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ABSTRACT 
This paper discusses a project aimed at understanding how open 
source software evolves by examining patterns of development 
and changes in releases over time.  The methodological 
approach of the research and initial observations are described.  
These include descriptions of release cycles and categorization 
of projects based on the overall changes in size and complexity 
exhibited across releases.  Implications of these observations are 
discussed in light of prior and future work on understanding 
OSS evolution. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – complexity measures 
D.1.5 [Programming Techniques]: Object oriented programming 
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1. INTRODUCTION 
There are several qualitative and case study-based descriptions 
of how open source software is developed and evolves over time 
(e.g., [5, 6]).  These often emphasize fast growth, fast release 
cycles and rapid improvement in quality (e.g.,[18]).  One aspect 
of quality is software complexity. 
 
Prior research has identified software complexity as a crucial 
factor in many important outcomes of the software development 
process including defect rates, maintainability, security, and 
reliability [11].  As these outcomes are often viewed as being at 

the root of what makes for “better” or “worse” software, 
complexity has been seen as a key contributor to overall 
software quality [17].  Understanding software complexity and 
how it may be managed throughout the software lifecycle is 
therefore of great interest to developers and researchers.   
 
While most work to-date has examined software complexity in 
the context of closed source software development (e.g., [11, 
12]), managing complexity could be at least as important in the 
open source development context because of the potentially 
higher fluidity in membership of the development team.  In the 
open source context developers often are not bound to projects 
by employment relationships and therefore may come and go 
more often.  Further, the impact on development that may occur 
from a lack of or lag in formal design specifications and 
documentation [19] may be moderated by complexity as less 
complex software will generally be easier to maintain.  Thus 
minimizing complexity in OSS projects may have several 
benefits including facilitating new developers learning enough 
to contribute to the source code.   
 
The goal of this study is to explore how software complexity 
develops in a large set of Open Source Software projects that 
vary in size and purpose.  In doing this a secondary goal of the 
project is to provide some empirical data describing the overall 
patterns of development across these projects with regard to 
issues such as release frequency and rate of growth.  The 
specific goal of this paper is descriptive.  We attempt to address 
the question: what patterns of development and evolution in 
software complexity are found in OSS projects?  By doing this 
we hope to provide a basis for more in-depth study into 
questions such as how the pattern of evolution in a project 
impacts other project outcomes and what factors influence 
which evolutionary pattern a project follows.   
 
The next section provides a review of prior research on software 
complexity followed by a discussion of the special case of open 
source software.  The literature review is followed by a 
description of the data collection and analytical methods 
employed in the study.  The study collected and analyzed data 
on over 1,000 releases of more than 200 open source projects, 
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focusing on three key measures of complexity: size, coupling, 
and cohesion.  Initial findings regarding the patterns displayed 
by these projects and preliminary explorations of the possible 
relationships among our observations are described.  In the final 
section of the paper we discuss implications and directions for 
future research.  
 

2. PREVIOUS RESEARCH 
2.1 The Structural Complexity of Software 
The structural complexity of software has been defined as “the 
organization of program elements within a program” ([9], p. 
191).  The term element can refer to a procedure, function, 
method, module, class and so on.  The definition implies a 
program level of analysis, which sets it apart from conventional 
complexity analyses that tend to focus on a single element (such 
as a single module or a single class).  In theory, software can be 
structured in an infinite number of ways to solve the same 
underlying problem.   
 
Solving a problem through software development proceeds 
through modularization, that is by breaking down the problem 
into constituent parts and implementing those parts.  As design, 
implementation and maintenance decisions are made, the 
particular choice of part delineation and content has 
corresponding impacts on the structural complexity of the 
software.  More formally (see [4]), the structural complexity of 
a program is a function of the composition of individual parts 
(e.g., cohesion) and on the associations among parts (e.g., 
coupling).   
 
