
 62

Observations on Patterns of Development in Open
Source Software Projects1

Katherine J. Stewart David P. Darcy Sherae L. Daniel
R. H. Smith School of Business R. H. Smith School of Business R. H. Smith School of Business
University of Maryland University of Maryland University of Maryland
College Park, MD 20742 USA College Park, MD 20742 USA College Park, MD 20742 USA
301-405-0576 301-405-4900
kstewart@rhsmith.umd.edu ddarcy@rhsmith.umd.edu sdaniel@rhsmith.umd.edu

ABSTRACT
This paper discusses a project aimed at understanding how open
source software evolves by examining patterns of development
and changes in releases over time. The methodological
approach of the research and initial observations are described.
These include descriptions of release cycles and categorization
of projects based on the overall changes in size and complexity
exhibited across releases. Implications of these observations are
discussed in light of prior and future work on understanding
OSS evolution.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – complexity measures
D.1.5 [Programming Techniques]: Object oriented programming

General Terms
Measurement, Design, Languages

Keywords
Open Source Software, Software Evolution

1. INTRODUCTION
There are several qualitative and case study-based descriptions
of how open source software is developed and evolves over time
(e.g., [5, 6]). These often emphasize fast growth, fast release
cycles and rapid improvement in quality (e.g.,[18]). One aspect
of quality is software complexity.

Prior research has identified software complexity as a crucial
factor in many important outcomes of the software development
process including defect rates, maintainability, security, and
reliability [11]. As these outcomes are often viewed as being at

the root of what makes for “better” or “worse” software,
complexity has been seen as a key contributor to overall
software quality [17]. Understanding software complexity and
how it may be managed throughout the software lifecycle is
therefore of great interest to developers and researchers.

While most work to-date has examined software complexity in
the context of closed source software development (e.g., [11,
12]), managing complexity could be at least as important in the
open source development context because of the potentially
higher fluidity in membership of the development team. In the
open source context developers often are not bound to projects
by employment relationships and therefore may come and go
more often. Further, the impact on development that may occur
from a lack of or lag in formal design specifications and
documentation [19] may be moderated by complexity as less
complex software will generally be easier to maintain. Thus
minimizing complexity in OSS projects may have several
benefits including facilitating new developers learning enough
to contribute to the source code.

The goal of this study is to explore how software complexity
develops in a large set of Open Source Software projects that
vary in size and purpose. In doing this a secondary goal of the
project is to provide some empirical data describing the overall
patterns of development across these projects with regard to
issues such as release frequency and rate of growth. The
specific goal of this paper is descriptive. We attempt to address
the question: what patterns of development and evolution in
software complexity are found in OSS projects? By doing this
we hope to provide a basis for more in-depth study into
questions such as how the pattern of evolution in a project
impacts other project outcomes and what factors influence
which evolutionary pattern a project follows.

The next section provides a review of prior research on software
complexity followed by a discussion of the special case of open
source software. The literature review is followed by a
description of the data collection and analytical methods
employed in the study. The study collected and analyzed data
on over 1,000 releases of more than 200 open source projects,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Open Source Application Spaces: Fifth Workshop on Open Source
Software Engineering (5-WOSSE) May 17, 2005, St Louis, MO, USA.

Copyright 2005 ACM 1-59593-127-9 … $5.00.

 63

focusing on three key measures of complexity: size, coupling,
and cohesion. Initial findings regarding the patterns displayed
by these projects and preliminary explorations of the possible
relationships among our observations are described. In the final
section of the paper we discuss implications and directions for
future research.

2. PREVIOUS RESEARCH
2.1 The Structural Complexity of Software
The structural complexity of software has been defined as “the
organization of program elements within a program” ([9], p.
191). The term element can refer to a procedure, function,
method, module, class and so on. The definition implies a
program level of analysis, which sets it apart from conventional
complexity analyses that tend to focus on a single element (such
as a single module or a single class). In theory, software can be
structured in an infinite number of ways to solve the same
underlying problem.

