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Organizations deploy intranets to provide access to documents for those who use them.
But the web of computing comprises more than just documents: people, tools, and pro-
cesses are critical to organizational function. In particular, people may need guidance on
how to perform tasks, as well as access to information necessary to carry out those tasks.

In this paper, we present a language for describing process-oriented hypertexts.
A process-oriented hypertext links information, tools, and activities into a seamless
organizational web. Using such a hypertext, the process performer can enact a process
by browsing, and receive guidance on how to perform the process activities, where to
find relevant information, and what tools to use.

We have developed a process scripting language calledPML that provides a way for
process engineers to specify process models in terms of activities, and the sequence in
which they should be performed. The specification can be elaborated with descriptions of
resources and tools required and provided by activities, and the skills necessary to carry
out an activity. The resulting models are then translated into one or more process-oriented
hypertexts that represent instances of the process currently being performed.

PML includes features that allow the modeler to specify how the process activities
should be dynamically linked to information and resource nodes at the time the process
is performed. This enables processes to be described as abstract models that can be
instantiated as process-oriented hypertexts in different organizational settings.

We used PML to model processes in a case study of the grants management pro-
cess at the US Office of Naval Research. We describe some of our experiences applying
PML to this study, and conclude with lessons learned and directions for future study.
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1. Introduction

Intranets have been widely deployed as a way to make important documents
accessible to the diverse range of potential users within an organization. However,
the common use of an intranet is as an information delivery mechanism. Users
access data warehouses, corporate documents, and ad-hoc department Web pages
by browsing hypertext links, relying on their own experience to determine which
links ultimately lead to the desired documents. Thus, users are responsible for
determining which documents are necessary to the task at hand, and for finding
and retrieving those documents from the intranet.
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By contrast, workflow technology uses sequential activity descriptions to
automate the flow of documents through the organization [1]. Each step in the
workflow modifies the document as it flows through the process. This can be
viewed as the delivery of documents to the document consumer, according to
some process specification.

Kling and Scacchi describe the relationships among organizational processes,
tasks, documents, applications, development tools, users and other resources
as the ‘web of computing’ [2]. While conventional notions of intranets and
workflows address a particular aspect of the web of computing, neither by itself
is sufficient to support the wide spectrum of organizational relationships and
activities. A workflow application may deliver a document that is the main focus
of a particular task, but the human agent responsible for performing that task may
require additional information (procedure manuals, regulatory documentation,
historical data) that is part of the work context necessary to complete the task.

For example, a grants officer in a research funding agency may receive a
request for funds dispersement via a workflow mechanism. In order to validate and
approve the request, the officer requires the original grant text, rules governing
allowable expenses, and information describing the current status of the grant
funds. Intranets provide accessibility to these supporting documents, but only if
the officer knows where to find them.

In order to support the entire information processing and sharing activities
of people working in an organization, we must determine and specify what is
required in an environment that incorporates widespread information accessibility,
guidance in performing individual tasks, and coordination among organizational
activities. We call such an environment anorganizational web, to reflect its role
in supporting the web of computing [3].

Hypertext is the appropriate conceptual model for an organizational web.
Hypertext linking allows the evolutionary construction of relationships among
the wide diversity of information artefacts used by an organization. Our own
research has shown that the hypertext data organization model is an effective
integration approach to diverse information models [4]. In addition, the browsing
model of interaction is now familiar to a vast population of computer users.
Finally, the notion of guided tours [5] through hypertext links can be used to
guide users through sequences of tasks.

This latter aspect of hypertext can be exploited to elevate the intranet from
a passive data repository to aprocess-oriented hypertextthat provides active
support of organizational processes. Process-oriented hypertexts are hypertexts
of linked documents and tasks across an organizational web. The document
web within the organizational web is composed of legacy data sources and new
documents; the process web is overlayed (conceptually) onto the document web
as a set of linked tasks.

Process-oriented hypertexts extend conventional hypertext environments by
providing mechanisms that support processguidance: explicit process control
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flow constructs that direct a process user to browse hypertext-based information
objects and to perform user role-specific tasks that evolve the state of the
visited objects;control: ensuring that process steps are performed in the correct
order, and that each step produces the desired result; andmonitoring: process
measurement, logging of process events, potential replay of process steps, etc.
useful for planning and improvement [6].

