Open Source Ecosystems: Challenges and Opportunities

Walt Scacchi
Institute for Software Research
and
Institute for Virtual Environments and Computer Games
University of California, Irvine
Irvine, CA 92697-3455 USA
Http://www.ics.uci.edu/~wscacchi
Overview

- Definition of terms (for this presentation)
- Personal history of OSS ecosystem studies
- OSS requirements practices and processes
- OSS role sets and role migration
- Component-based open architecture software systems
 - Intellectual property licenses
 - Cybersecurity
- Conclusions
What is open source?

- Open source software (OSS) denotes specifications, representations, socio-technical processes, and multi-party coordination mechanisms in *human readable, computer processable* formats.
- Socio-technical control of OSS is elastic, negotiated, and amenable to decentralization.
- OSS development subsidized by participants.
What is a (software) ecosystem?

- An ecology of systems with diverse species juxtaposed in adaptive prey-predator food chain relationships.
- Economic network of processes that transform the flow of resources, enacted by actors in different roles, using tools, to produce products, services, or capabilities.
- Software supply network of component producers, system integrators, and consumers.
Personal History of OSS Ecosystem Studies

• 2000-2015 (60+ publications)
 – Computer games, defense, X-ray astronomy, Internet/Web infrastructure, bioinformatics, higher education, e-commerce, neuroscience, virtual reality.

• Discovering requirements practices and processes across OSS communities of practice.

• Participant role sets, role migration, and social movements within/across OSS projects.

• Open architecture (OA) systems with heterogeneously licensed components.
Legend: Boxes are activities (using informalisms); Ellipses are resources required or provided; Actor roles in boldface; flow dependencies as arrows.
Artifact ecologies and repositories enable collaboration in OSS development

<table>
<thead>
<tr>
<th>Email lists</th>
<th>Discussion forum</th>
<th>News postings</th>
<th>Project digests</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM/Internet Relay Chat</td>
<td>Scenarios of usage</td>
<td>How-to guides</td>
<td>Screenshots</td>
</tr>
<tr>
<td>FAQs; to-do lists: item lists</td>
<td>Project Wikis</td>
<td>System documentation</td>
<td>External publications</td>
</tr>
<tr>
<td>Copyright licenses</td>
<td>Architecture diagrams</td>
<td>Intra-app scripting</td>
<td>Plug-ins</td>
</tr>
<tr>
<td>Code from other projects</td>
<td>Project Web site</td>
<td>Multi-project portals</td>
<td>Project source code</td>
</tr>
<tr>
<td>Project repositories</td>
<td>Software bug reports</td>
<td>Issue tracking databases</td>
<td>Blogs, videos, photos, etc.</td>
</tr>
</tbody>
</table>
A meritocratic role sets, role hierarchy, and role migration paths for OSSD

Figure 2. An “onion” pyramid representation of a generic OSSD project organizational hierarchy with multiple role-sets and advancement tracks.

OA software ecosystems

Software supply network for OA system components: Component IP license and cybersecurity requirements propagate from/to Producers, Integrators, and Consumers
OA development ecosystems

A sample elaboration of producers (vendors), software component applications, and IP licenses for OA system components.
Open Architectures, OSS, and OSS license analysis

- **Goal**: identify software architecture principles and IP licenses that mediate OA
- OSS elements subject to different IP licenses
- Govt/business policies and initiatives now encouraging OA with OSS elements
- How to determine the requirements needed to realize OA strategies with OSS?

Legend: Grey boxes are components; ellipses are connectors; white boxes are interfaces; arrows are data or control flow paths; complete figure is architectural design configuration.
OSS elements subject to different IP/Security licenses

- Intellectual Property and Security licenses stipulate rights and obligations regarding use of the software components/systems
- How to determine which rights and obligations will apply to a component-based configured system?
 - At design-time (maximum flexibility)
 - At integration build-time (may/not be able to redistribute components at hand)
 - At release deployment run-time (may/not need to install/link-to components from other sources)

Design-time view of an OA system
Software product line of functionally similar OA system alternatives

Design-time architecture: Browser, WP, calendar

Instance architecture: Firefox, AbiWord, Evolution, Fedora
 GPL

Instance architecture: Firefox, Google Cal., Google Docs, Fedora
 GPL, Google ToS

Instance architecture: Firefox, Google Cal., Google Docs, Windows
 MPL, Google ToS, MS EULA

Instance architecture: Opera, Google Docs, Evolution, OSX
 Opera EULA, Google ToS, Apple License

OR

OR

OR

OR...
Product line selection of one alternative system configuration

Design-time architecture: Browser, WP, calendar
A security capability specification encapsulating the design-time configuration via multiple virtual machine containers
Build-time view of OA design selecting OSS product family alternatives
Run-time deployment view of OA system family member configuration
Product line selection of different functionally similar alternative

Design-time architecture: Browser, WP, calendar
Run-time deployment view of a similar alternative OA system configuration
Build-time view of OA design selecting *proprietary* product family alternatives
Conclusions

• OSS ecosystems can be:
 - modeled, analyzed, and understood, via
 - discovery of actor practices and processes, that
 - manipulate artifact ecologies, with
 - different tools and repositories, across
 - diverse OSS project communities.

• OSS ecosystems pose new challenges and opportunities in Intellectual Property and Cybersecurity.

• OSS ecosystems can be shaped and stimulated to act via strategic actions.
Acknowledgements

Research collaborators (partial list)

- Mark Ackerman, UMichigan, Ann Arbor; Kevin Crowston, Syracuse U; Les Gasser, UIllinois, Urbana-Champaign; Chris Jensen, Google; Greg Madey, Notre Dame U; John Noll, LERO; Megan Squire, Elon U; and others.
- Thomas Alspaugh, Hazel Asuncion, Margaret Elliott, and others at the UCI ISR.

Funding support (No endorsement, review, or approval implied).

- National Science Foundation: #0083075, #0205679, #0205724, #0350754, #0534771, #0749353, #0808783, and #1256593.
- Naval Postgraduate School
 - Center for the Edge Research Program (2010-2012).