local queries. The un-
derlying database structure remains
unchanged.

An architecture for
distributed hypertext

To implement a hypertext solution,
we begin with a DHT architecture as
the infrastructure for distributed in-
formation management. This architec-
ture is based on a client-server model
and includes four components: a com-
mon hypertext data model, a commu-
nication protocol, servers, and client
applications. Figure 2 shows these
components, which are described be-
low.

Common hypertextdatamodel. From
the client point of view, a common mod-
el describes all objects in the informa-
tion space and defines both the struc-
ture of information and the operations

December 1991

allowed on objects. The data model has
three basic object components:

¢ nodes, the container objects;

e links, representing relationships
between nodes or sections within
nodes; and

¢ attributes of links or nodes, which
identify various object properties.

A set of operations on these compo-
nents defines how clients access nodes
and links:

e create an object;

¢ update the contents or attributes of
anode or the endpoints or attributes
of links;

e delete nodes and links; and

e traverse a link from one node to
another.

Communication protocol. All com-
ponents communicate via a common
application protocol that implements
the operations defined by the data mod-
el and provides a mechanism for mov-
ing objects between clients and servers.

Servers. The content and structure of
the hypertext are managed by servers
that include two components:

*a gateway process that transforms
hypertext operations into local ac-

cess operations and local informa-
tion objects into hypertext nodes or
links, and

e an information repository that con-
tains the information to be access-
ed. These repositories are the enti-
ties to be integrated; they may be
file systems, databases, or special
purpose storage managers.

From the repository point of view,
the gateway process appears to be an-
other local application that accesses the
repositorydata. Inthis manner, the DHT
architecture can incorporate existing
databases without having to copy their
data or modify their schemas. Also, ex-
isting applications continue to function
as before.

Client applications. Clients implement
applications and specific styles of user
interaction that serve as a user interface
to the primitive operations provided by
the hypertext data model.

DHT architectural
advantages

This architecture solves the integra-
tion problem by implementing hyper-
text in a distributed, heterogeneous
environment and taking advantage of

41

Implementing a server

Servers must perform three tasks to support browsing: ex-
port data objects, provide type descriptions, and execute ob-
ject constructors. Here we describe how we implemented
these tasks for our Software Archive server.

The server provides access to an existing Ingres database
that manages relations bewteen software project components
such as specifications, manuals, and source code. This data-
base has been used to archive student projects collected
over the past three years. The archive is partitioned into more
than 80 projects, each of which is then further partitioned into
seven subsections called forms. Each form corresponds to a
phase in the software lifecycle and contains numerous mod-
ules that are the actual contents of a project.

The database schema comprises two relations: a Projects
relation that stores the project’s name, file system location,
and login names of users having access to the project, and a
Modules relation that stores information about each module
in a project. The figure depicts these relations.

This database, though simple, presents several interesting
problems to an integrator. All projects have the same forms,
and each form has a set of “core” modules that must always
be present. This core set may be augmented by additional
modules at the discretion of project team members. Any mod-
ule added to the database must be associated with a project
and a form within that project. These constraints can cause
update anomalies if users are allowed unrestricted authority
to create views of the database.

DHT solves this problem through object constructors that
create components of complex objects in a locally consistent
manner. The module constructor, for example, requires that
the client specify the “parent” form that is to contain the mod-
ule, as well as the values for some of the module’s attributes.
The constructor procedure supplies values for the remaining
attributes (status, type, and author) and uses the client-sup-
plied parent argument to determine appropriate values for the
project and form fields. The resulting values are appended to
the Modules relation. However, if the parent object does not

exist or the user is not assigned to the project, the creation
failsandanerror messageisreturned

The process of creating a server for this database involved
four steps:

(1) Deciding the types of nodes and links to be exported and
coding the type descriptions.

(2) Determining which operations to support.

(3) Writing SQL queries to implement these operations, which
will be called from the server process. These include the
constructor queries to create new projects and modules.

