
 67

Open source software reliability model: an empirical
approach

Ying ZHOU

School of Information Technologies
The University of Sydney

Sydney, NSW 2006 Australia
Tel: 61 2 93513215

Email: zhouy@it.usyd.edu.au

Joseph DAVIS
School of Information Technologies

The University of Sydney
Sydney, NSW 2006 Australia

Tel: 61 2 9351 4291
Email: jdavis@it.usyd.edu.au

ABSTRACT
We collected bug tracking data from a few popular open source
projects and investigated the time related bug reporting patterns
from them. The results indicate that along its development
cycle, open source projects exhibit similar reliability growth
pattern with that of closed source project. Bug arrivals of most
open source project will stabilize at a very low level, even
though in comparison, no formal testing activities are involved.
This stabilizing point would be viewed as the mature point for
adoption consideration. The results also show that general
Weibull distribution offers possible way to establish the
reliability model; Also, popular measures such as page views
and download are not highly correlated with the bug arrival rate
and may not be suitable measures for a project’s quality.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
tracing.

D.2.9 [Software Engineering]: Management – Software
quality assurance.

General Terms
Management, Measurement, Reliability/

Keywords
Software reliability model, Weibull distribution, open source
software

1. INTRODUCTION
Open source software has attracted significant attention in
recent years. Report shows that a few major open source
software products have surpassed their commercial
counterparts in market share and quality evaluation [18]. They
not only attract individuals who want high quality software and
cannot afford expensive commercial version, but also become

good candidates in many businesses or governments’
Information Technology plan. Survey conducted by CIO in late
2002 revealed that the IT community is growing more
comfortable with the open source development model and the
majority (64%) of companies surveyed are using open source,
most frequently as web server, server operating system and for
web development [2]. The adoption rates are getting very
substantial in server and operating system area, in which two
dominant OS products Apache and Linux have already set up
their brand names with proven quality. However, there are still
many other areas that people are hesitant in picking up open
source products. Recent empirical research published by
Forrester suggests that although most European firms have
clear open source adoption plans. There are still fears and
unsolved questions especially for business people and project
managers. Two common fears, which have also been outlined
by Ray Lane, former Oracle executive in a keynote speaking in
the open source conference 2004 are the lack of formal support
and velocity of changes [4]. All these fears and concerns can be
traced back to the quality and reliability of open source
products.

Software reliability model has long been used as the most
important and successful predictor of software quality when it
hits the market. The widely used models in industry include
Rayleigh model, which models the whole software life cycle as
Rayleigh curve and has been used for projecting latent software
defects when the development work is complete and the
product is ready to ship to customers. Another widely used
model is the exponential model, sometimes called reliability
growth model, which has been used for modeling the defect
arrival pattern at the backend of the development for the
purpose of projecting failure pattern in field as well. Both
models are supported by large body of empirical data. Most
data are closely related with development process and are from
large commercial software. Open source projects take a very
different procedure with closed source commercial project. The
contrast has been illustrated by Eric Raymond as “Bazaar” and
“Cathedral” model [15]. The appropriateness of using these
methods to project or evaluate open source project quality
when making adoption decisions remains a open question.
Other metrics developed in software industry to access a
company’s development environment and ability, such as
CMM rating, are strongly with the process [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Open Source Application Spaces: Fifth Workshop on Open Source
Software Engineering (5-WOSSE) May 17, 2005, St Louis, MO, USA.

Copyright 2005 ACM 1-59593-127-9 … $5.00.

 68

No mature method or metrics have yet been developed to
evaluate the quality of open source projects. Except for a few
big names like Gnome, Linux, Mozilla, Apache and so on,
people make judgments on open source products based on
relatively arbitrary criteria. Big open source projects hosts like
sourceforge.net lists facts (such as projects size, developer
number) and simple statistics (activity rank, weekly download,
page view, CVS commits and so on) to assists potential
adopters to assess the quality of an open source projects. The
problem is there are too many factors involved and people
simply don’t know which one to examine, or when an open
source software is mature enough for adoption. The purposes of
this research is to build a general reliability model for open
source software projects to see if it is possible to highlight a
few key features and critical time points that can assist in
making adoption decision. We will also check the correlations
between bug arrival patterns and popular statistics such as page
view and download patterns to see if these popular statistics
would be used as alternative quality measures.

2. RELIABILITY MODELS
Weibull distribution family is perhaps the most widely used
lifetime distribution model [9]. Its simplest form, the 2-
parameter Weibull distribution, has long been used to model
reliability pattern due to its ability in describing failure modes
like initial, random and wear-out. [19]. Data from large
commercial software suggests two special forms of Weibull
distribution: Rayleigh distribution and exponential distribution
have been applied in software reliability models[7].

