Convex set

Definition

A set C is called **convex** if

$$\mathbf{x}, \mathbf{y} \in C \implies \theta \mathbf{x} + (1 - \theta) \mathbf{y} \in C \quad \forall \theta \in [0, 1]$$

In other words, a set C is convex if the line segment between any two points in C lies in C.

Convex set: examples

Figure: Examples of convex and nonconvex sets

Convex combination

Definition

A **convex combination** of the points x_1, \dots, x_k is a point of the form

$$\theta_1 x_1 + \cdots + \theta_k x_k$$

where $\theta_1 + \cdots + \theta_k = 1$ and $\theta_i \ge 0$ for all $i = 1, \cdots, k$.

A set is convex if and only if it contains every convex combinations of the its points.

Convex hull

Definition

The **convex hull** of a set C, denoted **conv** C, is the set of all convex combinations of points in C:

$$\mathsf{conv}\ C = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in C, \theta_i \geq 0, i = 1, \cdots, k, \sum_{i=1}^k \theta_k = 1 \right\}$$

Convex hull

Definition

The **convex hull** of a set C, denoted **conv** C, is the set of all convex combinations of points in C:

$$\operatorname{conv} C = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in C, \theta_i \ge 0, i = 1, \cdots, k, \sum_{i=1}^k \theta_k = 1 \right\}$$

Properties:

- A convex hull is always convex
- **conv** C is the smallest convex set that contains C, i.e., $B \supset C$ is convex \implies **conv** $C \subseteq B$

Convex hull: examples

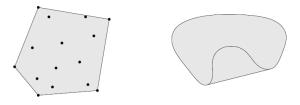


Figure: Examples of convex hulls

A set *C* is called a **cone** if $x \in C \implies \theta x \in C$, $\forall \theta \ge 0$.

A set C is called a **cone** if $x \in C \implies \theta x \in C$, $\forall \theta \ge 0$.

A set C is a **convex cone** if it is convex and a cone, i.e.,

$$x_1,x_2 \in C \implies \theta_1 x_1 + \theta_2 x_2 \in C, \quad \forall \theta_1,\theta_2 \geq 0$$

A set C is called a **cone** if $x \in C \implies \theta x \in C$, $\forall \theta \ge 0$.

A set C is a **convex cone** if it is convex and a cone, i.e.,

$$x_1, x_2 \in C \implies \theta_1 x_1 + \theta_2 x_2 \in C, \quad \forall \theta_1, \theta_2 \ge 0$$

The point $\sum_{i=1}^{k} \theta_i x_i$, where $\theta_i \geq 0, \forall i = 1, \dots, k$, is called a **conic combination** of x_1, \dots, x_k .

A set C is called a **cone** if $x \in C \implies \theta x \in C$, $\forall \theta \ge 0$.

A set C is a **convex cone** if it is convex and a cone, i.e.,

$$x_1, x_2 \in C \implies \theta_1 x_1 + \theta_2 x_2 \in C, \quad \forall \theta_1, \theta_2 \ge 0$$

The point $\sum_{i=1}^{k} \theta_i x_i$, where $\theta_i \geq 0, \forall i = 1, \dots, k$, is called a **conic combination** of x_1, \dots, x_k .

The **conic hull** of a set C is the set of all conic combinations of points in C.

Conic hull: examples

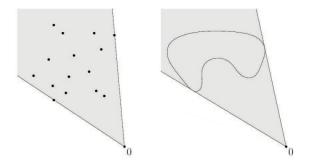


Figure: Examples of conic hull

Hyperplanes and halfspaces

A **hyperplane** is a set of the form $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T\mathbf{x} = b\}$ where $a \neq 0, b \in \mathbb{R}$.

Hyperplanes and halfspaces

A **hyperplane** is a set of the form $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T\mathbf{x} = b\}$ where $a \neq 0, b \in \mathbb{R}$.

A (closed) **halfspace** is a set of the form $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} \leq b\}$ where $a \neq 0, b \in \mathbb{R}$.

