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esearch in CASE
environments has focused on two kinds
of integration: tool and object. Tool in-
tegration deals with the implicit invoca-
tion and control of development tools."
Object integration seeks to provide a
consistent view of development arti-
facts and easy-to-use interfaces to gen-
erate, access, and control them.*”’

We propose a higher level of integra-
don, process integration, which represents de-
velopment activities explicity in a software
process model to guide and coordinate devel-
opment and to integrate tools and objects. A
CASE environment based on process inte-
gration is called a process-driven CASE envi-
ronment. Our implementation strategy is to
realize process integration using existing
CASE environments or tools.

PROCESS INTEGRATION

"Today’s CASE environments generally

support some form of tool or object inte-
gration. Tool integration provides a devel-
opment tool set and an invocation mech-
anism that controls its use. In fact, the
tools form a conceptual tool-invocation chain
that facilitates related development activ-
ities. In Unix environments, for example,
programming is supported by text editors,
language compilers, object linkers, program
debuggers, and shell programs.

The invocation chain is conceptual be-
cause it does not have an explicit repre-
sentation in most CASE environments.
Furthermore, every programmer has
their own version of an invocation chain
that has emerged through personal expe-
rience. However, for a small tool set, invo-
cation chains vary only slightly.

Object integration is based on an ob-
ject model of software artifacts and em-
phasizes artifact management. The pro-
duction and consumption of these artifacts

i normally has a partial order — an artifact
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Figure 1. Architecture of a process-dyiven CASE environment.
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Figure 2. A sample software process miodel, which is a repository of information on the status of processes and
activities. An SPM is a bievarchy of tasks, subtasks, and actions. The top level is a task, depicted as a rectangle,
that is recursively decomposed into subtasks. At the bottom of the hierarchy are actions, depicted as a circle, which
are either single tool invocations or simple resource transformations. Each level specifies a partial order for
subtask execution. An SPM also indicates four categories of resource requivements for a subtask, which are
represented as independent object classes with velations that link them to the SPM.

produced early in the life cycle will be used
later to create another artifact. For example,
an early artifactin system development often
is the informal requirements description. In-
termediate artifacts are the requirements

specification and the architectural design.
"The final artifact is the system itself.

In this case there is a conceptual resource-
transformation chain that progresses from ini-
tial artifacts to intermediate ones and then to

the final product. On the other hand, ob-
ject integration does not address the ac-
tivities that produce and consume arti-
facts.

A common feature of these two con-
ceptual chains is that they describe task
execution, albeit from different perspec-
tives. The tool-invocadon chain repre-
sents the use of tools in task execution,
while the resource-transformation chain
represents the task-execution I/O.

Process integration seeks to make the con-
ceptual task-execution chain explicit, flexible,
and reusable. We represent the task-execution
chain as a software process model. By using an
SPM representation, we can achieve more in-
tegrated CASE environments.

Process integration provides mecha-
nisms to guide the software process and
manage workspaces, tool invocations, and
objects. Process integration also lets soft-
ware managers monitor and control the
progress of development. As Figure 1
shows, the key mechanisms for process in-
tegration are SPMs, a process driver, and
interfaces for both the developer and man-
ager. These are the key components of the
architecture for a process-driven CASE
environment.

SOFTWARE PROCESS MODEL

An SPM is a formal way to organize
and describe how life-cycle models, devel-
opment methods, software artifacts,
CASE tools, and developers fit together
— itis a collection of objects representing
activities, artifacts, tools, and developers.
Each SPM object has its own representa-
tion and describes a kind of information
that is involved in software development.
SPM objects are linked by many kinds of
relations. Figure 2 shows the structure of a
sample SPM.

An SPM, which we have described in
detail elsewhere,® is a repository of infor-
mation on the status of the processes and
activities manipulated throughouta devel-
opment project. It specifies an activity hier-
archy and resource requirements.

An activity hierarchy decomposes an
SPM into a hierarchy of smaller activities,
tasks and actions. How many decomposition
levels a project has is arbitrary and depends
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on the project’s complexity. The top level
of an SPM is a task that is recursively de-
composed into a set of interrelated sub-
tasks (which include tasks and actions). At
the bottom of the hierarchy are actions,
which are either single tool invocations or
simple resource transformations.