Solving a problem through software development proceeds
through modularization, that is by breaking down the problem
into constituent parts and implementing those parts. As design,
implementation and maintenance decisions are made, the
particular choice of part delineation and content has
corresponding impacts on the structural complexity of the
software. More formally (see [4]), the structural complexity of
a program is a function of the composition of individual parts
(e.g., cohesion) and on the associations among parts (e.g.,
coupling).

2.2 Software Evolution
Software evolution occurs when an external stimuli leads to a
change in the software. It was originally conceptualized as
capturing change activity after development of the software was
complete (i.e. during the maintenance phase of the software
lifecycle [1, 13]). More recently, the notion of evolution has
been applied across the entire software life cycle [2]. The Laws
of Software Evolution [1] represent a seminal work in this area.
Of direct relevance to this research is the second law which
states that as systems evolve, complexity increases unless it is
actively managed ([15], p. 18). The management of complexity,
referring to perfective or anti regressive rework, is an
increasingly neglected step under tighter project time constraints
in closed source contexts. Nevertheless, given the increasingly
complex nature of problems being tackled with software,
controlling complexity must be attended to as software
continues to grow in functionality and size [7].

2.3 Complexity and Evolution in OSS
Development
Much of what we know about software comes from analyses of
closed source development. For example, the COCOMO
models were developed in a closed source context [3]. Some of
these models have been applied to open source with appropriate
cautions. For example, if closed source conditions could be
applied to the development of Debian 2.2, it would have cost
almost $1.9 billion with a schedule of more than 6 years (see
[8]). It is uncertain if what we know about closed source
software can be applied to open source software [20]. One

comparative analysis of three open source and three closed
source projects [16] found that both types of projects grew at
about the same rate and that the structure in terms of modularity
was no different; however, creativity was more prevalent in the
open source projects and defects were found and fixed more
rapidly in the open source projects.

Past work evaluating OSS code has provided analyses of some
of the largest, most widely used OSS projects such as Linux and
Apache. This work has found evidence that OSS does not
necessarily follow the laws of software evolution developed by
Lehman. For example, [5, 6] found that Linux continued to
grow at a geometric rate even after attaining a very large size.
They suggest that better understanding of this pattern is obtained
from examining subsystems separately. For example, the drivers
subsystem exhibited greatest growth, and this may be possible
because of the nature of drivers (being relatively self contained);
the kernal itself is not nearly so big nor has it experienced as
much growth as might be presumed from an analysis of the
entire system. Similarly, [14] found that while the GNOME
project overall displayed continuing growth, it seemed to be
accounted for by newer subprojects with some components
displaying the expected pattern of tapering growth.

One implication of these findings is that understanding patterns
of development and change in complexity may benefit from
analysis at the level of relatively clearly delineated projects or
subprojects. In other words, to understand how the complexity
of OSS code changes over time, it is important to focus on
development of a single code base in addition to considering
how a large project grows by adding isolated (from the
perspective of dependency among the code) subprojects.

3. METHODS AND RESULTS
Based on the discussion above, we chose to study size,
coupling, and cohesion as indicators of complexity that are
relevant regardless of the development or distribution process of
the software (i.e., open or closed), and we focused on projects
that could be identified as developing a single code base, rather
than “umbrella” type projects such as GNOME. The empirical
study proceeded in several stages: sample selection, data
collection, measure calculations, an iterative data cleaning
process, categorization of projects into basic evolutionary
patterns, and exploratory analysis of relationships among the
pattern categorization and other variables.

3.1 Sample Selection
The sample was drawn from projects that provide code using
SourceForge.net (www.sourceforge.net). There may be
differences across programming language that would impact the
development of complexity in software. To limit these
differences but still allow some assessment of their potential
impact, we sampled projects that used one of two languages,
either C++ or Java. The problem domain of the software may
also introduce variance in complexity; we limited our sample to
the domains with the largest number of projects on
SourceForge.net, Internet and Networking. From this set we
eliminated projects if they had not released at least one version
of code because our analysis relies on examination of software
code, thus if there is no code we cannot calculate any of the

 64

measures of interest. Projects were also eliminated if the project
description on SourceForge.net indicated that it included
multiple separate development streams or subprojects. In order
to focus on projects that represent the open source movement we
only included projects that use OSI approved licenses.
Applying these criteria, we gathered data on 216 projects.