- ▶ a is the normal vector
- hyperplanes and halfspaces are convex

Euclidean balls and ellipsoids

Euclidean ball in \mathbb{R}^n with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

Euclidean balls and ellipsoids

Euclidean ball in R^n with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid in \mathbb{R}^n with center x_c :

$$\mathcal{E} = \left\{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \right\}$$

where $P \in S_{++}^n$ (i.e., symmetric and positive definite)

- ▶ the lengths of the semi-axes of \mathcal{E} are given by $\sqrt{\lambda_i}$, where λ_i are the eigenvalues of P.
- ▶ An alternative representation of an ellipsoid: with $A = P^{1/2}$

$$\mathcal{E} = \{ x_c + Au \mid ||u||_2 \le 1 \}$$

Euclidean balls and ellipsoids

Euclidean ball in R^n with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid in \mathbb{R}^n with center x_c :

$$\mathcal{E} = \left\{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \right\}$$

where $P \in S_{++}^n$ (i.e., symmetric and positive definite)

- ▶ the lengths of the semi-axes of \mathcal{E} are given by $\sqrt{\lambda_i}$, where λ_i are the eigenvalues of P.
- ▶ An alternative representation of an ellipsoid: with $A = P^{1/2}$

$$\mathcal{E} = \{ x_c + Au \mid ||u||_2 \le 1 \}$$

Euclidean balls and ellipsoids are convex.

Norms

A function $f: \mathbb{R}^n \to \mathbb{R}$ is called a **norm**, denoted ||x||, if

- ▶ nonegative: $f(x) \ge 0$, for all $x \in R^n$
- definite: f(x) = 0 only if x = 0
- ▶ homogeneous: f(tx) = |t|f(x), for all $x \in R^n$ and $t \in R$
- ▶ satisfies the triangle inequality: $f(x + y) \le f(x) + f(y)$

notation: $\|\cdot\|$ denotes a general norm; $\|\cdot\|_{symb}$ denotes a specific norm

Distance: dist(x, y) = ||x - y|| between $x, y \in R^n$.

Examples of norms

- ℓ_p -norm on R^n : $||x||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$
 - ℓ_1 -norm: $||x||_1 = \sum_i |x_i|$
 - $\blacktriangleright \ell_{\infty}$ -norm: $||x||_{\infty} = \max_{i} |x_{i}|$
- ▶ Quadratic norms: For $P \in S_{++}^n$, define the P-quadratic norm as

$$||x||_P = (x^T P x)^{1/2} = ||P^{1/2} x||_2$$

Equivalence of norms

Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be norms on R^n . Then $\exists \alpha, \beta > 0$ such that $\forall x \in R^n$,

$$\alpha \|x\|_{\mathsf{a}} \leq \|x\|_{\mathsf{b}} \leq \beta \|x\|_{\mathsf{a}}.$$

Norms on any finite-dimensional vector space are equivalent (define the same set of open subsets, the same set of convergent sequences, etc.)

Dual norm

Let $\|\cdot\|$ be a norm on R^n . The associated dual norm, denoted $\|\cdot\|_*$, is defined as

$$||z||_* = \sup \{z^T x \mid ||x|| \le 1\}.$$

Dual norm

Let $\|\cdot\|$ be a norm on R^n . The associated dual norm, denoted $\|\cdot\|_*$, is defined as

$$||z||_* = \sup \{z^T x \mid ||x|| \le 1\}.$$

- $z^T x \le ||x|| ||z||_*$ for all $x, z \in R^n$
- ▶ $||x||_{**} = ||x||$ for all $x \in R^n$
- The dual of the Euclidean norm is the Euclidean norm (Cauchy-Schwartz inequality)