Fach level specifies a partial order for
subtask execution. The execution order de-
fines several types of precedence relation-
ships among subtasks, including sequential,
parallel, iterative, and conditional.

An SPM also indicates four categories
of resource requirements for a subtask to
be performed. As Figure 2 illustrates, an
SPM models the

¢ various developer and organiza-
tional roles users take while performing a
subtask,

# software artifacts that are needed (re-
quired resources) and created or enhanced
(provided resources) during a subtask,

¢ tools used, and

¢ information about a subtask’s sched-
ule and its expected duration.

These resource requirements are repre-
sented as independent object classes with re-
lations thatlink themn to the SPM. For exam-
ple, a system’s product model might be
defined to have a module-decomposition
structure, with its modules linked to their
producer and consumer subtasks.

Figure 3. A status-transition graph, which is the internal vepresentation of tasks, subtasks and actions. Boxes
denote status values (defined in Table 1), arcs denote transitions that change those values and the result, and
arc labels denote the transition type. The process driver implements the status-transition graph, and each
status-transition graph is in turn represented as a node in the bigher level SPM.

PROCESS DRIVER

A process driver interprets and exe-
cutes an SPM according to its activity hi-
erarchy. It manages the order of subtasks
and the constraints to be satisfied before
they can be performed. It plays the role of
an automated driver in that it initiates an
SPM, enacts its subtasks, accepts
developers’ inputs, updates and propa-
gates the status of these subtasks, and trig-
gers other subtasks.

A key variable that represents the state
of process enactment is status, which is at-
tached to each task or action in an SPM.
The value of an SPM’s or subtask’s status
indicates its current development state.
The status variable is updated by the pro-
cess driver on the basis of interaction with

developers. Updates to a subtask’s current
status value represent the subtask’s prog-
ress through enactment. To this end, pro-
cess execution drives the status of an SPM
from None to Done.

Table 1 lists process status values and
their definitions for both actions and tasks.
An action’s status is primitive and is deter-
mined by operations on it; a task’s status is
recursively defined and is determined by
the status of its component subtasks. The
process driver updates these values accord-
ing to input from an SPM and developers.
Thus, while an SPM indicates a prescribed
order of subtask enactment, the record of
status transitions describes the order in
which enactment actually occurred.

Figure 3 shows status transitions initi-
ated by the process driver. In Figure 3, the

Volue Definition for actions Definition for tasks
None Initially set Subtasks have status None
Allocated . Developers, tools, and required resources Subtasks have status Allocated
: , have been allocated
Ready Allocated, either without predecessors or its Some subtasks are Ready, but none
precedecessors are done are Active
Active Enactment is in progress; being performed Some subtasks are Active
, by assigned developers.
Stopped Not being performed; voluntarily stopped Some subtasks are Stopped, but none
are Active, Broken, or Ready
Broken Either one or more required resources is Some subtasks are Broken, but none
! unavailable or it is unable to continue for some reason are Active or Ready
Done Execution has finished successfully Subtasks have status Done
Notchosen Not selected for execution Not available
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Figure 4. A stack of task windows in the developer’s interface. The graph in the top window is an SPM showing actions and their status.

boxes denote status values and the arcs
connecting them denote enactment tran-

sitions that change those values and the !

result. Arcs are labeled with transition
types. For example, action Start changes
an action’s status from either Ready or
Stopped to Active, signaling that the ac-
tion is being executed. The process driver
implements the status-transition graph.
Each status-transition graph is in turn repre-
sented as a node in the higher level SPM.
Once managers have allocated re-
sources to a project, developers start an
SPM’s enacunent by informing the pro-
cess driver, which issues a Start signal on
initial Ready actdons. The action’s status is
thereby changed to Active. As actions are
performed, some of them may be Done,
others may be Stopped, and still others
will be Broken, which means they need
repairing or rescheduling actions to re-
cover.” When actions are Done, they trig-
ger the process driver to update the SPM
and assert more Ready actions. This en-
actment continues until the entire SPM is

Done. During enactment, managers
monitor progress by observing the status
change. Managers can elect to change the
enacted SPM or its resource allocation at
any time. Accordingly, developers enact
and managers control SPMs through two
separate user interfaces.

DEVELOPER’S INTERFACE

The developer’s interface is a working
environment that lets developers enact an
SPM. Different developers execute SPMs
concurrently and perform only their as-
signed subtasks through process guidance
and workspaces.

