CS295: Convex Optimization

Xiaohui Xie
Department of Computer Science
University of California, Irvine
Course information

- Prerequisites: multivariate calculus and linear algebra
- Textbook: Convex Optimization by Boyd and Vandenberghe
- Course website:
- Grading based on:
 - final exam (50%)
 - final project (50%)
Mathematical optimization

Mathematical **optimization problem**:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq b_i, \quad i = 1, \cdots, m
\end{align*}
\]

where

- \(x = (x_1, \cdots, x_n) \in \mathbb{R}^n \): optimization variables
- \(f_0 : \mathbb{R}^n \rightarrow \mathbb{R} \): objective function
- \(f_i : \mathbb{R}^n \rightarrow \mathbb{R} \): constraint function

Optimal solution \(x^* \) has smallest value of \(f_0 \) among all vectors that satisfy the constraints.
Examples

- transportation - product transportation plan
- finance - portfolio management
- machine learning - support vector machines, graphical model structure learning
Transportation problem

We have a product that can be produced in amounts a_i at location i with $i = 1, \cdots, m$. The product must be shipped to n destinations, in quantities b_j to destination j with $j = 1, \cdots, n$. The amount shipped from origin i to destination j is x_{ij}, at a cost of c_{ij} per unit.
Transportation problem

We have a product that can be produced in amounts a_i at location i with $i = 1, \ldots, m$. The product must be shipped to n destinations, in quantities b_j to destination j with $j = 1, \ldots, n$. The amount shipped from origin i to destination j is x_{ij}, at a cost of c_{ij} per unit.

To find the transportation plan that minimizes the total cost, we solve an LP:

$$
\begin{align*}
\text{min} & \quad \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij} \\
\text{s.t.} & \quad \sum_{j=1}^{n} x_{ij} = a_i \quad i = 1, \ldots, m \\
& \quad \sum_{i=1}^{m} x_{ij} = b_j \quad j = 1, \ldots, n \\
& \quad x_{ij} \geq 0
\end{align*}
$$
Consider a simple portfolio selection problem with n stocks held over a period of time:

- $\mathbf{x} = (x_1, \cdots, x_n)$: the optimization variable with x_i denoting the amount to invest in stock i
- $\mathbf{p} = (p_1, \cdots, p_n)$: a random vector with p_i denoting the reward from stock i. Suppose its mean μ and covariance matrix Σ are known.
- $r = \mathbf{p}^T \mathbf{x}$: the overall return on the portfolio. r is a random variable with mean $\mu^T \mathbf{x}$ and variance $\mathbf{x}^T \Sigma \mathbf{x}$.

Markowitz portfolio optimization
The Markowitz portfolio optimization problem is the QP

$$\min \ x^T \Sigma x$$

s. t. $\mu^T x \geq r_{\min}$

$1^T x = B$

$x_i \geq 0, \ i = 1, \ldots, n$

which find the portfolio that minimizes the return variance subject to three constraints:

- achieving a minimum acceptable mean return r_{\min}
- satisfying the total budget B
- no short positions ($x_i \geq 0$)
Support vector machines (SVMs)

Input: a set of training data,

\[D = \{(x_i, y_i) \mid x_i \in \mathbb{R}^p, y_i \in \{-1, 1\}, i = 1, \ldots, n\} \]

where \(y_i \) is either 1 or \(-1\), indicating the class to which \(x_i \) belongs.

Problem: find the optimal separating hyperplane that separates the two classes and maximizes the distance to the closest point from either class.
Support vector machines (SVMs) 2

Define a hyperplane by \(w^T x - b = 0 \). Suppose the training data are linearly separably. So we can find \(w \) and \(b \) such that \(w^T x_i - b \geq 1 \) for all \(x_i \) from class 1 and \(w^T x_i - b \leq -1 \) for all \(x_i \) from class \(-1\).

The distance between the two parallel hyperplans, \(w^T x_i - b = 1 \) and \(w^T x_i - b = -1 \), is \(\frac{2}{||w||} \), called margin.

To find the optimal separating hyperplane, we choose \(w \) and \(b \) that maximize the margin:

\[
\begin{align*}
\min & \quad ||w||^2 \\
\text{s.t.} & \quad y_i(w^T x_i - b) \geq 1, \quad i = 1, \cdots, n
\end{align*}
\]
Undirected graphical models

Input: a set of training data,

\[\mathcal{D} = \{(x_i) \mid x_i \in \mathbb{R}^p \ i = 1, \cdots, n\} \]

Assume the data were sampled from a Gaussian graphical model with mean \(\mu \in \mathbb{R}^p \) and covariance matrix \(\Sigma \in \mathbb{R}^{p \times p} \). The inverse covariance matrix, \(\Sigma^{-1} \), encodes the structure of the graphical model in the sense that the variables \(i \) and \(j \) are connected only if the \((i, j)\)-entry of \(\Sigma^{-1} \) is nonzero.

