Articulation: An Integrated Approach to the Diagnosis,
Replanning, and Rescheduling of Software Process Failures

Peiwei Mi and Walt Scacchi
Information and Operations Management Department
University of Southern California*
Los Angeles, CA 90089-1421
{pmi,scacchi}@gilligan.usc.edu

Abstract

The papers presenls an inlegraled approach to ar-
ticulate software process plans that fail. Articulation
repairs a plan when a diagnosed failure occurs and
reschedules changes that ensure the plan’s continua-
tion. In implementing articulation, we combine di-
agnosis, replanning, and rescheduling into a powerful
mechanism supporting adaptive process-based software
development. Use of articulation in plan erecution
supporls recovery and repair of unanticipated failures,
as well as revising and improving the plans to become
more effective. In this paper, we also describe how a
prototype knowledge-based system we developed imple-
ments the articulation approach.

1 Introduction

Software process plans specify the resources needed
for the enactment of a software process model. They
also specify the relationships between the resources to
process steps, the products produced by these steps,
and any resource or enactment constraints. Process
plans guide the instantiation and use of process mod-
els by users or automated mechanisms. The use of
knowledge-based plans and planning mechanisms for
this domain was first introduced by Huff [HL88].

Plans that direct software development with limited
resources can fail due to unexpected events. Plan-
ning mechanisms that must handle plan failure face
two closely related problems: repairing the failed plan
and recovering the broken plan execution. While the
former is a dynamic planning or replanning problem,
the latter involves dynamic or reactive scheduling.

* Acknowledgements: This work has been supported in part
by contracts and grants from AT&T, Hewlett-Packard, and
Northrop Inc. No endorsement implied.

1068-3062/93 $3.00 © 1993 IEEE

71

Most advanced planning and scheduling mechanisms
tackle these two problems separately. For example,
CHEF [Ham90] is a plan repair mechanism that ex-
plains and repairs failed plans in the dornain of Szech-
wan cooking. SIPE [Wil88] also has a replanner to do
the same thing in general problem-solving. However,
they do not deal with rescheduling resources to meet
changed arrangements. Dynamic schedulers such as
[SDS90], on the other hand, primarily schedule re-
sources incrementally in order to avoid unexpected
events and backtracking. However, they are unable
to identify arrangements that have been changed.

In this paper, we present an integrated approach to
the diagnosis, replanning, and rescheduling of failed
software process plans called articulation'. When a
process plan fails during execution, articulation iden-
tifies problems based on knowledge of different types
of plan failures. Articulation retrieves failure repair
mechanisms from a knowledge base of problem-solving
heuristics and implements them. Then articulation
reschedules the necessary resources so overall plan ex-
ecution is able to continue according to the modified
plan. Our articulation approach is prototyped in a
multi-agent knowledge-based system, called the Ar-
ticulator [MS90, Mi92].

In what follows, we first give an overview of articu-
lation in Section 2 which integrates diagnosis, replan-
ning, and rescheduling. In Section 3, we briefly discuss
plan representation in the Articulator. We present
these issues and specify the problem space, the solu-
tion space, and the rescheduling mechanism in Section
4. In Section 5, we conclude the paper with a short
discussion and summarize the unique characteristics

! Articulation originally refers to a kind of development work
that people perform in order to continue their productive ac-
tivities after a process breakdown occurs. It was first identi-
fied in a number of empirical studies of software development
[CKI88, KS82, Str88]. The results of these studies are summa-
rized and mapped into articulation heuristics elsewhere [Mi92].

found in the Articulator.

2 An Overview of Articulation

An overall view of the articulation approach that
integrates diagnosis, replanning, and rescheduling is
shown in Figure 1.

Plan execution starts when a specific process plan
is instantiated. After resource scheduling is complete,
ezecution starts to symbolically execute the activities
step by step. Normally, it continues according to the
execution order specified in the plan until all the ac-
tivities are finished. However, the ongoing execution
of a plan is blocked once a failure occurs. In the Ar-
ticulator environment, articulation mechanisms now
take over. The inputs for articulation are an executed
plan with allocated resources, a broken activity in the
plan, and an identified failure. The process of articu-
lation consists of several stages: diagnosis, selection of
problem-solving methods, recovery, and rescheduling.