3.2 Data Collection and Measurement
We developed automated scripts to download the source code
for all releases available on SourceForge.net for each project in
our sample. We then used Scientific Toolworks’ Understand
software to compute complexity measures for each version of
each project. The main measures produced by this tool and used
in our study were size in terms of lines of code (LOC) and
measures of coupling and cohesion. Understand calculates the
number of classes each class is coupled to and the percent
cohesion of each class. We reverse code the cohesion measure
by subtracting it from 100 so that increases in both coupling and
cohesion (labeled lack of cohesion when reversed) represent
increases in complexity. In order to create a release level
measure for coupling we average all coupling measures across
all classes in a given version of a given project. The same
procedure is used for our release level measure of lack of
cohesion.

3.3 Data Integrity
We took several steps to ensure that the releases downloaded
from the internet for a single project on SourceForge.net
represented a single development stream on one project. The
data was cleansed using two main approaches. The first
approach focused on the naming conventions for each release of
a project. We examined the file name of each release to identify
cases in which multiple naming conventions indicated releases
that did not represent sequential development of a single code
base. For example if a project had several releases with a
common base name and several other releases with a different
common base name we attempted to determine if these actually
represented parallel development streams. Parallel development
streams found in projects in the sample existed for different
operating systems, different spoken languages, and related client
and server software. For these cases we retained the
development stream that had the greatest number of releases and
excluded the other from our analyses.

The second approach focused on identifying files that may not
belong in the set of releases for a project by examining the
pattern of development in each project over time. If a project’s
LOC for sequential releases had a repeating pattern of increases
and decreases that represented large changes from one version
to the next, we then reviewed public forums, web pages and
discussion groups associated with the project. The purpose of
this review was to try to understand why the variance occurred
and cleanse the data as appropriate. For example, in one case
we discovered that, while the naming convention of the project
appeared to the uninitiated to represent a single stream of
development, odd and even release numbers actually
represented parallel development streams, one a “stable” stream
and one a “development” stream. In these cases we again
retained the stream with the largest number of releases in order
to maximize the sample size.

3.4 Behavior Patterns of a “Typical” Project
The average project in our sample released 7.5 versions of the
software over a period of 354 days, with the first release posted
to SourceForge.net approximately 68 days after the project had
been registered there, and subsequent releases every 39 days.
Most of these releases increased in size, however on average
each project had one release that had no change in LOC and one
release that had a decrease in LOC. Descriptive statistics are
included in table 1. These show that there were some
significant differences between the absolute levels of variables
across C++ and Java projects. When we examined patterns of
change rather than absolute levels of variables, there were no
significant differences. Paired samples t-tests indicated that
both C++ and Java projects had increases in LOC and coupling
from the first to the last release (p<.05 in all cases), but changes
in cohesion and the ratio of comments to code were not
statistically significant for either sub-sample or the overall set.

3.5 Variability in Behavior Across Projects
and Preliminary Categorizations
Our focus on the evolution of code quality, specifically as
indicated by structural complexity, led us to categorize projects
into 4 groups: those that displayed no change in coupling or
cohesion (including 56 projects that had only one release), those
projects where both coupling and cohesion measures indicated
improved quality between the first and last releases, those
projects where both coupling and cohesion measures indicated
deteriorating quality between the first and last releases, and
those projects where one type of complexity improved and the
other deteriorated. There was no significant difference in the
percentage of projects in each category based on programming
language, thus table 2 shows the number of projects in each
category across the entire sample.