Dual norm

Let $\|\cdot\|$ be a norm on R^n . The associated dual norm, denoted $\|\cdot\|_*$, is defined as

$$||z||_* = \sup \{z^T x \mid ||x|| \le 1\}.$$

- $z^T x \le ||x|| ||z||_*$ for all $x, z \in R^n$
- ▶ $||x||_{**} = ||x||$ for all $x \in R^n$
- The dual of the Euclidean norm is the Euclidean norm (Cauchy-Schwartz inequality)
- ▶ The dual of the ℓ_p -norm is the ℓ_q -norm, where 1/p + 1/q = 1 (Holder's inequality)
- ▶ The dual of the ℓ_{∞} norm is the ℓ_{1} norm
- ▶ The dual of the ℓ_2 -norm on $R^{m \times n}$ is the nuclear norm,

$$||Z||_{2*} = \sup \{tr(Z^TX) \mid ||X||_2 \le 1\}$$

= $\sigma_1(Z) + \dots + \sigma_r(Z) = tr(Z^TZ)^{1/2}$,

where r = rank Z.

Norm balls and norm cones

norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$

norm cone:
$$C = \{(x, t) \mid ||x|| \le t\} \subseteq \mathbb{R}^{n+1}$$

▶ the second-order cone is the norm cone for the Euclidean norm

norm balls and cones are convex

Polyhedra

A **polyhedron** is defined as the solution set of a finite number of linear equalities and inequalities:

$$\mathcal{P} = \{x \mid Ax \leq b, Cx = d\}$$

where $A \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$, and \leq denotes vector inequality or componentwise inequality.

A polyhedron is the intersection of finite number of halfspaces and hyperplanes.

Simplexes

The **simplex** determined by k+1 affinely independent points $v_0, \cdots, v_k \in \mathbb{R}^n$ is

$$C = \mathbf{conv}\{v_0, \cdots, v_k\} = \left\{\theta_0 v_0 + \cdots + \theta_k v_k \mid \theta \succeq 0, \mathbf{1}^T \theta = 1\right\}$$

The affine dimension of this simplex is k, so it is often called k-dimensional simplex in \mathbb{R}^n .

Some common simplexes: let e_1, \dots, e_n be the unit vectors in \mathbb{R}^n .

- ▶ unit simplex: $conv\{0, e_1, \dots, e_n\} = \{x | x \succeq 0, \mathbf{1}^T \theta \leq 1\}$
- ▶ probability simplex: $conv\{e_1, \dots, e_n\} = \{x | x \succeq 0, \mathbf{1}^T \theta = 1\}$

Positive semidefinite cone

notation:

- ▶ S^n : the set of symmetric $n \times n$ matrices
- ▶ $S_+^n = \{X \in S^n \mid X \succeq 0\}$: symmetric positive semidefinite matrices
- ▶ $S_{++}^n = \{X \in S^n \mid X \succ 0\}$ symmetric positive definite matrices

 S_{+}^{n} is a convex cone, called positive semidefinte cone. S_{++}^{n} comprise the cone interior; all singular positive semidefinite matrices reside on the cone boundary.

Positive semidefinite cone: example

$$X = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \in S_+^2 \iff x \ge 0, z \ge 0, xz \ge y^2$$

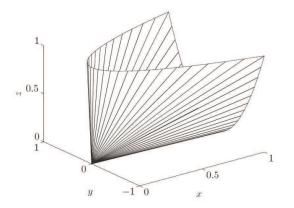


Figure: Positive semidefinite cone: S_+^2

Operations that preserve complexity

- intersection
- affine function
- perspective function
- linear-fractional functions

If S_1 and S_2 are convex. then $S_1 \cap S_2$ is convex.

If S_1 and S_2 are convex. then $S_1 \cap S_2$ is convex.

If S_{α} is convex for every $\alpha \in \mathcal{A}$, then $\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex.

If S_1 and S_2 are convex. then $S_1 \cap S_2$ is convex.

If S_1 and S_2 are convex. then $S_1 \cap S_2$ is convex.

If S_{α} is convex for every $\alpha \in \mathcal{A}$, then $\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex.

Intersection: example 1

Show that the positive semidefinite cone S^n_+ is convex.

Proof.