In diagnosis, the Articulator identifies possible
causes for a failure based on its symptoms and the
other related information. The problem space in the
Articulator stores domain-specific knowledge of fail-
ures that helps during diagnosis. From this point of
view, the purpose of diagnosis is to locate a given fail-
ure in the problem space according to the situation
where the failure occurs.

Once a diagnosis is identified, a solution must be
created to resolve it. This stage is accomplished in the
Articulator through selection of a pre-defined set of
problem-solving heuristics (PSHs). However, all PSHs
are not applicable at a given time, due to other con-
straints on resource availability. There are also other
preferences that limit use of a particular PSH. All such
issues of applicability and preference are abstracted
into a set of selection heuristics. Selection heuristics
are therefore applied during PSH selection to deter-
mine which PSH best matches the identified diagnosis
and the current process enactment context.

The next stage is to apply the chosen PSH to re-
cover from the failure. During this stage, the PSH is
executed with a set of parameters, which define the
current enactment context, gathered from diagnosis.
(‘hanges are then made in the broken activity, the
plan, and/or the related resource allocation. At this
point, the failure is resolved as far as the executed plan
is concerned. However, this modified plan can not be
executed directly because the original resource alloca-
tion as scheduled may not be valid due the changes.
Rescheduling should then be performed to re-arrange

8

the timing of the modified resource allocation. Other-
wise, such changes may cause other failures.

Two outputs resulting from articulation are pro-
duced by the Articulator. First, a modified plan in-
stance with allocated resources is put into execution.
Second, a repair suggestion is forwarded to a user
whose responsibility is to study sets of repair sugges-
tions gathered from repeated plan executions in order
to modify and improve to the original process model.

The Articulator is implemented in the form of a
knowledge-based system[MS90]. The knowledge and
experience of articulation abstracted from empirical
studies of human articulation behavior are represented
as knowledge schemata and inference rules[Mi92]. The
Articulator has 4 modules that together perform sup-
port articulation:

o The problem space that embodies knowledge of
failure and a diagnosis mechanism based on the
problem space to interpret failures;

e The solution space that embodies knowledge of
problem-solving methods in form of PSHs;

o A set of selection heuristics that bridges diagnosis
to PSHs for given circumstances and application
preferences; 2

e A rescheduling mechanism that dynamically cre-
ates a global or partial resource allocation for a
specified duration in response to changes in plans
and related resources;

3 Plan Representation and An Exam-
ple Plan

Before we get into the details of articulation, we
briefly present our representation of software process
plans and resource allocation. Also, we provide an
example plan which will be referenced frequently in
later sections.

In the Articulator, a software process plan is repre-
sented as a combination of several objects:

An activity hierarchy represents the decomposition
of a plan into a hierarchy of smaller process steps
called tasks and activities. Multiple levels of decom-
position can occur depending on the complexity of a
plan. At the bottom of this hierarchy are activitzes,
which represent the smallest observable steps. We use

2Due to space limitations, we will not detail the selection
process except to point out it is determined by applicability of
PSHs to diagnosis as well as users preferences on use of defined
PSHs. The details can be found in [Mi92].

Original Plan

Instatiation

Original Plan

New Plan

Plan Repair

Diagnosis

Schedule Execution

Failure

Instance

[}
]
]
1
: Reschedule
,
)
]
1

Resources

Raecovery

Repair Suggestion

Execution

1]

Finished Instance

Figure 1: An Overview of Articulation

subtasks to refer to both tasks and activities since they
are components in a plan. Within a level of a de-
composition there exists a pair of relations to specify
precedence order. These relations can define several
types of execution ordering, such as linear, parallel,
iterative, or conditional choice.

Resource requirements specify descriptions of the
resources necessary to perform a subtask and produce
its expected outputs. These requirements specify what
resources, or types of resources, are needed in a sub-
task, but do not refer to particular instances of re-
sources. Resource requirements for a subtask include:
(1) information about the timing of subtask execution
and expected duration; (ii) knowledge and skills re-
quired by the agents (or roles) performing the sub-
task; (iii) specification of tools and raw materials; and
(iv) products that are created or enhanced during the
subtask.

Resource possession includes “real” resource in-
stances that are physically allocated and used during
plan execution. It binds real resources to execution,
while resource requirements do not. In order to have
such a match of resource requirements and possession,
each of the resource instances in resource possession
should correspond to a particular entry in the resource
requirement. In addition, these two resource relation-
ships should be functionally equivalent in terms of
their knowledge and skill requirements. As such, with

79

these objects in mind, we provide an example.