2.2 Software Evolution 
Software evolution occurs when an external stimuli leads to a 
change in the software.  It was originally conceptualized as 
capturing change activity after development of the software was 
complete (i.e. during the maintenance phase of the software 
lifecycle [1, 13]).  More recently, the notion of evolution has 
been applied across the entire software life cycle [2].  The Laws 
of Software Evolution [1] represent a seminal work in this area.  
Of direct relevance to this research is the second law which 
states that as systems evolve, complexity increases unless it is 
actively managed ([15], p. 18).  The management of complexity, 
referring to perfective or anti regressive rework, is an 
increasingly neglected step under tighter project time constraints 
in closed source contexts.  Nevertheless, given the increasingly 
complex nature of problems being tackled with software, 
controlling complexity must be attended to as software 
continues to grow in functionality and size [7]. 
 
2.3 Complexity and Evolution in OSS 
Development 
Much of what we know about software comes from analyses of 
closed source development.  For example, the COCOMO 
models were developed in a closed source context [3].  Some of 
these models have been applied to open source with appropriate 
cautions. For example, if closed source conditions could be 
applied to the development of Debian 2.2, it would have cost 
almost $1.9 billion with a schedule of more than 6 years (see 
[8]).  It is uncertain if what we know about closed source 
software can be applied to open source software [20].  One 

comparative analysis of three open source and three closed 
source projects [16] found that both types of projects grew at 
about the same rate and that the structure in terms of modularity 
was no different; however, creativity was more prevalent in  the 
open source projects and defects were found and fixed more 
rapidly in the open source projects.   
 
Past work evaluating OSS code has provided analyses of some 
of the largest, most widely used OSS projects such as Linux and 
Apache.  This work has found evidence that OSS does not 
necessarily follow the laws of software evolution developed by 
Lehman.  For example, [5, 6] found that Linux continued to 
grow at a geometric rate even after attaining a very large size.   
They suggest that better understanding of this pattern is obtained 
from examining subsystems separately. For example, the drivers 
subsystem exhibited greatest growth, and this may be possible 
because of the nature of drivers (being relatively self contained); 
the kernal itself is not nearly so big nor has it experienced as 
much growth as might be presumed from an analysis of the 
entire system.   Similarly, [14] found that while the GNOME 
project overall displayed continuing growth, it seemed to be 
accounted for by newer subprojects with some components 
displaying the expected pattern of tapering growth.   
 
One implication of these findings is that understanding patterns 
of development and change in complexity may benefit from 
analysis at the level of relatively clearly delineated projects or 
subprojects.  In other words, to understand how the complexity 
of OSS code changes over time, it is important to focus on 
development of a single code base in addition to considering 
how a large project grows by adding isolated (from the 
perspective of dependency among the code) subprojects.   
 

3. METHODS AND RESULTS 
Based on the discussion above, we chose to study  size, 
coupling, and cohesion as indicators of complexity that are 
relevant regardless of the development or distribution process of 
the software (i.e., open or closed), and we focused on projects 
that could be identified as developing a single code base, rather 
than “umbrella” type projects such as GNOME.  The empirical 
study proceeded in several stages: sample selection, data 
collection, measure calculations, an iterative data cleaning 
process, categorization of projects into basic evolutionary 
patterns, and exploratory analysis of relationships among the 
pattern categorization and other variables.   
 
3.1 Sample Selection  
The sample was drawn from projects that provide code using 
SourceForge.net (www.sourceforge.net).  There may be 
differences across programming language that would impact the 
development of complexity in software.  To limit these 
differences but still allow some assessment of their potential 
impact, we sampled projects that used one of two languages, 
either C++ or Java.  The problem domain of the software may 
also introduce variance in complexity; we limited our sample to 
the domains with the largest number of projects on 
SourceForge.net, Internet and Networking.  From this set we 
eliminated projects if they had not released at least one version 
of code because our analysis relies on examination of software 
code, thus if there is no code we cannot calculate any of the 
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measures of interest.  Projects were also eliminated if the project 
description on SourceForge.net indicated that it included 
multiple separate development streams or subprojects.  In order 
to focus on projects that represent the open source movement we 
only included projects that use OSI approved licenses.  
Applying these criteria, we gathered data on 216 projects. 
 