The 2-parameter Weibull distribution has a probability
distribution function of the form

))(exp()()()1(ββ λλλβ tttf −= − (1)
Where t represents time; λα /1= represents the scale
parameter of the distribution and β represents the shape
parameter of the distribution. The Weibull probability density
function is monotone decreasing if 1<=β and becomes bell

shaped when 1>β . The larger the β value the steeper the bell
shape. Its special case Rayleigh distribution has 2=β ; while
exponential distribution has 1=β . Figure 1 shows several
weibull probability density curves with varying values for the
shape parameter β .

Weibull PDF

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3t

β = 0.5

β = 1

β = 2

β = 4

β = 10

β = 10

β = 0.5

β = 1 β = 2

β = 4

Figure 1 Weibull probability density

In software quality engineering, large body of empirical data
supports the finding that software projects follow a life cycle
pattern described by Rayleigh curve. This is considered as a
desirable pattern since the bug arrival rate stabilizes at a very
low level. In closed source software, the stabilizing behavior is
usually an indicator of ending test effort and releasing the
software to the field. The development cycle, from quality
perspective, is divided into six phases, high-level design
inspection, low-level design inspection, code inspection, unit
test, component test and system test. The bug arrivals usually
peak at the code inspection phase and get rather stabilized in
the system test phase [7].

3. DATA COLLECTION
In the data collection stage, we first identified a few target open
source projects according to product size. The main selection
criteria include project duration and activity. New projects
with less than one year history usually will not be able to
contribute enough useful information. One typical phenonman
associated with many open source projects is that they might
get on and off during the project period. To rank projects
according to activities, SourceForge.net devised an activity
measure. It takes number of downloads, number of times
mentioned in the forum and other measures into consideration
and combine them to form an activity index. We picked our
target projects following SourceForge’s “Most active” rank list
as of August, 2004. The projects identified are listed in table 1
along with their prominent features. Actual names of the
projects were not revealed to follow standard software
engineering ethics [3].

We mainly collected information regarding newly opened bugs
per month. SourceForge provides simple statistics on monthly
bug reported. However, these statistics show all bugs reported
regardless whether they are valid or not. Each month, there are
a few bugs reported and then deleted by the project owner or
core developer members. They are considered as invalid bugs
for various reasons; we need to exclude those bugs for accuracy.
Besides, those statistics are collections of all software products
under one project title, it is more sensible to differentiate
among different products. Fortunately SourceForge keeps

 69

detailed description for each reported bug, its status and the
component it belongs to. We used the query function provided
to isolate bugs from a certain component as well as each
month’s deleted report and rule them out from our data. Hence
the original data we got for monthly opened bugs are slightly
different from those reported in SourceForge statistics.

Table 1. Target Open Source Projects

Project Title Starting time Developer
number

Project PrA 1999-11 14
Project PrB 2003-06-24 9
Project PrC 2003-04-13 40
Project PrD 2000-11-10 1
Project PrE 2001-03-18 8
Project PrF 2001-03-15 115
Project PrG 2000-02-09 40
Project PrH 2000-05-03 1

4. DATA ANALYSIS
4.1 Overall bug arrival trend
We plotted each month’s reported bug numbers along the
timeline in figure 2 to get an overall picture of a possible
pattern. The eight projects were presented in three separate
charts based on average monthly rate. The data show similar
trend across all projects except for a few projects which are still
in their infancies. The monthly bug arrival rate goes slowly
upwards along until it reaches a peak; it then starts to decrease,
stabilizes at a rather low level. This forms a bell shape curve.
The trend is consistent in PrA, PrE, PrF, PrD, PrG and PrH
projects. Two other projects, PrB and PrC are registered for
short times (around 1 year). From the second chart in figure 2,
it is clear that the bug arrival is still active in these two projects.
Since the monthly bug rate keep increasing, it is hard to tell at
this stage whether they are going to reach the peak and then
decrease to a stabilizing state.

The monthly bug data reveal a clear pattern and there are
families of models in the analysis of failure process data that fit
this general distribution. However, we will concentrate on the
Weibull distribution, which has long been demonstrated its
appropriateness in reliability/failure time analysis [9].

4.2 Reliability growth model

The two-parameter weibull non-linear regression model we use
to build the time and bug arrival rate relationship is:

ββ λλβλ)exp()*(** 1 ttKy −∗= − (2)

Where y is the bug arrival monthly rate β is the shape

parameter and λ is the scale parameter. SPSS nonlinear
regression procedure is employed to implement the general
weibull model and to estimate the parameters. All data are
grouped data with type I censoring 1 . Table 2 lists the
estimations of the shape and scale parameters. The actual

1 It is not possible to get complete data set as most
projects will keep going for a long period.

values and expected curves for all projects are plotted in figure
3 respectively.