Table 1: Descriptive Statistics

 Mean
(N=216)

C++
(N=111)

Java
(N=105) p

Releases 7.5 8.3 6.6 .444

Days between releases 38.5 27.7 49.9 .007

First release LOC 7614.2 5323.7 10035.6 .086

Last release LOC 11084.1 6843.0 15567.7 .008

First release Coupling 2.6 2.7 2.5 .305

Last release Coupling 2.8 3.0 2.7 .287

First release Lack of
cohesion 45.4 52.7 37.8 .000

Last release Lack of
cohesion 45.0 51.9 37.7 .000

First release Comment
lines 3432.8 2246.2 4687.2 .040

Last release Comment
lines 5343.7 2858.7 7970.7 .002

 65

Table 2: Categorization Based on Overall Changes in
Coupling and Lack of Cohesion

Category N %
1. No change in Coupling and Lack of
Cohesion 71 32.9

2. Coupling and Lack of Cohesion Decrease 23 10.6
3. Coupling and Lack of Cohesion Increase 56 25.9
4. Opposite changes in Coupling and Lack of
Cohesion 66 30.6

The next step in our analysis was to try to understand what
factors may be associated with the categorization of projects.
We conducted some preliminary analyses assessing potential
effects of initial complexity, release pattern (i.e., average time
between releases, number of releases, size change across
releases), programming language, and use of comments, but
relationships to the project categorization were not statistically
significant. Because of potential normative implications for
managing code quality, factors that lead a project to be in
category 2, where both measures of complexity decrease, may
be especially interesting. Thus we conducted preliminary
investigations using qualitative information on the projects in
this set (e.g., by reading their release notes). While some
projects in this set did seem to purposely manage complexity,
there was not a clear pattern of such management obvious across
all projects in the set.

6. CONCLUSIONS, LIMITATIONS, AND
FUTURE DIRECTIONS
Given the intricate nature of software development, it is not
surprising that the preliminary analyses mentioned above failed
to reveal a simple connection between initial conditions and
later project categorizations. As stated in the introduction, the
main purpose of this paper was descriptive in nature. There are
at least three interesting observations we believe can be taken
from the analysis to-date. The main point of interest is that the
data provides empirical evidence that a subset of OSS projects
manage to improve on these quality measures at the same time
as they are increasing in size (19 of the 23 projects in category 2
showed overall increases in LOC). Similarly, there is a larger set
of projects in category 4 that improves one complexity measure.
These observations provide some empirical support for the
notion that the OSS development process may lead to on-going
quality improvements and suggests specific measures by which
such quality improvement may be analyzed. Similarly, the
results demonstrate the unsurprising fact that not all OSS
projects achieve such improvements, suggesting that using an
open development process is by no means a guarantee of
continuous improvement.

A second observation of interest arises from the process we
followed to enhance data integrity. We discovered that projects
used the SourceForge.net repository in significantly different
ways. Some maintained clearly labeled and organized code files
whereas others combined many different kinds of files without a
clear organizational scheme. Our experience that every project

had to be manually scrutinized highlights the need for caution in
using the SourceForge.net data, as others have also noted [10].
However, it is possible that this variance itself may be an
interesting source of data on projects. For example, the
organization of the project files in the repository may be related
to the evolution of the project by influencing the level of
difficulty that new developers or users may encounter when
joining a project. This is one area in which we intend to extend
our investigation.

A third observation that may be of interest to others studying the
evolution of OSS projects comes from the descriptive data in
table 1. The table provides one possible baseline that might be
used for assessing the frequency of releases and rates of change
in basic descriptive measures of OSS code so that, for example,
what projects use “faster” or “slower” release cycles may be
quantified. Of course, the usefulness of this data for that
purpose is subject to the limitations of our sampling procedure
as described above. Similarly, the view of improvement and
deterioration discussed in the paper is limited by the relatively
simplistic categorization scheme employed.

Next steps in this project will focus on refining the
categorization of projects using cluster analysis and functional
data analysis and combining this data with other data (e.g., the
number of developers working on the projects and indicators of
activity on the projects) to consider a larger set of potentially
relevant factors influencing their evolution. By following this
path we may be able to build on the work of others, such as [14]
who observed that increasing size in LOC was highly correlated
with increasing size of the development group, and [21] who
surveyed projects on SourceForge.net and Freshmeat.net and
suggested that the change management and tracking tools
provided by the websites were commonly used for quality
management.

7. ACKNOWLEDGEMENTS
This paper is based on research supported by the National
Science Foundation award IIS-0347376 and the University of
Maryland Center for Electronic Markets and Enterprises. All
opinions expressed are those of the authors. We thank Julie
Inlow, Chang-Han Jong, and Vincent Kan for their invaluable
research assistance on this project.