3.2 Data Collection and Measurement 
We developed automated scripts to download the source code 
for all releases available on SourceForge.net for each project in 
our sample.  We then used Scientific Toolworks’ Understand 
software to compute complexity measures for each version of 
each project.  The main measures produced by this tool and used 
in our study were size in terms of lines of code (LOC) and 
measures of coupling and cohesion.  Understand calculates the 
number of classes each class is coupled to and the percent 
cohesion of each class.  We reverse code the cohesion measure 
by subtracting it from 100 so that increases in both coupling and 
cohesion (labeled lack of cohesion when reversed) represent 
increases in complexity.  In order to create a release level 
measure for coupling we average all coupling measures across 
all classes in a given version of a given project.  The same 
procedure is used for our release level measure of lack of 
cohesion. 
 
3.3 Data Integrity  
We took several steps to ensure that the releases downloaded 
from the internet for a single project on SourceForge.net 
represented a single development stream on one project.  The 
data was cleansed using two main approaches.  The first 
approach focused on the naming conventions for each release of 
a project. We examined the file name of each release to identify 
cases in which multiple naming conventions indicated releases 
that did not represent sequential development of a single code 
base.  For example if a project had several releases  with a 
common base name and several other releases with a different 
common base name we attempted to determine if these actually 
represented parallel development streams.  Parallel development 
streams found in projects in the sample existed for different 
operating systems, different spoken languages, and related client 
and server software.  For these cases we retained the 
development stream that had the greatest number of releases and 
excluded the other from our analyses. 
 
The second approach focused on identifying files that may not 
belong in the set of releases for a project by examining the 
pattern of development in each project over time.  If a project’s 
LOC for sequential releases had a repeating pattern of increases 
and decreases that represented large changes from one version 
to the next, we then reviewed public forums, web pages and 
discussion groups associated with the project. The purpose of 
this review was to try to understand why the variance occurred 
and cleanse the data as appropriate.  For example, in one case 
we discovered that, while the naming convention of the project 
appeared to the uninitiated to represent a single stream of 
development, odd and even release numbers actually 
represented parallel development streams, one a “stable” stream 
and one a “development” stream.  In these cases we again 
retained the stream with the largest number of releases in order 
to maximize the sample size.  

  
3.4 Behavior Patterns of a “Typical” Project 
The average project in our sample released 7.5 versions of the 
software over a period of 354 days, with the first release posted 
to SourceForge.net approximately 68 days after the project had 
been registered there, and subsequent releases every 39 days.  
Most of these releases increased in size, however on average 
each project had one release that had no change in LOC and one 
release that had a decrease in LOC. Descriptive statistics are 
included in table 1.  These show that there were some 
significant differences between the absolute levels of variables 
across C++ and Java projects.  When we examined patterns of 
change rather than absolute levels of variables, there were no 
significant differences.  Paired samples t-tests indicated that 
both C++ and Java projects had increases in LOC and coupling 
from the first to the last release (p<.05 in all cases), but changes 
in cohesion and the ratio of comments to code were not 
statistically significant for either sub-sample or the overall set.  
 
3.5 Variability in Behavior Across Projects 
and Preliminary Categorizations 
Our focus on the evolution of code quality, specifically as 
indicated by structural complexity, led us to categorize projects 
into 4 groups: those that displayed no change in coupling or 
cohesion (including 56 projects that had only one release), those 
projects where both coupling and cohesion measures indicated 
improved quality between the first and last releases, those 
projects where both coupling and cohesion measures indicated 
deteriorating quality between the first and last releases, and 
those projects where one type of complexity improved and the 
other deteriorated.  There was no significant difference in the 
percentage of projects in each category based on programming 
language, thus table 2 shows the number of projects in each 
category across the entire sample. 
 
Table 1: Descriptive Statistics 
 

  Mean 
(N=216) 

C++ 
(N=111) 

Java 
(N=105) p 

Releases 7.5 8.3 6.6 .444 

Days between releases 38.5 27.7 49.9 .007 

First release LOC  7614.2 5323.7 10035.6 .086 

Last release LOC  11084.1 6843.0 15567.7 .008 

First release Coupling  2.6 2.7 2.5 .305 

Last release Coupling  2.8 3.0 2.7 .287 

First release Lack of 
cohesion 45.4 52.7 37.8 .000 

Last release Lack of 
cohesion  45.0 51.9 37.7 .000 

First release Comment 
lines 3432.8 2246.2 4687.2 .040 

Last release Comment 
lines 5343.7 2858.7 7970.7 .002 

 
 