(4) Linking these components with the server library and reg-
istering the new server with the DHT name server.

There are three basic types to export from the archive data-
base: projects, forms, and modutes. The first two are directory
objects that serve as the source for links to their children. Mod-
ules are container objects that have editable contents. The fig-
ure shows the type descriptions for each of these.

The archive server supports the full range of DHT read opera-
tions and the creation of project and module objects. Queries
implementing these operations must therefore map DHT con-
cepts and objects into SQL queries against record attributes. For
example, a “get links” request for a form object is translated into
an SQL query that retrieves all modules that are part of the
specified object:

SELECT DISTINCT project, form, name, instance
FROM modules

WHERE project =:_project

AND form =:_form;

Of particular interest is the implementation of the Module con-
structor. From the DHT perspective, this operation creates a
new node and links it to the specified form. From the database
perspective, it adds a new record to the modules table, with the
parent field set to the specified form.

the transparency, organization, and flex-
ibility inherent in hypertext, while ex-
ploiting its data access modality to pre-
serve repository autonomy.

Heterogeneity and integration. The
common data model accomplishes inte-
gration by letting client applications
interpret diverse information from di-
verse sources in a uniform manner. A
key advantage to this integration strat-
egy is that an information source can
participate without having to coordi-
nate with other sources. This is because
hypertext nodes are distinct entities and
their relations are represented via links
that are separate from nodes. As a re-
sult, integrating a new repository re-
quires only translation of objects into
the common data model and implemen-
tation of a server to accept and process

42

protocol messages. Adding a new serv-
er does not affect existing nodes, links.
Or servers.

Transparency. The hypertext data
model describes the structure of objects
and the operations on objects; the com-
munication protocol implements these
operations. Therefore, any client can
manipulate any object using the same
set of operations, regardless of source
or type.

Transactions and autonomy. Reposi-
tories maintain complete control over
the type and number of objects export-
ed, who may access them, and what
operations may be performed. Only
exported objects arc known outside the
repository; there is no requirement to
export a repository’s entire schema.

Also, there is no need for a particular
server to provide write access to its da-
tabase, either to users or to system func-
tions. Furthermore, existing applications
access the database in the same way,
because the server handles all transla-
tions between local and common object
descriptions.

Transactions are restricted to read or
update operations on a single node or
link and to create operations that in-
voke a server’s constructor procedure.
Therefore, there is no need for a global
transaction manager that might infringe
onlocal control and authority, since any
transaction is managed solely by the
affected server.

The result of this approach is to ren-
der a complex, evolving object space
comprehensible by applying a simple
set of structuring operations.

COMPUTER

Relation: Modules

Name Type Length
project c 20
form c 32
name c 12
instance integer 4
type c 12
heading c 64
author c 16
status integer 4
Relation: Projects

Name Type Length
name c 20
home text 1024

Relation: Engineers

Name Type Length
project c 20
name [16

defclass Module {DHT Node}
{attributes

{{name type:string
{instance type:int
{type type:string
{heading type: string
{status type:int
{author type:string

{constructor

{{name type:string
{instance type:int
{heading type:string
{contents type:string
{parent type:oid

defclass Project {DHT Composite}

{attributes
{{name type:string
{home type:string
{engineers type:string
{constructor
{{name type:string
{home type:string
{engineers type:string

defclass Form {DHT Composite}
{attributes
{{name

{constructor {{}}}

type:string

card:
card:

card

card:
card:
card:

card
card
card
card
card

1 desc:
: 1 desc:
1 desc:
1 desc:
1 desc:

1 1 desc:
: 1 desc:
: 1 desc:
1 1 desc:
: 1 desc:

1 disc: ¢

‘module name”}
“instance number”}
“module type”}
“module description”}
“module status”}
“module author”}} }

“module name”}
“instance number”}
“module description”}
“module contents”}
“module parent’}} }

card: 1 desc: “project name”}
card: 1 desc: “root directory”}
card: * desc: “project developers”}} }

card: 1 desc: “project name”}
card: 1 desc: “root directory”}
card: * desc: “project developers”}} }

card: 1 desc: “Form name”}}}

Software archive relations and associated DHT type definitions.