It is possible to hand-craft a process-oriented hypertext using integration tech-
nologies like Common Gateway Interface (CGI) programs, scripting languages,
database application generators, and workflow toolsŁ. In this approach, business
rules are encoded into program scripts or other procedural specifications. Such
specifications begin with a model of the process to be implemented, but because
the process isimplicitly represented as a sequence of application and tool invoca-
tions, database transactions, and other operations glued together with procedural
code, the process itself is opaque to most users. This makes it difficult to vali-
date the implementation against the actual process, and to analyse the result for
improvement. Furthermore, they require a variety of specific programming skills
in addition to process analysis and modeling expertise, making it difficult for
actual process owners and performers to (re-)design their user- or domain-specific
processes.

In this paper we present an alternate approach using an extensible process
scripting language calledPML, and its associated execution mechanism (called
PEOS), to describe organizational webs in a form that enables the specification,
validation, analysis, and execution of process-oriented hypertexts.

Using PML, a process is representedexplicitly as a script specifying process
tasks, the order in which they should be performed, and links to required
resources, related documents, and tools. A single PML specification can be
translated into several representations, including a process-oriented hypertext,
which are tangible, visual, and explicit. Thus, they can be quickly reviewed, and
opportunities for revision can be quickly identified, by process owners and users,
without knowledge for how processes might be implemented by an information
system.

PML also provides extensibility by allowing executable code fragments or
tool invocations to be included in task descriptions; users automatically execute
these descriptions or tool invocations by browsing the resulting process-oriented
hypertext.

PML specifications can be developed and maintained by process users or
process owners, either as program text or through visual modelling tools. Thus,
process owners and users can be empowered to design and redesign process
flows, resource dependencies, organizational constraints and business rules. This
means process owners and users can readily develop and articulate workflow and
information sharing patterns that make their work interesting and more satisfying,

Ł See, for example, www.seagate.com/support/npf/discata/flowchartata.html
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since they can see ahead to where their process flows are going, as well as where
they came from.

In the next section, we survey related work to place our approach in context.
Then, in Section 3 we present the PML language features. In Section 4 we discuss
enactment of processes specified using PML. Finally, in Section 5 we conclude
with a discussion of our experience using PML to model and prototype processes
of the US Office of Naval Research.

2. Related work

2.1 Process and Hypertext

While often considered a mechanism for modelling data to be consumed by
applications, many researchers have recognized the potential of hypertext as a
formalism for representing computation in general, and organizational processes
in particular.

Early work in this vein extended the conventional notion of hypertext with
executable nodes. For example, KMS provided a built-in scripting language for
creating executable nodes, and could also pass nodes to the operating system
for compilation and execution [7]. PML supports a generalized version of this
concept through its ‘script’ field.

Proxhy extended this latter mechanism by associating applications with node
types, and automatically launching the application when a user visited a node
of the associated type [8]. HOSS purports to model ‘behaviour’ explicitly as a
concept in hypertext [9].

Trellis represents a different approach by modelling computation in the struc-
ture of the hypertext graph, specifically as a petri-net [10]. An organizational
process can be modelled as a petri-net in Trellis, providing guidance through
directed browsing based on the propagation of tokens through the petri-net [11].
Trellis also incorporated a language for describing the petri-net hypertext as a
program.

CHIPS [12] most closely embodies the notions of organizational webs and
process-oriented hypertext. CHIPS attempts to support enactment of both defined
and emergent organizational processes; the former are modelled by hypertext
graphs that capture process flow, while the latter are supported by ‘activity
spaces’, a hypertext work area supporting group communication [13]. An interest-
ing feature of CHIPS is that it enables process performers to modify the process
being enacted by adding or modifying the nodes and links that represent the
process.

While the ultimate goal, and realization, of these techniques is similar, our
approach differs in two significant ways. First, in each case there is an implicit
assumption that the process models and the product structure are developed
concurrently, before any products are created. For example, CHIPS instantiates
a new activity space containing new information (product) nodes when a new
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process instance is created. By contrast, an explicit goal of PML is to model and
support an organization’s current processes, as applied to existing legacy products;
and, to support new processes applied to existing products. PML’s execution
mechanism is designed to co-exist with, but be separate from, an organization’s
existing intranet or hypertext environment.

Second, the PML approach follows a process engineering model based on
Osterweil’s concept ofprocess programming, an attempt to apply techniques
of software development to process modelling and enactment [14]. This notion
proposes that processes be described using languages similar to conventional
programming languages, enhanced with specific constructs for modelling software
processes. As such, PML is similar to Trellis’s scripting approach, and contrasts
with the model employed by KMS or CHIPS, which is based on hypermedia
authoring.