Develop-Change-and-Test-Unit (DCTU) is an
example of a software development process plan. This
process modifies a software system’s design and source
code as part of a software development project®. It
focuses on designing, coding, unit testing, and man-
agement of a localized change to a software system.

Figure 2 gives a graphic display of the activity hi-
erarchy of the DCTU process as well as the definition of
activity Modify-Design. DCTU is decomposed into a
set of 7 activities shown as a directed graph in the fig-
ure. For example, once Assign-Task is done, three ac-
tivities, Monitor-Progress, Modify-Test-Plan, and
Modify-Design can be started.

Resource requirements are specified at the level
of activities. In Figure 2, resource requirements
for activity Modify-Design is given. It states
that Modify-Design requires two kinds of agents:
Design-engineer and Software-engineer as well as
some other kinds of required-resources. In defining
these requirements, we assume that object classes,
such as Design-engineer, have been previously de-
fined in the knowledge base.

3This example was created by the organizing commit-
tee of the 6th International Software Process Workshop in
1990[KFFe90]. The original problem served as a standard mod-
eling problem for comparing various existing approaches to soft-
ware process modeling. We made minor changes to the original
problem and reuse it here as an example of articulation.

Modify-Design

Assign-Task

Monitor

{{Modify-Design instance:
task-component-of:
task-has-predecessor:
task-has-successor:

task-has-agent-role-spec:

Modify-~Code

task-has-required-resource-spec:
task-has-provided-resource-spec:

instance:
agent-role-spec-in-task:
resource-requirement:
maximum-quantity:
resource-possession H

{{agent-for-modify-design

instance:
required-resource-spec-in-task:
resource-requirement:
maximum-quantity:
resource-possession:

{{required-for-modify-design

Test-Unit

activity
Develop-Change-and-Test-Unit
Assign-Task

Modify-Code
agent-for-modify-design
required-for-modify-design
provided-for-modify-design}}

agent-role-spec

Modify-Design

Design-engineer Software-engineer
11

John Doug}}

required-resource-spec

Modify-Design

System-Design-doc Requirements-change
11

System-Design-doc Requirements-change}}

Figure 2: Partial definition for Develop-Change-and-Test-Unit (DCTU)

Let us assume that a team of software en-
gineers and other related resources are allo-
cated for DCTU. For Modify-Design, John is as-
signed as a Design-engineer and Doug as a
Software-engineer. For other classes of resources,
we use the same name to represent instances within
the classes for this example.

Although it is an oversimplified example, it is easy
to anticipate that given different sets of resource pos-
session, plan execution will be different. It is also easy
to see that whenever resource possession changes, plan
execution changes accordingly. These relations give
rise to the necessity for articulation, and therefore,
the role of the Articulator is to handle unexpected
changes or failures during process plan execution.

80

4 Diagnosis, Recovery, and Reschedul-
ing

Diagnosis, recovery, and rescheduling are three crit-
ical activities in articulation. In this section, we briefly
discuss these activities along with the example pre-
sented previously.

Once a failure occurs, diagnosis locates a position
of the failure in the problem space (Figure 3), which
consists of three dimensions: Failure type, Usage of re-
source, and Task type. At the same time, a necessary
explanation is gathered to support the classification.
Diagnosis then searches for a causal explanation that
matches the problem space. The position of a failure
will then be used as a pointer to the solution space,
which identifies a set of possible PSHs.

Diagnosis identifies the type of failure by answering
following questions through both direct information
retrieval and deductive reasoning, as provided by the
Articulator[MS90]:

Failure Type

Usage of Resource | Task Type |

Resource not created
Unnecessary resource
Unspecified resource
Unallocated resource
Inadequate resource match
Occupied resource

Broken resource

Activity Intra
Agent Inter
Tool

Required-Resource
Provided-Resource

Figure 3: The Problem Space

¢ Is the plan execution complete?

e Is there a problematic resource associated with a
failure?

[]

Is there a problematic resource requirement?

L]

Is there a match between the problematic re-
source and its requirement?

¢ What resources does the broken activity provide?

We will not go into a detailed description of the im-
plementation of diagnosis, but simply point out that
it is similar to those suggested in [Ham90]. In total,
there are 25 diagnosis strategies with their correspond-
ing values in the problem space [Mi92].

