Equality constrained minimization

- equality constrained minimization
- eliminating equality constraints
- Newton's method with equality constraints
- infeasible start Newton method

Equality constrained minimization

minimize
$$f(x)$$

subject to $Ax = b$

- ▶ *f* is convex, twice continuously differentiable
- ▶ $A \in R^{p \times n}$ with rank A = p
- assume p* is finite and attained

optimality conditions: x^* is optimal iff $\exists \nu^*$ such that

$$\nabla f(x^*) + A^T \nu^* = 0, \quad Ax^* = b$$

Equality constrained minimization: quadratic

minimize
$$\frac{1}{2}x^TPx + q^Tx + r$$

subject to $Ax = b$

optimality conditions: x^* is optimal iff $\exists \nu^*$ such that

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \nu^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

- coefficient matrix is called KKT matrix
- KKT matrix is non-singular
 - if $Ax = 0, x \neq 0 \implies x^T Px > 0$
 - if $P + A^T \succ 0$

Newton step

Newton step Δx_{nt} at feasible x is given by solution v of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

interpretations

 $ightharpoonup \Delta x_{nt}$ solves second-order approximation of f at x

minimize
$$\hat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

subject to $A(x+v) = b$

 $ightharpoonup \Delta x_{nt}$ solves first-order approximation of optimality conditions

$$\nabla f(x+v) + A^T w \approx \nabla f(x) + \nabla^2 f(x)v + A^T w = 0, \quad A(x+v) = b$$

Newton decrement

Newton decrement

$$\lambda(x) = (\Delta x_{nt} \nabla^2 f(x) \Delta x_{nt})^{1/2} = \|\nabla^2 f(x)^{1/2} \Delta x_{nt}\|$$

which gives an estimate of $f(x) - p^*$ using quadratic approximation

$$f(x) - \inf_{Ay=b} \hat{f}(y) = \frac{1}{2}\lambda(x)^2$$

Newton direction with feasible start is a descent direction:

$$\Delta x_{nt}^T \nabla f(x) = -\lambda(x)^2$$

Newton's method with equality constraints: feasible start

given a starting point $x \in \text{dom } f$ with Ax = b, tolerance $\epsilon > 0$ repeat

- 1. Compute the Newton step and decrement Δx_{nt} , $\lambda(x)$
- 2. Stopping criterion: quit if $\lambda^2/2 \le \epsilon$
- 3. Line search: choose a step size t > 0 by backtracking line search
- 4. Update: $x := x + t\Delta x$

Starting point is feasible, and $f(x^{(k+1)}) < f(x^{(k)})$

Eliminating equality constraints

Find a matrix $F \in \mathbb{R}^{n \times (n-p)}$ and a \hat{x} such that

$${x \mid Ax = b} = {Fz + \hat{x} \mid z \in R^{n-p}}$$

Reduced problem:

minimize
$$\tilde{f}(z) = f(Fz + \hat{x})$$

Remark:

- F is any matrix whose range is the nullspace of A: AF = 0
- ▶ Newton method with equality constraints: iterates are

$$x^{(k+1)} = Fz^{(k)} + \hat{x}$$

Hence convergence is the same as unconstrained Newton's method

Newton step with infeasible start

Linearizing optimality conditions at infeasible x:

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{nt} \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ Ax - b \end{bmatrix}$$

Newton step with infeasible start: primal-dual interpretation

Optimality condition: r(y) = 0 with

$$y = (x, \nu),$$
 $r(y) = (\nabla f(x) + A^{T} \nu, Ax - b)$

Linearizing r(y) = 0

$$r(y + \Delta y) \approx r(y) + Dr(y)\Delta y = 0$$

which leads to

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{nt} \\ \Delta \nu_{nt} \end{bmatrix} = -\begin{bmatrix} \nabla f(x) + A^T \nu \\ Ax - b \end{bmatrix}$$

Note that $w = \nu + \Delta \nu_{nt}$

Infeasible start Newton method

given a starting point $x \in \operatorname{dom} f$, ν , tolerance $\epsilon > 0$ repeat

- 1. Compute primal and dual Newton steps Δx_{nt} , $\Delta \nu_{nt}$
- 2. Line search on $||r||_2$: choose a step size t>0 by backtracking line search
- 3. Update: $x := x + t\Delta x_{nt}$, $\nu := \nu + t\Delta \nu_{nt}$ until Ax = b and $||r(x, \nu)||_2 < \epsilon$

Remark:

- ▶ not a descent method: $f(x^{(k+1)}) > f(x^{(k)})$ is possible
- ▶ directional derivative of $||r(y)||_2$ in direction $\Delta y = (\Delta x_{nt}, \Delta \nu_{nt})$ is

$$\frac{d}{dt} ||r(y + t\Delta y)||_2 \Big|_{t=0} = -||r(y)||_2$$