8. REFERENCES
1. Belady, L.A., and Lehman, M.M. A Model of Large Program

Development. IBM Systems Journal, 3, (1976) 225-252.
2. Bennett, K.H.; Knight, C.; Munro, M.; and Xu, J. Centres of

Excellence: Research Institute in Software Evolution,
University of Durham. Computing and Control Engineering
Journal, 11, 4 (2000) 179-186.

3. Boehm, B. Software Engineering Economics. Englewood
Cliffs, NJ: Prentice Hall, 1981.

4. Darcy, D.P.; Kemerer, C.; Slaughter, S.A.; and Tomayko The
Structural Complexity of Software: An Empirical Test.
University of Maryland, Smith School of Business Working
Paper, (2005)

5. Godfrey, M.W., and Tu, Q. Evolution in Open Source
Software: A Case Study, in Proceedings of International

 66

Conference Software Maintenance, San Jose, California,
2000, 131-142.

6. Godfrey, M.W., and Tu, Q. Growth, Evolution, and Structural
Change in Open Source Software, in Proceedings of
International Conference on Software Engineering, 4th
International workshop on Principles of Software Evolution,
2002, ACM Press 103-106.

7. Goldin, D.S. Taming Software Complexity Is Critical, Design
News, Vol. 56, No. 1, January 8 (2001), 172.

8. Gonzalez-Barahona, J.M.; Perez, M.A.O.; Quiros, P.d.l.H.;
Gonzalez, J.C.; and Olivera, V.M. Counting Potatoes: The
Size of Debian 2.2, Upgrade Magazine, Vol. II, No. 6,
(2001),

9. Gorla, N., and Ramakrishnan, R. Effect of Software Structure
Attributes Software Development Productivity. Journal of
Systems and Software, 36, 2 (1997) 191-199.

10. Howison, J., and Crowston, K. The Perils and Pitfalls of
Mining Sourceforge, in Proceedings of International
Conference on Software Engineering, Mining Software
Repositories Workshop, Edinburgh, 2004.

11. Kemerer, C.F. Software Complexity and Software
Maintenance: A Survey of Empirical Research. Annals of
Software Engineering, 1, 1 (1995) 1-22.

12. Kemerer, C.F., and Slaughter, S.A. An Empirical Approach
to Studying Software Evolution. IEEE Transactions on
Software Engineering, 25, 4 (1999) 493-509.

13. Kemerer, C.F., and Slaughter, S.A. An Empirical Approach
to Studying Software Evolution. TSE, 25, 4 (1999) 493-509.

14. Koch, S., and Schneider, G. Results from Software
Engineering Research into Open Source Development
Projects Using Public Data. Diskussion zum Tagigkeitsfeld
Informationverarbeitung und Informationswirtschaft, 22,
(2000) 1-16.

15. Lehman, M.M., and Ramil, J.F. An Approach to a Theory of
Software Evolution, in Proceedings of Proc. 2001 Intern
Workshop on Principles of Software Evolution, 2001.

16. Paulson, J.; Succi, G.; and Eberlein, A. An Empirical Study
of Open Source and Closed Source Software Products. IEEE
Transactions in Software Engineering, 30, 4 (2004) 246-
256.

17. Prahalad, C.K., and Krishnan, M.S. The New Meaning of
Quality in the Information Age. Harvard Business Review,
(1999) 109-118.

18. Raymond, E.S. The Cathedral and the Bazaar: Musing on
Linux and Open Source by an Accidental Revolutionary.
Sabastopol, CA: O'Reilly, 2001.

19. Scacchi, W. Understanding the Requirements for
Developing Open Source Software Systems. IEE
Proceedings on Software, 149, 1 (2002) 24-39.

20. Scacchi, W. Understanding Open Source Software
Evolution, (2004).
http://www.ics.uci.edu/~wscacchi/Papers/New/Understandin
g-OSS-Evolution.pdf

21. Zhao, L., and Elbaum, S. Quality Assurance under the Open
Source Development Model. Journal of Systems and
Software, 66, (2003) 65-75.