2.2 Process programming

The process programming concept has yielded a variety of languages for describ-
ing software processes, including APPL/A [15], JIL [16], and PML. Several
approaches to executing such descriptions have been implemented.

One approach starts with a conventional programming language (for example,
Ada) and enhances it with process modelling constructs. The resulting language is
then used to build ‘process aware’ software tools, which are applications compiled
from programs written in the enhanced programming language.

Another approach embeds a process language interpreter into a software devel-
opment environment. The process descriptions may be in the form of rules
[17–19], Petri-Nets [11, 20], or process programming languages [21]. The inter-
preter uses the process description to direct the development process, by guiding
and constraining the invocation of tools integrated into the environment. Garg
and Jazayeri present an excellent survey of process oriented software develop-
ment environments in [22]. Nonetheless, process-oriented software development
environments have been criticized for the limited focus on processes that can be
carried out using such an environment [23].

2.3 Workflow

Workflow automation has achieved enormous commercial success automating
routine business processes. Commercial workflow software frequently uses a
message-based model for task automation, in which human enactors are notified
of pending tasks via electronic mail messages, which include the documents to
which the tasks apply. Thus the term ‘workflow’ is often used to describe the
flow of documents through an organization, where each step in the flow applies
some modification to the document [1].
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The goal of contemporary workflow research is to expand the scope of work-
flow automation to ‘adaptive and dynamic work activity coordination and collab-
oration’ [24], highly distributed ‘virtual corporations’, and processes involving
participants outside of a given organization [25]. However, common process
representations in workflow software have been limited to directed graphs [1],
Petri-nets [26], rules [27], and agents [28], rather than utilizing hypertext struc-
tures as suggested here.

The widespread deployment of web browsers has motivated many workflow
vendors to provide HTTP/HTML support for their workflow products [25]. This is
typically accomplished by providing an HTTP gateway to some existing workflow
or process engine. The objective is primarily to exploit the ubiquitous browser
infrastructure, rather than take advantage of the hypertext-like information space
to which browsers provide access. A few research projects, however, seek to
embed process support into the browser itself, for example via Java ‘agents’
[28].

Overall, a common thread in workflow and process research is the idea that
a process model must move towards an ever more complete description of the
organization that performs it; this requires a rich representation formalism that
can capture the sequence of activities, the products or resources to which they
apply, the human or software agents that perform them [29], and a myriad of
relationships that link them. This can lead to powerful modelling notations,
but unfortunately also to complicated models that are difficult to construct and
understand. It also leads to self-contained execution environments that assume
all activities and artefacts are part of the environment.

By contrast, PML separates the organization and its members, artefacts, and
processes. Rather than describing the organization as a process, PML describes
how processes fit into the larger organizational context; the organization is a
framework for performing a collection of processes.

3. The PML language

PMLŁ is a process specification language that enables process engineers to
describe organizational processes in a form that can be translated into a variety
of representations. Using PML, one can describe processes in terms of an
organizational web of tasks, products, tools, agents, and supporting documents
needed to perform the tasks. The resulting process specification can then be
compiled into a process-oriented hypertext that represents an instance of the
process being performed.

Ł The name ‘PML’ was originally an acronym for ‘Process Markup Language’, a name that reflected
our initial attempt to develop an SGML-like notation for specifying processes. Since then, the
syntax has evolved considerably to its present from. Thus a more appropriate name might be
‘PSL’ (Process Scripting Language), but we have kept the original name for historical reasons.
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PML was developed as part of a research study conducted for the US Office
of Naval Research. The study examined ONR’s grants management process
with the goal of streamlining the process and deploying process support on an
intranet [3, 30]. The analysis was conducted using process analysis techniques
developed at the University of Southern California’s ATRIUM Laboratory [31].
Our methodology comprised a sequence of process capture and refinement
steps:

1. Interview individuals to capture process steps. Interviewers used a tabular
format to describe the processes in outline form.

2. Translate interview outlines and notes into a formal, high level process
description.

3. Conduct collaborative group validation and analysis of the resulting models,
during which process performers critiqued and refined process descriptions
by examining graphical depictions of processes generated from the high level
specifications.

4. Develop executable prototypes of process enactment systems based on refine-
ments and improvements resulting from the group analysis.