These queries are embedded into a set of C language func-
tions that are linked into a server template provided as part of
the DHT library. Once this process is complete, the new server
is ready to run. The last step is to add its name to the name

Implementation

We have developed a prototype DHT
systemimplementation. Here we present
an overview of the system to describe
how hypertext functions are carried out
fromtheclient and server points of view.

System overview. The goal of our pro-
totype system is to demonstrate how
existing heterogeneous repositories can
be integrated using the DHT architec-
ture. Therefore, we built several servers
to provide access to a variety of reposi-
tories ranging from simple hash tables to
object-oriented databases. Specifically,
servers were constructed to access an
existing software project database im-
plemented using the Ingres relational
database management system, an ob-

December 1991

ject-oriented database containing bib-
liographic entries, a name server to
manage addresses of the other servers
in the system, and the Unix file system.
Additionally, we implemented link
and annotation servers using a B-tree
storage manager. The link and annota-
tion servers store annotations linked to
other objects, as well as user’s personal
links. These servers enable users to
attach comments to other nodes in the
system and to build personal link net-
works. We have several clients that
provide user access to the available
servers, including a hypertext browser
providing a means for navigating links,
viewing and editing nodes. and creat-
ing annotations to nodes, and several
shell commands for creating and re-
trieving nodes from specific servers.
See Figure 2 for an overview of these

server so that its address is registered upon startup.

The entire development process for this server was com-
pleted in two days and the implementation comprises about
300 lines of C and SQL code.

components and the sidebar for details
on implementing a DHT server.

Using the system. Users engage in
three basic activities: browsing links,
viewing and editing nodes, and creating
new objects. These tasks are carried out
using a window-oriented browser/edi-
tor. Servers support these activities by
exporting data objects, providing ob-
ject type descriptions, and creating new
objects in their storage managers in re-
sponse to user (or client) requests. We
examine each of these activities.

Browsing. Browsing involves repeat-
ed execution of the following steps by a

client process:

(1) Locate appropriate link servers.
As discussed previously, links are not

43

necessarily stored as part of the nodes
that they link. Therefore, a client man-
aging the browsing process must first
determine what server to contact to re-
trieve the list of links originating at a
node. This server may be specified with
each command or in a default configu-
ration file.

By convention, each user has a de-
fault configuration that specifies,among
other things, where to look for links.

(2) Retrieve the list of links associat-
ed with a node. Once the link server has
been specified, the client simply sends a
message to the server requesting the list
oflinks emanating from the desired node.

(3) Filter the list according to at-
tributes specified by the user. Applica-
tions and users may be interested in
only a subset of links associated with a
node. Therefore, a user may specify a
filter to apply to the list of links.

(4) Present the resulting links to the
user. This step is application dependent
as well as link dependent. Some links
may simply represent a relationship
between two nodes; others are “an-
chored,” representing arelation between
a subcomponent or section of one node
to a subcomponent or section of anoth-
er node. Anchored links are best pre-
sented by emphasizing the “anchor” in
the displayed node, as in Figure 1 where
anchors are highlighted, while otherlinks
can be selected from a menu-style list.

(5) Retrieve and display the endpoint
of a chosen link. Once the links have
been presented, either as highlighted
anchors or menu items, the user can
select one for traversal. This step can
take place only after a client determines
that it has sufficient local resources to
display a node. This is because certain
node types require special hardware or
software; a video object, for example,
requires special playback and display
hardware whereas text can be shown on
any terminal. To facilitate this step,
objectidentifiers contain a type field, so
clients know an object’s type before
retrieving the whole object. Once the
client process determines that it can
present the contents of a node, it sends
a message to the server that stores the
node, requesting the return of the con-
tents.