Process guidance. Process guidance in-
forms developers of the subtasks they can
perform and when these subtasks are ready
to start. The developer’s interface supports
process guidance through navigation within
an SPM by the process driver.

A developer can start a subtask only if
its status is Ready or Stopped. When a

subtask is finished, the developer’s inter-
face sends a Done signal to the process
driver, which uses the signal to determine
if successor Allocated subtasks are Ready.
This lets developers start assigned tasks as
soon as they become Ready.

The developer’s interface provides
process guidance through task windows,
which show both explicit and implicit pro-
cess representation. A task window pres-
ents a task’s subtasks and their current sta-
tus. Figure 4 shows a stack of task windows
with an example of an SPM with explicit
process representation.

Each task window displays the task’s
immediate subtasks as an SPM: Tasks are
represented as squares, actions as circles,
and precedence relationships as arrows
from a subtask to its successor subtasks.
The status of a subtask is indicated with
different colors on a color display and with
different icons on a monochrome display.
Therefore, an SPM indicates both task-
execution order and how enactnent is
i progressing.
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Figure 5. An action window in the developer’s interface. The action is document_architectural_design. The developer bas invoked two tools — dsn.exe and emacs, each
operating on one resource — arch_spec.numil and arch_spec.doc, vespectively.

A developer can start the execution of
any Ready subtask by clicking on it, which
opens another window. If the selected
subtask is a task, the new window is a task
window that shows a lower decomposition
level. For example, Mary’s developer in-
terface in Figure 4 shows, in the task-list
window in the upper left, the two
SPMs assigned to her: design_FOO and
reverse_se.

Mary has opened two levels of decom-
position, one for design_FOO in the
lower left window and one for architec-
tural_design in the center window. In the
center window, the architectural_design
subtask is decomposed into a list of six ac-
tions, whose icons indicate that four are
Done, one is Ready, and one is Allocated.

On the other hand, if the developer
selects an action subtask, the new window
is an action window, which provides a
working environment.

A task window that shows an SPM with
an implicit process representation would
display a list of Ready actions, called a
ready list, and an action window. The de-
veloper selects an action from the ready list
and finishes it in the action window’s
workspace. The developer’s interface up-
dates the Ready list when an action is
Done so the next Ready actions can be
displayed. This implict process represen-
tation isa shortcut for developers who pre-
fer not to be guided by an explicit process
representation. The developer’s interface
nonetheless enforces the process descrip-
tion implicitly.

Workspaces. In the developer’s interface,
a workspace is used to perform an action
and is accessed through an action window,
as Figure 5 shows. Creating a workspace
has two aspects: setting up a work area and
invoking the necessary tools with re-

sources as parameters.

Selecting an action from an SPM
causes its required resources, its provided
resources, and its associated tools to be
displayed in an action window. An action
window also lets developers invoke the
tools on specified resources. Furthermore,
when an action specifies only one tool and
one resource, tool invocation is automatic:
The developer’s interface invokes the tool
when the action window opens.

Figure 5 shows theaction window for the
action document_architectural design. In
the window, two tools — dsn.exe and emacs
— have been invoked. Each tool operateson
one resource — arch_spec.numil and
arch_spec.doc, respectively. When an ac-
ton is finished, the action window gets its
provided resources from the tools and puts
them into the correct position according to
the specification in the SPM so they can be
used in successor subtasks.
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Figure 6. Manager’s interface, showing (top left) an activity graph for design_FOO; (top right) a graph of resource production and consumption; (bottom right) a
task-predecence graph for a group of subtasks and their curvent status; and (bottom left) the interface where the manager can modify the values of attributes in an SPM

to assign tasks and allocate resources.

MANAGER’S INTERFACE

The manager’s interface gives manag-
ers and analysts the tools to define, moni-
tor, and control the SPMs that developers
are working on concurrenty.

From the process driver’s point of
view, a manager’s interface does not
change the status of an SPM. Instead, it
initializes an SPM to ensure that the min-
imum required resources needed tostartit
are allocated and to monitor the progress
of a process. Process managers use a differ-
ent interface (not shown) to create, proto-
type, analyze, and simulate SPMs.”