 S_{+}^{n} can be expressed as

$$S_+^n = \bigcap_{z \neq 0} \left\{ X \in S^n \mid z^T X z \geq 0 \right\}.$$

Since the set

$$\left\{X \in S^n \mid z^T X z \ge 0\right\}$$

is a halfspace in S^n , it is convex. S^n_+ is the intersection of an infinite number of halfspaces, so it is convex.

Intersection: example 2

The set

$$S = \{ x \in R^m \mid \sum_{k=1}^m x_k \cos kt | \le 1, \forall |t| \le \pi/3 \}$$

is convex, since it can be expressed as $S = \bigcap_{|t| \le \pi/3} S_t$, where $S_t = \{x \in R^m \mid -1 \le (\cos t, \cdots, \cos mt)^T x \le 1\}$.

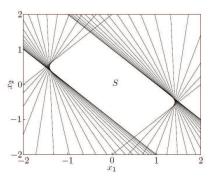


Figure: The set S for m = 2.

Affine function

Theorem

Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is an affine function (i.e., f(x) = Ax + b). Then

the image of a convex set under f is convex

$$S \subseteq R^n$$
 is convex $\implies f(S) = \{f(x) \mid x \in S\}$ is convex

▶ the inverse image of a convex set under f is convex

$$B \subseteq R^m$$
 is convex $\implies f^{-1}(B) = \{x \mid f(x) \in B\}$ is convex

Affine function: example 1

Show that the ellipsoid

$$\mathcal{E} = \left\{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \right\}$$

where $P \in S_{++}^n$ is convex.

Proof.

Let

$$S = \{u \in R^n | ||u||_2 \le 1\}$$

denote the unit ball in \mathbb{R}^n . Define an affine function

$$f(u) = P^{1/2}u + x_c$$

 \mathcal{E} is the image of S under f, so is convex.

Affine function: example 2

Show that the solution set of linear matrix inequality (LMI)

$$S = \{x \in R^n | x_1 A_1 + \dots + x_n A_n \succeq B\},\$$

where $B, A_i \in S^m$, is convex.

Proof.

Define an affine function $f: \mathbb{R}^n \to \mathbb{S}^m$ given by

$$f(x) = B - (x_1A_1 + \cdots + x_nA_n).$$

The solution set S is the inverse image of the positive semidefinite cone S_+^m , so is convex.

Affine function: example 3

Show that the hyperbolic cone

$$S = \{x \in R^n | x^T P x \le (c^T x)^2, c^T x \ge 0\},\$$

where $P \in S_+^n$, is convex.

Proof.

Define an affine function $f: \mathbb{R}^n \to \mathbb{S}^{n+1}$ given by

$$f(x) = (P^{1/2}x, c^Tx).$$

The S is the inverse image of the second-order cone,

$$\{(z,t)|||z||_2 \leq t, t \geq 0\},\$$

so is convex.

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = \frac{x}{t}$$
, dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under P are convex.

linear-fractional function $P: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}$$
, dom $f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under f are convex.

Generalized inequalities: proper cone

Definition

A cone $K \subseteq R^n$ is called a **proper cone** if

- ▶ *K* is convex
- K is closed
- K is solid, which means it has nonempty interior
- ▶ K is pointed, which means that it contains no line (i.e., $x \in K, -x \in K \implies x = 0$)

Generalized inequalities: proper cone

Definition

A cone $K \subseteq R^n$ is called a **proper cone** if

- K is convex
- K is closed
- K is solid, which means it has nonempty interior
- ▶ K is pointed, which means that it contains no line (i.e., $x \in K, -x \in K \implies x = 0$)

Examples:

- ▶ nonnegative orthant $K = R_+^n = \{x \in R^n \mid x_i \ge 0, \forall i\}$
- ▶ positive semidifinite cone $K = S_+^n$; how about S_{++}^n ?
- ▶ nonnegative polynomials on [0, 1]:

$$K = \{x \in R^n \mid x_1 + x_2t + \dots + x_nt^{n-1} \ge 0, \forall t \in [0, 1]\}$$

Generalized inequalities: definition

A proper cone K can be used to define a **generalized inequality**, a partial ordering on \mathbb{R}^n ,

$$x \leq_K y \iff y - x \in K \quad x \prec_K y \iff y - x \in \mathbf{int} K$$

where the latter is called a strict generalized inequality.