Let us now consider an example failure as fol-
lows: As we see in DCTU (Figure 2), Modify-Design
is immediately followed by Modify-Code. When ex-
ecution starts Modify-Design begins with two as-
signed agents, John and Doug. Modify-Design cre-
ates a new version of System-Design-Doc that is sup-
pose to satisfy the changes in system design. The
execution then initiates Modify-Code which is as-
signed to Doug and Chris. While modifying the
source code, Doug and Chris may find that the
modified design document has flaws that create new
problems for the software system, subsequently mak-
ing System-Design-Doc inappropriate to follow when
modifying the system’s source code. Therefore, they
identify an inadequate-match and hand it over the
Articulator.

Once the failure is located in the problem space, the
Articulator acts to resolve the problem. The solution
space In the Articulator is an abstraction of meth-
ods that recover failures. The solution space contains
various problem-solving heuristics (PSHs) that fix or
avoid failures. These PSHs are characterized by four
dimensions that identify their operations and operand
objects (Figure 4): type of operation, target resource
usage, operand usage, and operand. When a PSH is
selected, it is important to know both the type of the
operation and the operand objects for the operation.

81

The four dimensions in the solution space are designed
to make these characteristics explicit.

In sum, a template of all four dimension values can
be used to index a particular PSH, which is used to
link to a particular diagnosis. Consider the following
example:

<replace-instance, required-resource,
required-resource, existing-other>

and

<redo-and-review, required-resource,
activity, new>

This example identifies two PSHs that can be used
to repair the example diagnosis given in the previous
section. The first PSH searches for another copy of
System-Design-Doc to replace the problematic one.
The second PSH adds more activities to modify the
problematic System-Design-Doc.

Without going into the details of PSH selection, we
simply point out that the selection process uses global
and local constraints to identify an applicable PSH
among all defined PSHs. The applicable PSH is then
executed to fix a given diagnosis. In this example, the
second PSH is chosen to be applicable because it is a
more feasible solution for the given circumstance.

The Articulator’s PSHs owe a great deal to previ-
ous work on plan repair ([Ham90, Wil88]). However,
PSHs here are oriented to practical methods that are
gathered from the empirical studies[Mi92], rather than
a collection of single replanning actions. To this end,
a PSH contains a set of changes that prove effective to
a particular problem. Also, PSHs are organized such
that a single failure can have multiple PSHs applied
to it. As an example, consider the chosen PSH

<redo-and-review, required-resource,
activity, new>

It represents a combination of replanning actions
that creates a pair of activities and inserts them into
the broken plan. Figure 5 gives an algorithmic descrip-
tion of this PSH. Other defined PSHs are implemented
in similar fashion as inference rules.

[Type of Operation | Target Usage

Operand Usage | Operand

]

Replace-Instance activity
Replace-Class agent
Restructure tool

Modify required-resource
Redo-and-Review | provided-resource
Split/Merge

Others

activity existing-self
agent existing-other
tool new

required-resource
provided-resource

Figure 4: The Solution Space

1) Create another instance of the activity to be redone;
2) Create a new instance of activity Review and add resource requirements;

3) Link the two as activity 1) proceeds activity 2);

4) Insert 3) into the plan just before the broken activity.

Figure 5: Algorithmic Description of Redo-and-Review

When this PSH is executed on our example, a mod-
ified plan is created as in Figure 6. When the PSH is
executed, the first half of the plan has been completed
and the second half is in progress. Furthermore, this
modified plan is not yet ready for execution since its
resource allocation is not yet done for the new part.
As such, we turn to explain the rescheduling process
that completes the remaining part before execution
re-starts.

Articulation requires scheduling to be reactive and
partial. First, scheduling is called in response to
changed resource arrangements. The previous ar-
rangement must be abandoned and new arrangements
asserted. Second, only part of the whole schedule
needs to be modified while others remain the same. As
such, changes should be limited as much as possible.
In the light of these two requirements, a rescheduling
mechanism has been implemented in the Articulator
that is interfaced to the other mechanisms. The Ar-
ticulator’s rescheduling mechanism is based on heuris-
tic constraint-directed search[FSe89]. It has a similar
structure as those just cited, but it is designed to be
reactive and partial. The rescheduling mechanism im-
plements two types of constraints for filtering tasks:
unary rescheduling constrainis and binary rescheduling
constraints, as well as two types of heuristics for reduc-
ing search space and backtracking: search heuristics
and resource heuristics[Mi92].