This methodology led to the requirement for a modelling formalism that could
be translated into executable prototypes, while at the same time be flexible
enough to enable incremental process modelling. We also needed a language that
would allow the modeller to generate new models and revise existing models
quickly, to enable rapid refinement during ‘live’ validation sessions with actual
process performers. Also, we needed to incorporate existing (and future) tools and
documents, that were part of ONR’s infrastructure, into the process descriptions,
to capture the interaction of processes with the broader organizational context.
Finally, we wanted a language that was concise and easy to comprehend.

As can be seen from Fig. 1, the resulting language is straightforward and
compact, comprising task descriptions and a minimum set of control flow
constructs (sequence, branch, and iteration). In the following sections, we describe
the specific features of PML and give examples of their application.

3.1 Language features

A PML process description specifies the tasks or activities that comprise a
process, and the sequence in which they should be performed. Thus, a PML
specification has two parts: description of the tasks or activities to be performed,
and specification of the flow of control defining the order of task performance.

3.1.1 Actions. The activities of a process are calledactions. Actions repre-
sent primitive steps in a process. An action specification may have several
fields:
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hprocessi ! process hidentifieri fhprimlist ig
hprimlisti ! hprimitivei hprimlisti j e
hprimitivei ! hsequencei j hiterationi j hbranchi j hactioni
hsequencei ! sequence hidentifieri fhprimlistig
hiterationi ! iteration hidentifieri fprimlistg
hbranchi ! branch hidentifieri fhprimlistig
hactioni ! action hidentifieri htypei fhspeclistig
htypei ! manual j executable

hspeclisti ! hspeci hspeclisti j e
hspeci ! hspectypei fhselectorig
hspectypei ! requires j provides j tool j agent j script

hselectori ! hurli j hfilenamei j hstringi j hpredicatei
hpredicatei ! hidentifieri j hqueryi
hqueryi ! htermi j htermi hbooli hqueryi j e
htermi ! hidentifieri .hidentifieri hopi hvaluei
hbooli ! || j &&

hopi ! == j != j < j > j <= j <=

hvaluei ! hnumberi j hstringi

Figure 1. The PML grammar.

ž NameThe name of the action.
ž TypeThe action type, either ‘manual’ or ‘executable’. An action typically is a

task or activity performed by a human agent. However, many processes also
include steps that can be completely automated. PML allows for such steps
using the executable type.
ž AgentThe agent field specifies the role an agent performing the action should

have.
ž Script One of the chief advantages of enactable process descriptions is their

usefulness for providing guidance to human agents performing the process.
The script field can be used to provide such guidance, as well as links to
supporting documentation. It’s contents can be one of the following:
1. A narrative description of the action, in plain text or HTML markup.
2. HTML markup specifying a form to be completed as part of the task. The

form’s fields are bound to variables in the process instance’s execution
context (see Section 4.3), so they can be used in resource predicates as
shown.
Figure 2, which shows a PML description that models a proposal submission
process, depicts this use of the script field. The resulting display is shown
in Fig. 4; note that the script field has been rendered as an HTML form, as
specified.
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/*

* Process for submitting proposals to ONR.

*/

process proposal submit f
action submit proposal f

agent f PrincipalInvestigator g
requires f proposal g
provides f proposal.contents == file g
script f

"<p>Submit proposal contents.

<p>BAA to which this proposal responds:

<input name=’baa’ type=’string’ size=16>

<br>Proposal title: <input name=’title’ type=’string’ size=50>

<br>Submitting Institution: <input name=’institution’

type=’string’ size=25>

<br>Principle Investigator: <input name=’PI’ type=’string’

size=20>

Email: <input name=’PIemail’ type=’string’ size=20>

<br>Contact: <input name=’contact’ type=’string’ size=20>

Email: <input name=’contactEmail’ type=’string’ size=12>

<br>Proposal contents file: <INPUT NAME=’file’ TYPE=’file’>"

g
g
action submit budget f

agent f PrincipalInvestigator g
requires f proposal g
provides f proposal.budget == file g
script f

"<p>Submit budget.

<br>Proposal title: <input name=’title’ type=’string’ size=50>

<br>Budget file: <INPUT NAME=’file’ TYPE=’file’>

<br>Email address of contact: <input name=’user id’

type=’string’>"

g
g
action submit certs f

agent f PrincipalInvestigator g
requires f proposal g
provides f proposal.certs == file && proposal.certifier == user id

g
script f

"<p>Submit electronically signed certifications.