Generalized inequalities: definition

A proper cone K can be used to define a **generalized inequality**, a partial ordering on \mathbb{R}^n ,

$$x \leq_K y \iff y - x \in K \quad x \prec_K y \iff y - x \in \text{int } K$$

where the latter is called a strict generalized inequality. Examples:

• componentwise inequality $(K = R_+^n)$

$$x \preceq_{R_+^n} y \iff x_i \leq y_k, \quad \forall i = 1, \cdots, n$$

• matrix inequality $(K = S_+^n)$

$$x \leq_{S^n_+} y \iff Y - X$$
 is positive semidefinite

Generalized inequalities: properties

Many properties of \leq_K are similar to \leq on R:

- ▶ transitive: $x \leq_K y$, $y \leq_K z \implies x \leq_K z$
- ▶ reflexive: $x \leq_K x$
- ▶ antisymmetric: $x \leq_K y$, $y \leq_K x \implies x = y$
- preserved under addition:

$$x \leq_{\kappa} y$$
, $u \leq_{\kappa} v \implies x + u \leq_{\kappa} y + v$

preserved under nonnegative scaling:

$$x \leq_{\kappa} y, \ \alpha \geq 0 \implies \alpha x \leq_{\kappa} \alpha y$$

▶ preserved under limits: suppose $\lim x_i = x$, $\lim y_i = y$. Then

$$x_i \leq_K y_i, \ \forall i \implies x \leq_K y$$

Minimum and minimal elements

 $\preceq_{\mathcal{K}}$ is not in general a linear ordering: we can have $x \npreceq_{\mathcal{K}} y \ y \nsucceq_{\mathcal{K}} x$

 $x \in S$ is called **the minimum element** of S with respect to \leq_K if

$$y \in S \implies x \leq_K y$$

 $x \in S$ is called **the minimal element** of S with respect to \leq_K if

$$y \in S, \ y \leq_{\kappa} x \implies y = x$$

Minimum and minimal elements

 $\preceq_{\mathcal{K}}$ is not in general a linear ordering: we can have $x \npreceq_{\mathcal{K}} y \ y \nsucceq_{\mathcal{K}} x$

 $x \in S$ is called **the minimum element** of S with respect to \preceq_K if

$$y \in S \implies x \leq_K y$$

 $x \in S$ is called **the minimal element** of S with respect to \leq_K if

$$y \in S$$
, $y \leq_K x \implies y = x$

Example:

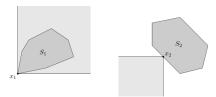


Figure: $K = R_+^2$. x_1 is the minimum element of S_1 . x_2 is the minimal element of S_2 .

Separating hyperplane theorem

Theorem

Suppose C and D are two convex sets that do not intersect, i.e., $C \cap D = \emptyset$. Then there exist $a \neq 0$ and b such that

$$a^T x \le b$$
 for $x \in C$, and $a^x b \ge b$ for $x \in D$

The hyperplane $\{x \mid a^x = b\}$ is called **a separating hyperplane** for C and D.

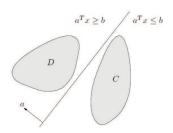


Figure: Examples of convex and nonconvex sets

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0

$$\{x\mid a^x=a^Tx_0\}$$

where $a \neq 0$ and satisfies $a^T x \leq a^T x_0$ for all $x \in C$.

Theorem (supporting hyperplane theorem)

If C is convex, then there exists a supporting hyperplane at every boundary point of C.

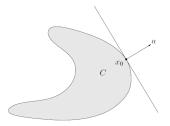


Figure: Examples of convex and nonconvex sets

Dual cones

Definition (dual cones)

Let K be a cone. The set

$$K^* = \{ y \mid x^T y \ge 0 \ \forall x \in K \}$$

is called the **dual cone** of K.