Table 2. Estimated parameters and R2

Projects λ β R2

PrA 0.02 5.29 0.7938
PrH 0.04 2.31 0.4821
PrF 0.03 1.81 0.4982
PrE 0.01 1.27 0.1052
PrD 0.04 2.87 0.2705
PrG 0.007 1.85 0.5420

The R2 indicates good fit for some projects such as PrA, PrF,
PrH and PrG. The other two projects, PrE and PrD have very
low R2 value, indicating low correlations between time and bug
arrival rate. We did not run regression on PrB and PrC . They
were registered for less than two years and available data points
are less than adequate for censored data analysis. Although in
most cases, the estimated value of β is around 2, there is also

case with much higher β value (5. 29 for PrA project). This
suggests that general Weibull distribution is a possible
candidate to model open source reliability pattern, although the
special case Rayleigh distribution is not suitable in some case.

 70

Gaim bug report pattern

0
50

100
150
200
250
300
350
400
450
500

1 6 11 16 21 26 31 36 41 46 51 56

month since register

re
po

rt
ed

 b
ug

s

PrA

Bug report pattern

0

20

40

60

80

100

120

140

160

1 5 9 13 17 21 25 29 33 37 41Month since register

re
po

rt
ed

 b
ug

s

PrB
PrC
PrE
PrF

bug report pattern

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53
Monthes since register

re
po

rt
ed

 b
ug

s

PrC

PrG

PrH

Figure 2 Bug arrival patterns of 8 projects

PrE and PrD are typical open source projects. They were
initiated as Open source projects and continued to evolve with
single code base. Both are rated as stable in SourceForge and
have fairly large number of downloads per month. PrE has
eight developers and has been active most of its life cycle. PrD
has only one developer and its activity indexes have large
variations along its life cycle. Neither of them is close to stable
bug arrival level. A possible explanation as suggested by
Samoladas et. al [17] is that sometimes open source project
coordinators would make abrupt changes between subsequent
releases; this might result in changes in code structure and
hence bug arrival rate. To extract the reason behind such
abnormal phenomena, detailed examination of individual
project is required.

1.00 10.00 20.00 30.00 40.00 50.00

PrA month

0

100

200

300

400

500
Predicted
Values
PrA

1.00 5.00 9.00 13.0017.0021.0025.0029.0033.0037.0041.00

PrH_Month

0

10

20

30

40

50 Predicted
Values
PrH

M
onthly rate

1.00 5.00 9.00 13.0017.0021.0025.0029.0033.00 39.00

PrF Month

0.00

20.00

40.00

60.00

80.00

100.00 PrF
Predicted
ValuesM

onthly rate

1.00 5.00 9.00 13.00 17.00 21.00 25.00 29.00 33.00

PrD Month

0.00

10.00

20.00

30.00

40.00 Predicted
Values
PrD

M
onthly rate

M
onthly rate

 71

Figure 3. Reliability model estimation.

4.3 Bug arrival pattern vs. page view and
download

We also collected data on page views and download for the six
projects. The data are exported directly from SourceForge
statistics. Table 3 lists correlation coefficients of monthly bug
arrival rate vs. page views and monthly bug rate vs. download
of 6 projects. Again, various projects told various stories.
Among the six projects we examined, only one project
demonstrate strong correlations between monthly bug arrival
rates and both monthly page view and download numbers. All
other projects reveal relatively low correlations among these
variables. The relation between bug arrival and download, page
view count is quite complex. A common view within open
source community, as expressed by Eric Raymond, which
states, “with enough eye balls, all bugs are shallow”, implicitly
suggests a positive relationship between user numbers and bug
number. Our preliminary investigate does not attempt to build
an overall picture of the interrelationship among those variables.
It is rather an initial effort of examining the correlation between
various possible quality indicators. The generally low
correlation between download and bug arrival rate partially
support observations made by Mockus et al. [11] that most
bugs were reported by a relatively small developer community
rather than end users. It also signifies that for most projects,
number of page views and download might measure a project’s

user acceptance level, but they may not be used as quality
measurements.

Table 3 . Correlation coefficient table

Project Bug vs. page view Bug vs. download
PrA 0.92172881 0.817904
PrH 0.049004 0.688673
PrF 0.536187 0.582681
PrD 0.566281 0.371755
PrG 0.637104 0.719103
PrE 0.382854 0.502188

5. CONCLUSITON
Our study involved only 8 popular open source projects; all of
them are still under development. Hence, only provisionary
conclusions could be drawn from the results. A few possible
observations of the results of this study are:
1. Along their development cycle, open source projects

exhibit similar reliability growth pattern with that of
closed source projects. Bug arrivals of most open source
project will stabilize at a very low level, even though no
formal testing activities are involved.