<br>File containing signed certifications: <INPUT NAME=’file’

TYPE=’file’>

<p>User ID of signature: <input name=’user id’ type=’string’>"

g
g

g

Figure 2. A proposal submission process described in PML.
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3. For executable actions, the script field contains executable code written in
a scripting language (such as TCL, Perl,sh, etc.) to be executed by the
operating system’s shell.

ž Tool Tools used to perform the action are specified as a string to be executed
as a command by hypertext browsers that can run external programs.
ž Requires, ProvidesThe purpose of enacting a process is to produce or modify

some tangible resource, called theproduct of the process. The resource fields
of an action specify any objects (file, Web page, string, variable, or selection
predicate) required to perform the action, and the products produced by the
action. Resources are discussed in further detail in Section 3.2

Of these, only the name is required; the type defaults to ‘manual’, and the other
fields are optional. Thus, PML specifications can evolve from high level process
skeletons, that describe only the names of actions and the sequence in which
they are to be performed, to detailed specifications that can be compiled into an
executable form to produce complete process-oriented hypertexts.

3.1.2 Control flow. A process specification describes the actions (tasks) that
should be performed to carry out the process, and the sequence in which those
actions should be performed. While our experience has shown that most processes
are sequential in nature, there are situations when one must specify concurrent
or alternate actions, or sequences of actions that should be repeated.

PML has four control flow constructs for specifying the order in which actions
should be performed:sequence, iteration, selection, andbranch:

ž Sequencespecifies a set of actions that should be performed one at a time in a
specific order. In general, sequences are useful for modelling the hierarchical
structure of processes: sub-processes are represented by sequences, primitive
actions by actions.
ž SelectionSelections specify a set of actions, only one of which should be

performed. They are used to describe decision points in the process. The
‘SendRequest’ example in Fig. 3 illustrates how PML models decisions using
selections: a request should be senteither to the Program Officer if the grant
is an ONR grant, or to the Grant Officer if the grant is from another agency,
but administered by ONR.
ž Branch A branch specifies a set of actions that can performed concurrently,

in any order. The actions enclosed in a branch block must all be completed
before the process can proceed past the block, but the order in which they are
performed is unimportant.
In Fig. 3, a branch (‘PrepareRequest’) is used to specify that the request should
be sent as both an email message and a written letter. Order is not important,
and the actions may be done concurrently.
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/* No Cost Extension Request. */

sequence HandleNCERequest f
action ReviewForCompleteness f

requires f GrantRecord g
agent f GrantAdministrator g

g
branch PrepareRequest f

action PrepareEmailRequest f
requires f GrantRecord g
provides f DocumentRequest g
agent f GrantAdministrator g

g
action PrepareWrittenRequest f

requires f GrantRecord g
provides f DocumentRequest g
agent f GrantAdministrator g

g
g
select SendRequest f

action SendToPOifONR f
requires f DocumentRequest g
agent f GrantAdministrator g

g
action SendToGOifNotONR f

requires f DocumentRequest g
agent f GrantAdministrator g

g
g
iteration FollowUp f

action FollowUpNCERequest f
requires f DocumentRequest g
agent f GrantAdministrator g

g
g

g

Figure 3. A PML process fragment modeling ‘No Cost Extension Request’.

Branches are useful for describing the situation that occurs in many real
processes: there is a nominal sequence in which actions should be performed,
but in reality persons performing the actions do them in parallel, switching
frequently among tasks.
The parallel nature of branches means that each arm of the branch represents
a sub-process that executes concurrently with its neighbours.
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ž Iteration Iteration occurs over sequences of actions; the agent enacting the
process decides whether to enter the loop by selecting the first action in the
loop, or skip/exit the loop by selecting the first action following it.
In Fig. 3, the ‘FollowUp’ task is performed until a response is received from
the Program or Grant Officer. This allows the process performer to submit as
many follow-up requests as necessary; note that the decision to exit the loop
is made by the process performer when the desired response is received.

Using this small set of control flow primitives, it is possible to capture a wide
variety of situations involving decisions and concurrency.

3.2 Resources

The resource fields of an action declaration in a PML process model specify
what resources (products) the actionrequires for execution, andprovides after
execution; thus, they define pre- and post-conditions of actions in a process.
A name in a resource field defines a variable that is bound to an instance of
a resource at run time (either when the process instance is created, or as the
result of a query); these bindings are resolved within the context of the virtual
repository, a logical warehouse or database which contains all of the resource
instances to which processes may apply (see section 4).