Property:

- K* is always convex, even when the original cone K is not (why? intersection of convex sets)
- ▶ $y \in K^*$ if and only if -y is the normal of a hyperplane that supports K at the origin

Dual cones: examples

Examples:

- $K = R_{+}^{n}: K^{*} = R_{+}^{n}$
- $K = S_{+}^{n}$: $K^{*} = S_{+}^{n}$
- $K = \{(x,t) \mid ||x||_2 \le t\} \colon K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x|| \le t\} \colon K^* = \{(x,t) \mid ||x||_* \le t\}$

the first three examples are self-dual cones

Dual of positive semidefinite cone

Theorem

The positive semidefinite cone S^n_+ is self-dual, i.e., given $Y \in S^n$,

$$\operatorname{tr}(XY) \geq 0 \ \forall X \in S_+^n \iff Y \in S_+^n$$

Dual of positive semidefinite cone

Theorem

The positive semidefinite cone S^n_+ is self-dual, i.e., given $Y \in S^n$,

$$\operatorname{tr}(XY) \geq 0 \ \forall X \in S_+^n \iff Y \in S_+^n$$

Proof.

To prove \Longrightarrow , suppose $Y \notin S^n_+$. Then $\exists q$ with $q^T Y q = \mathbf{tr}(qq^T Y) < 0$, which contradicts the lefthand condition.

Dual of positive semidefinite cone

Theorem

The positive semidefinite cone S^n_+ is self-dual, i.e., given $Y \in S^n$,

$$\operatorname{tr}(XY) \ge 0 \ \forall X \in S^n_+ \Longleftrightarrow Y \in S^n_+$$

Proof.

To prove \Longrightarrow , suppose $Y \notin S^n_+$. Then $\exists q$ with $q^T Y q = \mathbf{tr}(qq^T Y) < 0$, which contradicts the lefthand condition.

To prove \Leftarrow , since $X \succeq 0$, write $X = \sum_{i=1}^{n} \lambda_i q_i q_i^T$, where $\lambda_i \geq 0$ for all i. Then

$$\operatorname{tr}(XY) = \operatorname{tr}(Y \sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}) = \sum_{i=1}^{n} \lambda_{i} q_{i}^{T} Y q_{i} \geq 0,$$

because $Y \succeq 0$.

Dual of a norm cone

Theorem

The dual of the cone $K = \{(x, t) \in R^{n+1} \mid ||x|| \le t\}$ associated with a norm $||\cdot||$ in R^n is the cone defined by the dual norm,

$$K^* = \{(u,s) \in R^{n+1} \mid ||u||_* \le s\},$$

where the dual norm is given by $||u||_* = \sup\{u^T x \mid ||x|| \le 1\}.$

Dual of a norm cone

Theorem

The dual of the cone $K = \{(x, t) \in R^{n+1} \mid ||x|| \le t\}$ associated with a norm $|| \cdot ||$ in R^n is the cone defined by the dual norm,

$$K^* = \{(u,s) \in R^{n+1} \mid ||u||_* \le s\},$$

where the dual norm is given by $||u||_* = \sup\{u^T x \mid ||x|| \le 1\}.$

Proof.

We need to show

$$x^T u + ts \ge 0 \ \forall ||x|| \le t \Longleftrightarrow ||u||_* \le s$$

The \Leftarrow direction follows from the definition of the dual norm.

To prove \Longrightarrow , suppose $||u||_* > s$. Then by the definition of dual norm, $\exists x$ with $||x|| \le 1$ and $x^T u \ge s$. Taking t = 1, we have $u^T(-x) + v < 0$, which is a contradiction.

Dual cones and generalized inequalities

Properties of dual cones: let K^* be the dual of a convex cone K.

- K* is a convex cone (intersection of a set of homogeneous halfspaces)
- $\blacktriangleright \ \, \mathit{K}_{1} \subseteq \mathit{K}_{2} \implies \mathit{K}_{2}^{*} \subseteq \mathit{K}_{1}^{*}$
- K* is closed (intersection of a set of closed sets)
- ▶ K^{**} is the closure of K (if K is closed, then $K^{**} = K$)
- dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