 65

Table 2: Categorization Based on Overall Changes in 
Coupling and Lack of Cohesion 
 

Category N % 
1. No change in Coupling and Lack of 
Cohesion 71 32.9 

2. Coupling and Lack of Cohesion Decrease 23 10.6 
3. Coupling and Lack of Cohesion Increase 56 25.9 
4. Opposite changes in Coupling and Lack of 
Cohesion 66 30.6 

 
The next step in our analysis was to try to understand what 
factors may be associated with the categorization of projects.  
We conducted some preliminary analyses assessing potential 
effects of initial complexity, release pattern (i.e., average time 
between releases, number of releases, size change across 
releases), programming language, and use of comments, but 
relationships to the project categorization were not statistically 
significant.  Because of potential normative implications for 
managing code quality, factors that lead a project to be in 
category 2, where both measures of complexity decrease, may 
be especially interesting.  Thus we conducted preliminary 
investigations using qualitative information on the projects in 
this set (e.g., by reading their release notes).  While some 
projects in this set did seem to purposely manage complexity, 
there was not a clear pattern of such management obvious across 
all projects in the set.   
 
 

6. CONCLUSIONS, LIMITATIONS, AND 
FUTURE DIRECTIONS  
Given the intricate nature of software development, it is not 
surprising that the preliminary analyses mentioned above failed 
to reveal a simple connection between initial conditions and 
later project categorizations.  As stated in the introduction, the 
main purpose of this paper was descriptive in nature.  There are 
at least three interesting observations we believe can be taken 
from the analysis to-date.  The main point of interest is that the 
data provides empirical evidence that a subset of OSS projects 
manage to improve on these quality measures at the same time 
as they are increasing in size (19 of the 23 projects in category 2 
showed overall increases in LOC). Similarly, there is a larger set 
of projects in category 4 that improves one complexity measure.  
These observations provide some empirical support for the 
notion that the OSS development process may lead to on-going 
quality improvements and suggests specific measures by which 
such quality improvement may be analyzed.  Similarly, the 
results demonstrate the unsurprising fact that not all OSS 
projects achieve such improvements, suggesting that using an 
open development process is by no means a guarantee of 
continuous improvement. 
 
A second observation of interest arises from the process we 
followed to enhance data integrity.  We discovered that projects 
used the SourceForge.net repository in significantly different 
ways.  Some maintained clearly labeled and organized code files 
whereas others combined many different kinds of files without a 
clear organizational scheme.  Our experience that every project 

had to be manually scrutinized highlights the need for caution in 
using the SourceForge.net data, as others have also noted [10].  
However, it is possible that this variance itself may be an 
interesting source of data on projects.  For example, the 
organization of the project files in the repository may be related 
to the evolution of the project by influencing the level of 
difficulty that new developers or users may encounter when 
joining a project.  This is one area in which we intend to extend 
our investigation. 
 
A third observation that may be of interest to others studying the 
evolution of OSS projects comes from the descriptive data in 
table 1.  The table provides one possible baseline that might be 
used for assessing the frequency of releases and rates of change 
in basic descriptive measures of OSS code so that, for example, 
what projects use “faster” or “slower” release cycles may be 
quantified.  Of course, the usefulness of this data for that 
purpose is subject to the limitations of our sampling procedure 
as described above.  Similarly, the view of improvement and 
deterioration discussed in the paper is limited by the relatively 
simplistic categorization scheme employed.   
 
Next steps in this project will focus on refining the 
categorization of projects using cluster analysis and functional 
data analysis and combining this data with other data (e.g., the 
number of developers working on the projects and indicators of 
activity on the projects) to consider a larger set of potentially 
relevant factors influencing their evolution. By following this 
path we may be able to build on the work of others, such as [14] 
who observed that increasing size in LOC was highly correlated 
with increasing size of the development group, and [21] who 
surveyed projects on SourceForge.net and Freshmeat.net and 
suggested that the change management and tracking tools 
provided by the websites were commonly used for quality 
management.   
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