2. General Weibull distribution is a possible way to establish
the reliability model. Estimations of shape parameter from
various open source projects are different, indicating that
in contrast with closed source projects, it is unlikely to
find a special case like Rayleigh curve to model all open
source projects. It might be a better way to model
individual open source project separately. Time series
analysis would be appropriate for predicting latent bugs in
individual open source projects. The evidence that most
open source projects demonstrate seasonal ups and downs
also makes time series analysis a favorable choice for
predictive purpose.

3. Popular measures such as page view and download are not
highly correlated with the bug arrival rate and are not
suitable measures for a project’s quality.

6. REFERENCES
[1]. ApacheWeek, “Apache 2 release history”, 2004 [WWW

document] URL http://www.apacheweek.com/features/ap2

[2]. Cosgrove, L. Confidence in open source growing, CIO

Research Report, 2003 [WWW document] URL:
http://www2.cio.com/research/surveyreport.cfm?id=51

[3]. El-Emam. Ethics and Open source. Empirical Software

Engineering 4, 6 (2001), 291-292

[4]. Farber D. Six barriers to open source adoption, ZDNet

Tech Update, March, 2004 [WWW document]
URL:http://techupdate.zdnet.com/techupdate/stories/main/
Six_barriers_to_open_source_adoption.html

[5]. Hisada Koji and Ikuo Arizino, Reliability Tests for

Weibull distribution with varying shape-parameter, based
on complete data, IEEE transactions on Reliability, Vol.
51/No. 3 Sep. 2002

1.00 7.00 13.00 19.00 25.00 31.00 37.00 43.00

Month

0.00
5.00

10.00

15.00

20.00

25.00

30.00 Predicted
Values
PrG M

onthly rate

1.00 7.00 13.00 19.00 25.00 31.00 37.00
Month

0.00

20.00

40.00

60.00

80.00
Predicted
Values
PrE M

onthly rate

 72

[6]. Iannacci Federico “The linux Managing Model” First
Monday, vol 8, no. 12 (Dec, 2003). [WWW document]
URL:
http://www.firstmonday.dk/issues/issue8_12/iannacci/

[7]. Kan H.S. Metrics and models in software quality

engineering, 2nd edition, Addison-Wesley (2003)

[8]. Koch, C. Bursting the CMM hype, CIO Magazine, March

1, 2004.

[9]. Lawless J.F. Statistical Models and Methods for Lifetime

Data, 2nd edition, New York: Wiley (2003)

[10]. McConnell S. (eds) Best Practice: Daily build and smoke

test. IEEE Software, Vol. 13, No.4, July 1996

[11]. Mockus A, Fielding T.R., and Herbsleb, J.D. Two case

studies of open source software development: Apache and
Mozilla, ACM Transactions on Software Engineering and
Methodology, vol. 11, no. 3 (July 2002) 309-346

[12]. Mozilla organization, “CVS tags for Mozilla major public

release”, July 9, 2004, [WWW document] URL:
http://www.mozilla.org/releases/cvstags.html

[13]. Musa J.D. and Okumoto K. “A Logarithmic Poisson

Execution Time Model for Software Reliability
Measurement”, Proceedings of Seventh International
Conference on Software Engineering, 230-238 Mar. 1984

[14]. Peynot R and Metcalfe D. The business hole in open
source support, Forester Research, August, 2004.

[15]. Raymond, E.S, The Cathedral and the Bazaar: Musings on

Linux and Open Source by an Accidental Revolutionary,
2nd ed. Sebastopol, CA:O’Reilly, 2001.

[16]. Rodrigues G.N, Rosenblum D. and Emmerich W. A

model driven approach for software systems reliability,
Proceedings of the 26th International Conference on
Software Engineering, 2004

[17]. Samoladas I., Stamelos I, Angelis L. And Oikonomou A.

Open source software development should strive for even
greater code maintainability, Communications of the ACM,
Vol. 47/No. 10, Oct, 2004.

[18]. Wheeler D.A., Why Open Source Software / Free

Software (OSS/FS)? Look at the Numbers! 2003 [WWW
document] URL:
http://www.dwheeler.com/oss_fs_why.html

[19]. Yamada Shigeru, Jun Hishitani and Shunji Osaki,

Software-Reliability Growth with a Weibull Test-Effort: A
model & application, IEEE Transactions on Reliability,
Vol. 42/No. 1, Mar. 1993