Problem: Find the maximum likelihood estimation of \(\Sigma^{-1} \) with a sparsity constraint, \(\| \Sigma^{-1} \|_1 \leq \lambda \).
Let S be the empirical covariance matrix:

$$S := \frac{1}{n} \sum_{k=1}^{n} (x_i - \mu)(x_i - \mu)^T.$$

Denote $\Theta = \Sigma^{-1}$.

The convex optimization problem:

$$\min \quad - \log \det \Theta + \text{tr}(S\Theta)$$

s. t. $\|\Theta\|_1 \leq \lambda$

$\Theta \succ 0$
Solving optimization problems

The optimization problem is in general difficult to solve: taking very long long time, or not always finding the solution

Exceptions: certain classes of problems can be solved efficiently:

- least-square problems
- linear programming problems
- convex optimization problems
Least-squares

\[
\text{minimize } \|Ax - b\|_2^2
\]

where \(x \in \mathbb{R}^n\), \(b \in \mathbb{R}^k\) and \(A \in \mathbb{R}^{k \times n}\).

- analytical solution: \(x^* = (A^T A)^{-1} A^T b\) (assuming \(k > n\) and \(\text{rank } A = n\))
- reliable and efficient algorithms available
- computational time proportional to \(n^2 k\), and can be further reduced if \(A\) has some special structure
Linear programming

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad a_i^T x \leq b_i, \quad i = 1, \cdots, m
\end{align*}
\]

where the optimization variable \(x \in \mathbb{R}^n \), and \(c, a_i, b_i \in \mathbb{R}^n \) are parameters.

- no analytical formula for solution
- reliable and efficient algorithms available (e.g., Dantzig’s simplex method, interior-point method)
- computational time proportional to \(n^2 m \) if \(m \leq n \) (interior-point method); less with structure
Linear programming: example

The Chebyshev approximation problem:

\[
\text{minimize } \|Ax - b\|_\infty
\]

with \(x \in \mathbb{R}^n\), \(b \in \mathbb{R}^k\) and \(A \in \mathbb{R}^{k \times n}\). The problem is similar to the least-square problem, but with the \(\ell_\infty\)-norm replacing the \(\ell_2\)-norm:

\[
\|Ax - b\|_\infty = \max_{i=1,\ldots,k} |a_i^T x - b_i|
\]

where \(a_i \in \mathbb{R}^n\) is the \(i\)th column of \(A^T\).
Linear programming: example

The Chebyshev approximation problem:

$$\text{minimize } \|Ax - b\|_\infty$$

with $x \in \mathbb{R}^n$, $b \in \mathbb{R}^k$ and $A \in \mathbb{R}^{k \times n}$. The problem is similar to the least-square problem, but with the ℓ_∞-norm replacing the ℓ_2-norm:

$$\|Ax - b\|_\infty = \max_{i=1,\ldots,k} |a_i^T x - b_i|$$

where $a_i \in \mathbb{R}^n$ is the ith column of A^T.

An equivalent linear programming:

$$\min \ t$$

s.t. $a_i^T x - t \leq b_i, \ i = 1, \ldots, k$

$-a_i^T x - t \leq -b_i, \ i = 1, \ldots, k$
Convex optimization problems

\[
\text{minimize} \quad f_0(x) \\
\text{subject to} \quad f_i(x) \leq b_i, \quad i = 1, \ldots, m
\]

where \(x \in \mathbb{R}^n \).

- both objective and constraint functions are convex
 \[
f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]
 for any \(0 \leq \theta \leq 1 \), and any \(x \) and \(y \) in the domain of \(f_0 \) and \(f_i \) for all \(i \).
- includes least-square and linear programming problems as special cases.
- no analytical formula for solution
- reliable and efficient algorithms available
Topics to be covered

- Convex sets and convex functions
- Duality
- Unconstrained optimization
- Equality constrained optimization
- Interior-point methods
- Semidefinite programming
Brief history of optimization

- 1700s: theory for unconstrained optimization (Fermat, Newton, Euler)
- 1797: theory for equality constrained optimization (Lagrange)
- 1947: simplex method for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco, McCormick, Dikin, etc)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar)
- 1990s: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski)
- 1990-now: many new applications in engineering (control, signal processing, communications, etc); new problem classes (semidefinite and second-order cone programming, robust optimization, convex relaxation, etc)