The manager’s interface simply re-
trieves information from the SPM and
presents it in easy-to-understand graphs
and tables, as Figure 6 shows. The process
driver can update these graphs and tables
in real time, as developers work.

Three windows in Figure 6 are con-
cerned with monitoring the progress of

things like subtask completion and re-
source creatdon. The upper left window
shows an activity graph for design_FOO;
the lower right window is a graph of the
task-precedence relationships among a
group of subtasks and their current status;
the upper right window shows the re-
source production and consumpton rela-
tonships among a task’s subtasks.

The lower left window in Figure 6 is
concerned with controlling the process,
which involves changing the values of an
SPM’s attributes. This modification func-
ton lets a manager assign tasks and allo-
cate resources.

SOFTMAN EXPERIMENT

An example of our strategy to implement
process-driven CASE environments with
existing CASE environments® is an experi-
ment involving the Softman environment,’

which was developed as part of the Univer-

sity of Southern California’s System Fac-
tory project (although other CASE envi-
ronments or tools could have served as
well).

Softman is an integrated CASE envi-
ronment for forward and reverse engi-
neering large software systems. Its com-
prehensive set of support mechanisms and
tools makes it a powerful environment for
large-scale development. However, its de-
velopment methodology and its tools can
be difficult to learn. A process driven
Softman environment can overcome, or
mitigate, these difficulties.

We made Softman process driven by

1. Identifying its basic concepts, func-
dons, component tools, and tool-invoca-
tion sequences.

2. Formally representing the informa-
ton gathered in Step 1 in an SPM called
the Softman process model.

3. Porting the Softman process model
to a process-driven CASE environment
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and integrating Softman’s object model
and tool set.

Identifying concepts. Figure 7 shows
Softman’s user interface. The top window
shows the editing of a design specification;
the bottomn window is a view of opera-
tional requirements.

Through extensive studies, we identified
these concepts as important to Softman:

¢ Softman supportsan incremental, iter-
ative tool-based methodology. It creates and
manipulates a tree-structured collection of
life-cycle documents such as requirements
analyses, requirements specifications, de-
signs, implementations, tests, and mainte-
nance information. In Softman, develop-
ment stages are decomposed until you
identify the level of a single tool invocation.

¢ Softman’s product model is a collec-
tion of life-cycle objects and their attri-
butes and relationships.” It also provides
more detailed information so that all ob-

jects have attributes that characterize their :

interfaces and interconnections. Softman
requires that you create an object’s skeletal
structure, called mod_struct, before you
can create and maintain its content, called
mod_cont, correctly. We call this a struc-
ture-first, content-second development

" method.

¢ For each development stage,
Softman provides a set of structure-ori-
ented, correctness-checking tools. You
use these tools to create, modify, and
maintain both an object’s structure and
content.” Softman’s tools include lan-
guage-directed editors to create object
content and graphical editors to manip-
ulate object structures. These tools
communicate with an object-manage-
ment repository that checks consistency,
completeness, and traceability con-
straints on all objects so as to incremen-
tally assure or track their (in)correctness.

This first step is the most critical. Here,
the process analyst must understand the
modeled process. The analyst must talk

with people who have extensive knowl-
edge of the process that the environment
will support. We worked with the original
Softman developers.

Formal representation. We defined the
Softman process model to include devel-
opment activities, their prescribed execu-
tion order, their required tools (including
multiple tool choices when necessary),
and their associated required and pro-
vided objects. Overall, the Softman pro-
cess model follows Softman’s structure-
first, content-second methodology.

Figure 8 gives the specification of an
action, des_mod_cont, within the
Softman process model. The action defi-
nition specifies its developer, execution
order, required object, provided object,
and two development tools.

This step is reladvely easy, given the
knowledge acquired in step 1. We are now
building more tools to help automate this
step.
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Porfing the process model. Porting the
Softman process model into a process-
driven CASE environment is straightfor-

{{ des_mod_cont ward because the model is simply an in-

INSTANCE: ACTION

TASK. ASSIGNED_TO_AGENT_ROLE: software_engineer stance of a defined SPM class.

