Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \cdots, m$
 $Ax = b$

- ▶ *f* is convex, twice continuously differentiable
- ▶ $A \in R^{p \times n}$ with rank A = p
- assume p* is finite and attained
- ▶ assume the problem is **strictly feasible**; hence strong duality holds

Logarithmic barrier

Reformulate the problem using indicator function:

minimize
$$f_0(x) + \sum_{i=1}^m I_{-i}(f_i(x))$$

subject to $Ax = b$

where $I_{-}(u) = 0$ if $u \le 0$ and $= \infty$ otherwise.

Approximation using logarithmic barrier

minimize
$$f_0(x) - \frac{1}{t} \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

which is

- an equality constrained problem
- smooth approximation of the indicator function
- ightharpoonup approximation improves as $t \to \infty$

Logarithmic barrier function

Define

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$$

which is

- convex
- twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

Central path is: $\{x^*(t) \mid t > 0\}$

Dual points on central path

▶ optimality condition on $x^*(t)$: $\exists w$ such that

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \quad Ax = b$$

 \triangleright so, $x^*(t)$ minimizes the Lagangian of the original problem

$$L(x, \lambda^*(t), \nu^*(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^*(t) f_i(x) + \nu^*(t)^T (Ax - b)$$

with
$$\lambda_i^*(t) = \frac{1}{-tf_i(x^*(t))}$$
 and $\nu^*(t) = \frac{w}{t}$.

 \blacktriangleright ($\lambda^*(t), \nu^*(t)$) is **dual feasible**. Hence

$$p^* \ge g(\lambda^*(t), \nu^*(t)) = L(x^*(t), \lambda^*(t), \nu^*(t)) = f_0(x^*(t)) - m/t$$

That is $f_0(x^*(t)) \to p^*$ as $t \to \infty$

Interpretation via KKT conditions

$$x = x^*(t), \lambda = \lambda^*(t), \nu = \nu^*(t)$$
 satisfy

- ▶ primal feasible: $f_i(x) \le 0$, $\forall i = 1, \dots, m$, Ax = b
- ▶ dual feasible: $\lambda > 0$
- gradient of Lagrangian w.r.t. x vanishes

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

► approximate complementary slackness:

$$-\lambda_i f_i(x) = 1/t, \quad \forall i = 1, \cdots, m$$

Barrier method

given strictly feasible x, $t:=t^{(0)}>0$, $\mu>1$, tolerance $\epsilon>0$ repeat

- 1. Centering step: compute $x^*(t)$ that minimizes $tf_0(x) + \phi(x)$ subject to Ax = b
- 2. Update: $x := x^*(t)$
- 3. Stopping criterion: quit if $m/t < \epsilon$
- 4. Increase t: $t := \mu t$
- ▶ stopping criterion $\implies f_0(x) p^* \le \epsilon$
- centering step done using Newton's method staring at current x
- large μ means fewer outer iterations, more inner iterations; typically $\mu=10-20$

Feasibility and phase I methods

Feasibility problem: find x such that

$$f_i(x) \leq 0, i = 1, \cdots, m, \quad Ax = b$$

Phase I problem: find *x* that is strictly feasible

Method: solve the following problem (min. over x and s)

minimize
$$s$$

subject to $f_i(x) \le s$, $i = 1, \dots, m$
 $Ax = b$

Denote the optimal value of this problem \bar{p}^* :

- ▶ $\bar{p}^* < 0$: the corresponding x strictly feasible
- ightharpoonup $\bar{p}^* > 0$: problem infeasible
- $\bar{p}^* = 0$:
 - ightharpoonup attained: feasible, but not strictly feasible
 - ▶ \bar{p}^* not attained: not feasible

Complexity analysis via self-concordance

Assumptions:

- $tf_0(x) + \phi(x)$ is self-concordant with closed sublevel sets
- ightharpoonup sublevel sets of f_0 on the feasible set are bounded

holds for LP, QP, QCQP.

Complexity analysis

Number of centering steps is exactly:

$$\frac{\log(m/(\epsilon t^{(0)})}{\log \mu}$$

Number of Newton iterations per centering is bounded above by:

$$\frac{f(x)-p^*}{\gamma}+c$$

where $\gamma = \alpha\beta(1-2\alpha)^2/(20-8\alpha)$ and constant c depends only on the tolerance ϵ_{nt} :

$$c = \log_2 \log_2 (1/\epsilon_{nt})$$

Number of Newton iterations per centering step

Estimate to the number of Newton iterations for computing $x^*(\mu t)$, starting from $x^*(t)$ Denote $x = x^*(t)$, $x^+ = x^*\mu t$, $\lambda = \lambda^*(t)$, $\nu = \nu^*(t)$ $\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)$ $= \mu t f_0(x) - \mu t f_0(x^+) + \sum_{i=1}^{m} \log(-\mu t \lambda_i f_i(x^+)) - m \log \mu$ $\leq \mu t f_0(x) - \mu t f_0(x^+) - \mu \sum_{i=1}^{m} \lambda_i f_i(x^+) - m - m \log \mu$ $\leq \mu t f_0(x) - \mu t f_0(x^+) - m - m \log \mu$ $= m(\mu - 1 - \log \mu)$

The total number of Newton iterations

The total number of Newton iterations (excluding the first centering step) is upper bounded:

$$N = \frac{\log(m/(\epsilon t^{(0)})}{\log \mu} \left(\frac{m(\mu - 1 - \log \mu)}{\gamma} + c \right)$$