In addition to resource names, resource fields may contain expressions that
specify constraints on the state of resources required as input for an action (the
requiresdeclaration), and assert what state those resources have when the action
completes (theprovidesdeclaration). These expressions have the following form:

requires f resourceName.attributeName op value g
requires f resourceName.attributeName op value &&/||

resourceName.attributeName op value ...g
provides f resourceName.attributeName op value g

Op may be any comparison operator:==, !=, <, >, etc. Thevalue may be
any value appropriate for the type of the resource under comparison. In arequires
field, the resulting expression is a predicate indicating the required state of the
input resource. In aprovidesfield, the expression is an assertion of the state the
resource will be in when the action is performed correctly.

3.3 Compilation

The PML compiler translates PML process specifications into the components of
process-oriented hypertext.

The compiler generates an action node template for each action specification
in a PML model. When a new process instance is created, these templates are
used to create action nodes for the new process instance. The action node serves
as the primary integration component in a process-oriented hypertext.
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The action node includes:

ž A description of the task to be performed. If the action is ‘executable’, this
will be an executable script to be passed to an interpreter for execution.
ž Static links to supporting documentation and tools.
ž Dynamic links to resources that the action will use or modify.

Links between actions represent the control flow of a process. Process performers
can enact an instance of the process by traversing these links to visit action nodes.

Static links from action nodes to essential documentation are specified by
markup tags in the description fields of actions. These allow the process modeler
to incorporate portions of the organizational web into a process model.

3.3.1 Resource binding. The links between actions, and links to documents
and tools, can be determined at compile time, as these are part of the process
specification. However, links between actions and the resources they modify must
be determined during process enactment. This is because some resources may not
even exist until they are created by actions, or may not be in the correct state
until modified by a previous action.

Thus, links from actions to resources are computed dynamically by the process
execution mechanism. The compiler generates queries to the hypertext repository
that are executed during enactment to determine whether resources are available
to an action. The queries are derived from the expressions in an action’srequires
field; the compiler generates code for these expressions, to:

1. Query the repository for objects of the specified type whose state matches any
predicates.

2. If this is the first reference to the resource name, bind the resource name to one
of the objects matched by the query. Subsequent references to that resource
name will refer to the bound object, which also becomes the destination of
dynamic ‘required resource’ links from the action node.

3. If no objects match the query, the action transitions to the ‘blocked’ state;
otherwise, it transitions to the ‘ready’ state.

Dynamic links greatly increase the power of a PML description. Using dynamic
linking, multiple instances of a given process can be created by overlaying
different control flow and resource links for each process instance; the PML
execution mechanism updates these overlays as the processes are enacted.

Returning to the ‘No Cost Extension’ example, this means that the same PML
process description can be used to guide a grant administrator through the steps
required to manage multiple requests; the progress of each request through the
process is tracked by a separate process instance, with its own set of control flow
and resource links.
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4. Enacting PML processes

The PML enactment mechanism, called the Process Enactment Operating System
(PEOS), has four main components:

1. Virtual Repository Interface.
2. PEOS server.
3. PML Virtual Machine.
4. Hypertext Browser.

These are depicted in Fig. 5.

4.1 Virtual Repository Interface

The Virtual Repository Interface integrates a collection of distributed, auto-
nomous, heterogeneous information sources and storage managers into a logically
centralized virtual repository using a mechanism similar to that described in [4].

The objects and relationships in each information store are presented to
clients of the virtual repository as objects with unique global identifiers and
attributes. Storage management and internal representation, however, remain the
responsibility of the each information store.

In the PEOS environment, both process objects (action nodes) and information
objects (documents, etc.) are presented as hypertext nodes; relationships among
these objects, including task precedence, document structure, etc. are presented
as links among the information or process objects.

The repository interface exports the operations shown in Table 1. Note that
tools update objects directly through an individual information store’s native
interface.

Table 1. Virtual Repository Interface

Operation Arguments Description

Create attributeDvalue. . . Creates a new object with the specified attributes.
Update object attributeDvalue. . . Updates the specified attributes ofobject.

These are used by the PEOS Server and PML Virtual Machine to maintain process state.

Query attribute op value ... Queries the virtual repository for the set of objects
satisfying the specified comparisons. This operation is
used by the virtual machine to determine whether an
action’s required resources exist in the necessary state.