Creating new objects. Servers must
have absolute control over the creation
process to ensure consistency of the
local repository. This requirement com-
plicates object (node or link) creation.

44

Hypertext combines
a user interaction
technique, a data

representation method,
and a data storage
mechanism.

It means that users cannot arbitrarily
create nodesor links atany server. Rath-
er, toallowservers to control access and
meet repository consistency constraints,
we provide object “constructors,” local
procedures that create complex objects
from client-supplied arguments.

Constructor arguments are specified
in object type descriptions. Users who
want to create an object must specify
the type of object to create. The client
then retrieves the appropriate type de-
scription and interprets the constructor
argument specification. The useris then
asked to supply values for each of the
constructor arguments. The figure in
the sidebar shows a type description
with constructor arguments.

¢ began with a statement of
four requirements for infor-
mation integration: organiza-

tion, flexiblity, transparency, and au-
tonomy. Our DHT architecture meets
these requirements by extending hy-
pertext to a distributed, heterogeneous
environment.

We chose hypertext as asolution strat-
egy because of its multifaceted nature:
itcombines a user interaction technique,
a data representation method, and a
data storage mechanism.?

The user interaction facet provides
transparency. Users interact with infor-
mation by creating nodes and links and
by browsing the resulting linked infor-
mation space. Browsing utilizes a com-
mon set of tools regardless of the types
of nodes contained in the information
space.

The data representation facet pro-
vides the organization and flexibility to
construct multiple views and complex
structures by linking nodes. This simple

organization technique is both power-
ful and extremely flexible. Views can be
changed or removed entirely simply by
adding or removing links. Yet the linked
nodes remain unaffected by suchchang-
es. Contrast this with database manage-
ment systems, in which different views
can produce critical update problems
and changes in schema structure can
affect numerous data instances.

Finally, the data storage facet pro-
vides the key to implementing an inte-
grated hypertext in an autonomous and
heterogeneous environment. This is
because the hypertext data storage mod-
el can support transactions without
compromising the autonomy of partici-
pating information repositories. Fur-
thermore, a hypertext storage mecha-
nism can manage diverse data types and
can be implemented on a variety of
storage managers.

Thus, the hypertext-based approach
results in two gains: a simple integration
strategy that preserves repository au-
tonomy and a powerful organizational
tool that lets many users and applica-
tions construct personal views of shared
objects.

The chief weakness of our solution is
the necessity to implement a new gate-
way for each new repository; this is a
weakness we share with other integra-
tion strategies. However, our experi-
ence has shown that new gateways can
be implemented in as little time as one
day, so this is less of a drawback than it
might appear.

Our future work will focus on devel-
oping reusable mechanisms for integrat-
ing new servers as well as continuing to
gather experience with the prototype
system. We are alsoimplementing more
sophisticated clients that model soft-
ware processes® and servers to integrate
repositories for software engineering
environments.

Acknowledgments

Christina Chen, Hongyan Luo, and Vien
Chan participated in the implementation of
the prototype system. We thank Peter Dan-
zig, Deborah Estrin, Doug Fang, Shahram
Ghandeharizadeh, Steve Hotz, and Kim
Korner for their many helpful comments.
This work has been supported in part by
contracts and grants from AT&T, Northrop,
Pacific Bell, and the Office of Naval Tech-
nology through the Naval Ocean Systems
Center. No endorsement is implied.

COMPUTER

References

1. M. Theimer, L.F. Cabrera, and J. Wyllie, “QuickSilver Support
for Access to Data in Large, Geographically Dispersed Systems,
Ninth Int'l Conf. Distributed Computing Systems, CS Press, Los
Alamitos. Calif., Order No. 1953, 1989, pp. 28-35.