The rescheduling mechanism takes over once a PSH
is executed. First, the rescheduling mechanism de-
cides which part of the previous schedule to abandon
and which resources to reschedule. This part is very
important since it acts as a link between replanning
and rescheduling. It is to our advantage that this is
done with reference to the executed PSH and changes

82

made during PSH execution. When deciding the part
to abandon, there are several alternatives. One strat-
egy is to discard only those resource possessions for the
broken activity and all its successors. This strategy is
intended not to disturb part of the old schedule that
binds the resources to other unaffected activities, and
therefore limits the scope of changes. Another possi-
ble strategy is just to abandon all resource allocations
that have not been used and schedule all remaining ac-
tivities altogether. This second strategy creates more
potential changes to the original plan, but may have
a better result.

Now, let us consider our example of DCTU for
rescheduling (see Figure 6 for its activity hierarchy).
Part (a) in Figure 7 is the original agent schedule. In
this schedule, we assume that most activities take 1
time unit to complete while Monitor-Progress and
Modify-Test-Plan take longer. We also have an
agent-to-role binding according to their skills. Part
(b) in Figure 7 reflects a modified schedule created for
Modify-Design and its successor activities. In this
new schedule, we assume that Review-Design is as-
signed to four agents, Peter, John, Doug, and Chris.
Their presence is required for the activity to start.
Part (c) in Figure 7 is created by first discarding part
of the schedule for all unstarted activities at time 2
and scheduling them together with the newly added
Modify-Design and Review-Design activities. Ac-
cordingly, this shows the final schedule (c) takes fewer
time steps to complete than (b) because of a better
task arrangement for Peter. Finally, at this time, the
rescheduling mechanism does not optimize modified
schedules, but it is equipped with the capability that
allows users to try out different strategies.

Modify-Design Modify-Design

Review-Design Modify-Code

Test-Unit

N/

Assign-Task Modify-Test-Plan

Monitor

Modify-Test-Pk

/

Figure 6: The Modified Develop~Change-and-Test-Unit

Time Mary Peter John Doug Chris
Project-Manager QA-Engineer Design-Engineer | Software-Engineer Software-Engineer
(a) The Initial Schedule
1 Assign-Task
2 Monitor-Progress Modify-Test-Plan Modify-Design Modify-Design
3 Monitor-Progress Modify-Test-Plan Modify-Code Modify-Code
4 Monitor-Progress | Modify-Test-Package
5 Monitor-Progress Unit-Test Unit-Test
(b) The Modified Schedule (1)
1 Assign-Task
2 Monitor-Progress Modify-Test-Plan Modify-Design Modify-Design
3 Monitor-Progress Modify-Test-Plan Modify-Design Modify-Design
4 Monitor-Progress | Modify-Test-Package
5 Monitor-Progress Review-Design Review-Design Review-Design Review-Design
6 Monitor-Progress Modify-Code Modify-Code
7 Monitor-Progress Unit-Test Unit-Test
) (c) The Modified Schedule (1I)
1 Assign-Task
2 Monitor-Progress Modify-Test-Plan Modify-Design Modify-Design
3 Monitor-Progress Modify-Test-Plan Modify-Design Modify-Design
4 Monitor-Progress Review-Design Review-Design Review-Design Review-Design
5 Monitor-Progress | Modify-Test-Package Modify-Code Modify-Code
6 Monitor-Progress Unit-Test Unit-Test

Figure 7: Schedule for Develop-Change-and-Test-Unit

5 Discussion and Conclusion

Before we conclude this paper, let us examine our
example to see what kind of repair the discussed failure
brought. Initially, there is no iteration defined in the
plan (Figure 2). After a failure of Inadequate-match
is identified, the Articulator introduces a repeated
Modify-Design and a new Review-Design to the plan
(Figure 6). Subsequently, the Articulator suggests an
iteration to encapsulate the two activities in the gen-
erated repair suggestion. If a manager accepts this
suggestion and incorporates it into the original plan,
this new plan takes care of a problem that was not
originally addressed. Therefore, similar failures could
be avoided in future instantiations of this process.