Assert attribute op value ... Queries the virtual repository for the set of objects
satisfying the specified comparisons, and returns true if
objects exist that match the query. This operation is
useful for verifying that an action completed with the
desired effect.
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4.2 PEOS server

The PEOS server handles process requests received from clients via the PEOS
protocol, shown in Table 2. The ‘Done’ request is particularly important, as it
initiates the chain of operations that update process state. When the PEOS server
receives a ‘Done’ request, it does the following:

1. Invokes the PML Virtual Machine (see below) with the event type and
identifier of the completed action as arguments.

2. Queries the process repository for any actions in the ‘blocked’ state.
For each such action found, the server executes the action’s required resource
query to see if the action may now be unblocked. Since the completion of an
action implies that resources have been created or modified, it is possible that
some blocked actions’ required resources may now be available.

4.3 The PML Virtual Machine

The state of each action in a given process instance changes over time, as the
process progresses and resources are created or modified. The state of each action
is recorded in the process repository; a process’s state is the aggregate of its
action’s states.

Changes in action state are caused by three events (see Fig. 6):

Table 2. PEOS protocol

Request message Arguments Result or reply

Login user id, password Authenticate the agent specified byuser id,
and start a session for that agent; subsequent
operations during the session are bound to the
agent.

List none List the compiled PML models available for
instantiation.

Create model variableDvalue. . . Create a new instance ofmodel, with the
specified variables bound to the specified
values.

Available none Return a list of all active or suspended
actions bound to requesting agent.

Select action The specified action becomes the requesting
agent’s ‘active’ action. If there is already an
active action bound to the agent, that action
is suspended.

Suspend action Explicitly suspend the specified action.
Done action The specified action has been completed, and

should transition to ‘done.’
Abort action Abort the specified action.
Logout none End the current session.
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1. Completion of a predecessor task (indicated by a ‘Done’ request). This event
causes the next action (or actions, in the case of a branch or selection) in the
process sequence to transition to the ‘ready’ state, if the next action’s required
resources are available. If the next action’s resources are not available, it
transitions to the ‘blocked’ state.

2. Explicit notification from process performers about action state (via‘Select’,
‘Suspend’, or ‘Abort’ requests). Process performers (users) do the actual work
in a process and, by selecting actions to perform, performing the actions, and
then notifying the system that the action is complete.

3. Modifications to resources, as a side effect of performing process actions.

Selecting an action causes it to become ‘active’; if the action is part of a ‘Select’
construct, other actions in the selection are no longer available, and thus transition
to the ‘none’ state. The ‘active’ state indicates that a user is currently performing
the action; some actions may require significant time to complete, however,
spanning days or weeks. Also, users may work on several tasks simultaneously,
switching among them for various reasons.

Consequently, a user can suspend a task explicitly by sending a ‘Suspend’
request, for example at the end of the work day; or implicitly, by selecting
another task to perform (thus switching to another active task). The ‘suspend’
state indicates that an action is part of a user’s active tasks, but the user is not
currently working on that action. Suspended actions transition to the active state
when a user selects them again. Users may also abort actions, which aborts the
process as well.

Users perform actions by invoking tools on the action’s required resources,
thus modifying existing resources or creating new resources. When the action
is completed, other actions that were blocked because their required resources
were not available, may now find that those resources are available, and can then
transition to the ‘ready’ state.

Process performers notify the system that an action is complete by sending
‘Done’ requests, typically by clicking a button attached to an action node (see
Fig. 4). These events indicate that an update to the process state is required.
Computing new state in response toDone requests is the responsibility of the
PML Virtual Machine. The PML Virtual Machine takes the current process state
and theDone request as input, and computes the new process state according to
the process flow of control. This is accomplished in four steps:

1. Verify that the just completed action modified its resources appropriately.
The compiler translates the action’sprovides resource specification into an
assertion (via the Assert operation shown in Table 1) on the repository. The
virtual machine executes this assertion when it receives aDone event for
an action; if the assertion fails, the action did not accomplish what it was
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Figure 4. Enactingthe proposalsubmissionprocessof Figure2.
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Figure 5. PML enactment architecture.

Figure 6. Action states.
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supposed to do, and the entire process is abortedŁ. If the assertion succeeds,
the action transitions to the ‘done’ state.

2. Compute the successor actions. The virtual machine next examines the process
control flow to determine the successors of the just completed action. These
form the set of possible next actions in the process.