TASK_COMPONENT _OF: softman_model In this step, we input the Softman pro-
TASK_HAS_PREDECESSOR: des_mod_struct cess model into the process driver and made
TASK_HAS_SUCCESSOR: imp_mod_cont the Softman data model known to the driver.
TASK_REQUIRE_RESOURCE: arch_spec.doc We then reused and integrated Softman’s
TASK_PROVIDE_RESOURCE: arch_spec.numil tool set by reattaching the Softman tool-in-
TASK_REQUIRE_TOOL: vi dsn.exe}} vocation menu items to the Softman

developer’s interface and establishing links
between the tools and the data model.

The problems that emerge in this step
Figure 8. The specification of an action, des_mod_cont, within the Softman process model. The action | are how to invoke the tools and how to
definition specifies its developer, execution order, required object, provided object, and two development tools. reconcile potential tool incompaﬁbilities.

= TR

i PE

TASK WINDOW: softman_model  Developer: software_engineer
[ Dete&l lﬁeadgﬁctionsj I HistorgJ IﬁistorgReplaﬂ rInFo ] Wj.nii‘ mxit l

Task List lSelect Hovel |Reduce| Iﬁla@ FﬁlargeHSpacﬂ IEnlargeVSpaceJ @uceHSpace] |Re(luceVSpacel

maint_mod_conu phi il
[2 maint_mod_stru_]| (_ None £ Ready |ACTION WINDOW: des_mod_cont  Developer:

I§ test_mod_cont | ﬁlﬂmm\ Allocated ( =i Active { iConunands \ [ Tnto

F test_mod_stru ]
rﬁlp,mod,cont ] Tools
dsn.exe

dsn.exe

Requi lug

|6 imp_mod_stru J

Front|[Modu Le0p|[Lef o | [Fighttog|[Help

Wles_mod_stru J

] Formard lLEa-:Lmar dl
'Tspec,mod_cont | ,5 arCh_Sp‘lF—“_—QIWF [ Tong] N

[10 spec_mod_stru_| /
L ie J
ﬁ.? be l ."‘; v
[13 query J ’J" 3
[ﬁ correctness 4' .\
115 modifg,mod_strul
HB modi{'g_mod_contl v‘."‘,‘ ' }i‘
7o | R SN
|18 ib J i .\l' St
|T9 req_mod_cont J F o
EO req_mod_stru I

Provid

Tjarch_sper

ot 1l De sorphion =

Oriver -

Figure 9. Developer’s interface to the process-driven Softman environment. The bottom window shows the Softman process model; the action window at right executes
des_miod_cont, defined in Figure 8.
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We examine some of these tool-integra-
tion problems later.

Figure 9 shows the developer’s inter-
face to the new process-driven Softman
environment. The bottom window shows
the Softman process model; the action
window at right executes des_mod_cont,
defined in Figure 8.

The new Softman environment uses
the interfaces and supports the Softman
process model as well as reuses the original
Softman data model and tool set. The
process-driven Softman environment pre-
serves the important Softman concepts and
functons and adds support for process
guidance and project management.

When they use the process-driven
Softman environment, developers know
what development stage they are perform-
ing, the tools available to them, the soft-
ware documents they must produce, and
the task they are to perform next.

We have delivered the new process-
driven Softman environment to some in-
dustrial organizations and are now experi-
menting with it. We are also incorporating
support for integrating distributed object
repositories and heterogeneous data
models.!’

Observations. During our experiment,
we observed that the process-driven
Softman environment is flexible to
change. In fact, we have defined variations
of the Softman process model to support
different development methodologies but
use the same product model and tool set.
"This would not be possible with the origi-
nal Softman CASE environment without
a major reprogramming effort.

We also observed that this strategy for
process integration should be applicable to
other CASE environments that provide
basic tool- and object-integration mecha-
nisms.

Finally, we observed that the inter- |

faces of existing development tools must
be highly compatible for them to appear
to be seamlessly integrated in a process-
driven CASE environment. Our current
strategy is to enable each CASE envi-
ronment to define its own product and
tool models and to have an open struc-
ture for process integration to incorpo-

rate them. The Softman experiment has
shown promise in this regard, but more
study is needed.

rocess integration uses a few key
components to form the backbone of
a process-driven CASE environment. The
key components are SPMs, a process
driver, a tool set, and interfaces for both

developers and managers.

Process integration supports an open
system structure that we believe can be
added to other CASE environments with
reasonable effort.

Our successful migration of the
Softman environment to a process-driven
CASE environment proves the feasibility
of our strategy. *
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