83

Currently, the articulation approach is applied in
both modeling and designing software development
processes[MS90, Mi92]. On the one hand, it supports
simulation of software process plans as a means to de-
bug and tailor them. On the other hand, it enables
developers to recover from process breakdowns dur-
ing software development which were not anticipated
in software process plans. To this end, we have built
two separate systems for these two purposes respec-
tively. The Articulator system provides the capability
for handling the dynamic evolution of software engi-
neering processes. The second system, our process-
driven CASE environment, accepts a software process
plan from the Articulator as its input, displays it in
a graphic form to its assigned developers, and sup-

ports data management, tool integration, and project
management during software development[MS92]. As
such, when users in their assigned agent roles experi-
ence a process plan breakdown while using this CASE
environment, they can then forward the identified fail-
ure back to the Articulator for resolution. After artic-
ulation is completed, the Articulator then outputs a
revised process plan which is then input to this CASE
environment.

In conclusion, articulation of failed plans in ex-
ecution is an integrated mechanism for diagnosing,
replanning, and rescheduling software process plans
that fail during enactment. Our approach was in-
fluenced by works on both planning and scheduling
[Ste81, FSe89). Further, CHEF [Ham90] and SIPE
[Wil88] provided us with insight on the depth of plan
repair and some valuable replanning actions. How-
ever, compared with these approaches, the Articula-
tor and its articulation mechanisms are unique in three
aspects: First, it is designed to handle both plan re-
pair and rescheduling. This results in an integrated
system of replanning and rescheduling which is pow-
erful and convenient to users. Second, the Articula-
tor relies heavily upon knowledge and skills for repair-
ing problems in the domain of software development.
The kind of knowledge and skills is abstracted from
a number of empirical studies by us and others. It
is also implemented as an open system so that more
heuristics can be added easily. Finally, our articu-
lation mechanisms were conceived to help solve pro-
cess failure problems, which will likely become more
prevalent as both conventional and knowledge-based
software engineering environments evolve to support
process-centered methods for software development.
As such, our strategy for organizing articulation prob-
lem and solution spaces, together with problem solv-
ing hueristics and PSH selection hueristics, provides
a viable and extensible foundation for further explor-
ing how to better support knowledge-based software
development.

References

B. Curtis, H. Krasner, and N. Iscoe. A
Field Study of the Software Design Process
for Large Systems. Communications of ACM,
31(11):1268-1287, Nov 1988.

M.S. Fox, N. Sadeh, and etc. Constrained
Heuristic Search. In Proc. of Joint International
Conference on Artificial Intelligence, pages 309—
315, 1989.

[CKI88)

[FSe89]

[Ham90]

[HLS8S]

[K FFe90]

[KS82]

[Mi92]

[MS90]

[MS92]

[SDS90]

[Stes1]

[Str88)

[Wilss]

K.J. Hammond.
ing Plans that Fail.
45(3):173-228, 1990.

K.E. Huff and V.R. Lesser. A Plan-Based Intel-
ligent Assistant That Supports the Process of
Programming. ACM SIGSOFT Software Engi-
neering Notes, 13:97-106, Nov 1988.

M. Kellner, P.H. Feiler, A. Finkelstein, and
etc. Software Process Modeling Example Prob-
lem. In The 6th International Software Process
Workshop. Japan, Oct 1990,

R. Kling and W. Scacchi. The Web of Comput-
ing: Computer Technology as Social Organiza-
tion. In Advances in Computers, Vol.21, pages
1-90. Academic Press, Inc., 1982.

P. Mi. Modeling and Analyzing the Software
Process and Process Breakdowns. PhD thesis,
Computer Science Dept. University of Southern
California, 1992. September.

P. Mi and W. Scacchi. A Knowledge-based Envi-
ronment for Modeling and Simulating Software
Engineering Processes. IEEE Trans. on Knowl-
edge and Data Engineering, 2(3):283~294, Sept
1990.

P. Mi and W. Scacchi. Process Integration in
CASE Environments. IEEE Software, 9(2):45-
53, March 1992.

M.J. Shah, R. Damian, and J. Silverman.
Knowledge Based Dynamic Scheduling in a
Steel Plant. IEEE Sizth Conference on Arti-
ficial Intelligence Applications, pages 108-113,
1990.

M. Stefik. MOLGEN Part 1: Planning with
Constraints. Artificial Intelligence, 16(2):111-
139, May 1981.

A. Strauss. The Articulation of Project Work:

An Organizational Process. The Sociological
Quarterly, 29(2):163-178, Apr 1988.

D.E. Wilkins. Practical Planning: Extending the
Classical Al Planning Paradigm. Morgan Kauf-
mann Publishers, Inc., 1988.

Explaining and Repair-
Artificial Intelligence,