2. D. Heimbigner and D. McLeod, “A Federated Architecture for
Information Management,” ACM Trans. on Office Information
Systems, Vol. 3, No. 3, July 1985, pp. 253-278.

3. J. Conklin, “Hypertext: An Introduction and Survey,” Comput-
er. Vol. 20. No. 9, Sept. 1987, pp. 17-41.

4. B.R.Schatz, “Tclesophy: A System for Manipulating the Knowl-
edge of a Community.” Proc. Globecom 87, ACM New York,
1987, pp. 1181-1186.

wn

. P. Garg and W. Scacchi, “ISHYS: Designing an Intelligent
Software Hypertext System,” IEEE Expert. Vol. 4, No. 3., Fall
1989, pp. 52-64.

John Noll is a doctoral student in computer science at University of
Southern California. He received a BA in physics from Colorado
College in 1979, a BS in industrial and systems engineering from
USC in 1980, and an MS in computer science from USC in 1990. His
research interests include distributed hypermedia systems, wide
areca networks, and large-scale software engineering.

Walt Scacchi is an associate research professor in the Decision
Systems Department at the University of Southern California. Since
joining the USC faculty in 1981, he created and now directs the USC
Systems Factory Project, the first software factory research project
in a US university. His research interests include very large scale
software production, knowledge-based systems for modeling and
simulating organizational processes and operations, CASE technol-
ogies for developing large heterogeneous information systems, and
organizational analysis of system development projects.

Scacchi received a BA in mathematics and a BS in computer
science in 1974 at California State University, Fullerton, and a PhD
in information and computer scicnce at University of California,
Irvine in 1981. He is a member of the ACM, IEEE, AAAI, Comput-
ing Professionals for Social Responsibility, and Society for the
History of Technology.

Readers can contact the authors at the University of Southern
California. Bridge Hall 401V, Los Angeles, CA 90089-1421
or at their e-mail addresscs: jnoll@pollux.usc.edu and
scacchi@pollux.usc.edu.

December 1991

Command
a Leading Edge in
Computer Research

We are recruiting the best talent available. So
that we can sca%e new heights in computer
research and command a leadership position
inthe Pacific region. With close to 100research
staff, we are currently looking for new talent.
If you are in the relevant disciplines, consider
seriously a future with one of the top computer
research laboratories in the region.

Ourobjectives are two-fold : a) Tocarry out world-class
research and b) To carry out significant technology
transfer. The research focus of the Institute broadly
covers three strategic areas : Multimedia, Artificial
Intelligence and Natural Language Processing.

Specific projects cover Virtual Environments, Video
Classification, Image Processing, Scientific Visualization,
Text Retrieval, Neural Networks, Fuzzy Logic,
Computer-Aided Translation, High Speed Networks,
Distributed Computing and Parallel Computing. The
Institute has embarked on a number of joint projects
with industry in Singapore and overseas. These include
Computer Aided Translation with IBM; Pattern
Recognition with the Port of Singapore Authority;
Connectionist Expert System Shell with Singapore
Airlines; and Text Abstraction with the Ministry of
Defence.

Toqualify,youshouldhavea PhD, Mastersor Bachelor's
in computer science, electrical engineering and related
disciplines,and preferablyexperience in R&D laboratory
work. (Andifyou're a Singaporean or come from Asia,
all the more reason for you to consider coming home.)

We offer:
¢ A stimulating work environment in one of the
mostadvanced computing facilities in the region
¢ A competitive salary
* Attractive fringe benefits

If you're ready to take up this top-notch research
opportunity, please send your resume to the Director
of Personnel, National University of Singapore, 10
Kent Ridge Crescent, Singapore 0511 or faxc/o ISS
Recruitment Manager at 775-0938 or BITNET
ISSAPPLY@NUSVM.

INSTITUTE OF SYSTEMS SCIENCE E

NATIONAL UNIVERSITY OF SINGAPORE

"