3. Query for required resources. Each successor action may require specific
resources before it can proceed. The virtual machine must determine whether
each action’s required resources are available, before transitioning the action
to the ‘ready’ state.

4. Update process state. The virtual machine sets the state attribute of each action
to either ‘ready’ or ‘blocked’, then waits for completion events. When a
process performer visits an action node whose state is ‘ready’, that action
can be performed, ultimately resulting in another completion event. The cycle
is then repeated.

5. Conclusion

We began with the problem of how to integrate process support into the web
of computing. Our goal is to provide seamless integration of process guidance,
monitoring, and control with information access in the broader context of
organizational computing.

We conducted a study at the US Navy’s Office of Naval Research (ONR) to
validate our PML-based solution. We analysed four phases of the ONR grants
administration process: pre-award, grant award, grant administration, and grant
close-out. The resulting PML models totalled 128 actions. After translating these
into graphical format we presented them to ONR process owners and performers
in several all-day group analysis sessions.

The results exceeded our expectations. First, PML was extremely useful during
the process capture and analysis phase of our study. The PML specifications
were surprisingly accessible to process performers; ONR personnel were able
to immediately recognize their process activities, as well as errors in the
initial models. PML enabled quick turnaround in correcting these errors and
re-generating the diagrams (which, incidentally, spanned an entire wall in the
meeting room).

In addition to being accessible, PML process descriptions, when presented as
process hierarchy diagrams, revealed obvious opportunities for improvement in
the processes. ONR process owners immediately suggested steps that could be
streamlined or eliminated; using these suggestions, we were able to redesign
ONR’s grants administration process, reducing the number of actions by over
half, to 54. ONR estimated these improvements could yield savings of up to

Ł PEOS’s response to aborted actions is admittedly weak. What to do when an action is aborted,
either by the user or system, is a difficult problem and active research area (see, for example, [32]
or [33]).



58 J. Noll and W. Scacchi

$15 million per year. In addition, ongoing refinement of these processes at ONR
has subsequently led to a reduction of completion time (or ‘cycle time’) for the
most common process enactment paths by more than a factor of 20 [30].

A major source of improvement in the ONR grants administration process
redesign was the elimination of validation steps in the existing process, necessi-
tated by the repeated entry of data into various data system from paper forms.
The data on these forms originate from grant awardees; hence, we observed that
validation steps could be eliminated if the data were captured from proposal
submitters at the beginning of the process.

PEOS was used to demonstrate the feasibility of this redesign. We were able
to specify an additional up-front process (the proposal submit process depicted in
Fig. 2) that would capture proposals and related data from submitters, and feed
them into the pre-award phase. By translating this process into an executable
prototype (Fig. 4), we were able to provide a convincing demonstration of how
such a process might look to users.

Our experience of applying PML in the ONR grants administration process
study revealed the difficulty in supporting enactment of complex, concurrent
processes. Complex organizations have many concurrent, coordinated processes
that operate on data from a variety of information repositories. The enactment
architecture described in Section 4 is a direct outgrowth of the ONR study.
In particular, the need to support legacy information systems was a critical
requirement for any redesign of ONR processes involving automation. The virtual
repository interface is part of our solution to this requirement.

In addition, the ONR study emphasized the need for dynamic binding of
processes to resources: for example, it became clear that an instance of the grants
administration process would be active foreach proposal and award. Thus, the
enactment mechanism must bind a new process instance to incoming proposals,
and to new grants when the process converts a proposal into an award. The result
is the virtual machine resource binding mechanism described in Section 4.3.

Finally, ONR’s organizational environment confirmed the potential of process-
oriented hypertext as an integration mechanism. In performing their grants
administration tasks, grant administrators and grant officers need to consult
a variety of information objects, including the grant award document itself,
documents provided by the awardee (proposal, budget, certifications), the grant
accounts database, procedure manuals, and legal references. These are distribute
among several information systems of varying sophistication and maturity,
ranging from simple file servers to relational databases. Linking this diversity
of information into a process-oriented hypertext provides grants personnel with
a seamless information environment that is tailored to the particular domain of
grants administration, but not necessarily restricted to that domain.

The widespread deployment of corporate and organizational intranets has
emphasized the utility and the problems of instant information access. As the
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quantity of on-line information grows, users have increasing problems finding
the specific data required to perform their tasks.

We conclude that conventional hypertexts make documents and knowledge
accessible; process-oriented hypertexts make themusable.

Process support can solve part of this problem, by bringing information and
tasks together.
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