- \blacktriangleright tradeoff in choosing μ
- if choosing $\mu = 1 + 1/\sqrt{m}$, then $N = O\left(\sqrt{m} \log(m/(t^{(0)}\epsilon)\right)$
- ▶ in practice, often fix μ (= 10, \cdots , 20)

Generalized inequality

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0$, $i = 1, \cdots, m$
 $Ax = b$

- ▶ f_0 convex, $f_i: R^n \to R^{k_i}$ convex w.r.t. proper cone $K_i \in R^{k_i}$
- ▶ *f_i* twice continuously differentiable
- ▶ $A \in R^{p \times n}$ with rank A = p
- assume p* is finite and attained
- assume the problem is strictly feasible; hence strong duality holds

Karush-Kuhn-Tucker (KKT) conditions

If strong duality holds, x is primal optimal, (λ, ν) is dual optimal, and f_i, h_i are differentiable, then the following four conditions (called **KKT conditions**) must hold

- 1. primal constraints: $f_i(x) \leq_{K_i} 0$, $i = 1, \dots, m$, Ax = b
- 2. dual constraints: $\lambda_i \succeq_{K_i^*} 0$, $i = 1, \dots, m$
- 3. complementary slackness: $\lambda_i^T f_i(x) = 0$, $i = 1, \dots, m$
- 4. gradient of Lagrangian w.r.t. x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i^T D f_i(x) + A^T \nu = 0$$

Generalized logarithm for a proper cone

Definition (generalized logarithm)

 $\psi: R^q \to R$ is a **generalized logarithm** for proper cone $K \subseteq R^q$ if

- ▶ dom $\psi = \text{int } K$, and $\nabla^2 \psi(y) \prec 0$ for all $y \in \text{int } K$.
- ▶ $\exists \theta > 0$ such that for all $y \succ_K 0$ and all s > 0

$$\psi(sy) = \psi(y) + \theta \log s$$

That is, ψ behaves like a log along any ray in K

Properties: if $y \succ_K 0$, then

- ▶ $\nabla \psi(y) \succ_{K^*} 0$, which means that ψ is K-increasing
- $y^T \nabla \psi(y) = \theta$ (derived by taking the derivative of $\psi(sy)$ w.r.t. s)

Generalized logarithm for a proper cone: examples

Examples of ψ :

▶ nonnegative orthant: $K = R_+^n$, $\psi(y) = \sum_{i=1}^n \log y_i \ (\theta = n)$

$$\nabla \psi(\mathbf{y}) = (1/y_1, \cdots, 1/y_n), \quad \mathbf{y}^T \nabla \psi(\mathbf{y}) = n$$

▶ positive semidefinite cone: $K = S_+^n$, $\psi(Y) = \log \det Y$ $(\theta = n)$

$$\nabla \psi(Y) = Y^{-1}, \quad \operatorname{tr}(Y \nabla \psi(Y)) = n$$

▶ second-order cone: $K = \{y \in R^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2) \quad (\theta = 2)$$

$$\nabla \psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \dots \\ -y_n \\ y_{n+1} \end{bmatrix}, \quad y^T \nabla \psi(y) = 2$$

Logarithmic barrier and central path

Logarithm barrier: define

$$\phi(x) = -\sum_{i=1}^{m} \psi(-f_i(x))$$

where

- ψ_i generalized log for proper cone K_i
- $ightharpoonup \phi$ convex, twice continuously differentiable

Central path: $\{x^*(t) \mid t > 0\}$ where $x^*(t)$ is the solution of

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

Dual points on central path

▶ optimality condition on $x^*(t)$: $\exists w \in R^p$ such that

$$t\nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0, \quad Ax = b$$

where $Df_i(x) \in R^{k_i \times n}$ is the derivative matrix of f_i

ightharpoonup so, $x^*(t)$ minimizes the Lagangian $L(x,\lambda^*(t),\nu^*(t))$ with

$$\lambda_i^*(t) = (1/t)\nabla \psi_i(-f_i(x^*(t))), \quad \nu^*(t) = w/t$$

lacktriangle properties of $\psi \implies \lambda_i^*(t) \succeq_{\mathcal{K}_i^*} 0$ with duality gap

$$f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = (1/t) \sum_{i=1}^m \theta_i$$

therefore $f_0(x^*(t)) \to p^*$ as $t \to \infty$

Semidefinite program (SDP)

Primal SDP

min
$$c^T x$$

s.t. $F(x) = x_1 F_1 + \dots + x_n F_n + G \leq 0$

where $F_i, G \in S^k$

Dual SDP

max
$$\mathbf{tr}(GZ)$$

s. t. $\mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$
 $Z \succeq 0$

where $Z \in S^k$.

Strong duality if primal SDP is strictly feasible, i.e. $\exists x$ with $x_1F_1+\cdots+x_nF_n+G\prec 0$

Semidefinite program (SDP): barrier method

- ▶ Logarithmic barrier: $\phi(x) = -\log \det(-F(x))$
- ▶ central path: $x^*(t)$ minimizes $tc^Tx \log \det(-F(x))$; therefore

$$tc_i - \mathbf{tr}(F_iF(x^*(t))^{-1}) = 0, \quad i = 1, \dots, n$$

- $Z^*(t) = -(1/t)F(x^*(t))^{-1}$ is dual feasible
- duality gap: $c^T x^*(t) \mathbf{tr}(GZ^*(t)) = p/t$