CS295: Convex Optimization

Xiaohui Xie Department of Computer Science University of California, Irvine

Course information

- Prerequisites: multivariate calculus and linear algebra
- ► Textbook: Convex Optimization by Boyd and Vandenberghe
- Course website:

```
http://eee.uci.edu/wiki/index.php/CS_295_Convex_Optimization_(Winter_2011)
```

- Grading based on:
 - ▶ final exam (50%)
 - ▶ final project (50%)

Mathematical optimization

Mathematical **optimization problem**:

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq \mathbf{b}_i, \quad i = 1, \dots, m$

where

- $\mathbf{x} = (x_1, \cdots, x_n) \in \mathbb{R}^n$: optimization variables
- ▶ $f_0: \mathbb{R}^n \to \mathbb{R}$: objective function
- ▶ $f_i: \mathbb{R}^n \to \mathbb{R}$: constraint function

Optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints.

Examples

- transportation product transportation plan
- ▶ finance portfolio management
- machine learning support vector machines, graphical model structure learning

Transportation problem

We have a product that can be produced in amounts a_i at location i with $i=1,\cdots,m$. The product must be shipped to n destinations, in quantities b_j to destination j with $j=1,\cdots,n$. The amount shipped from origin i to destination j is x_{ij} , at a cost of c_{ij} per unit.

Transportation problem

We have a product that can be produced in amounts a_i at location i with $i=1,\cdots,m$. The product must be shipped to n destinations, in quantities b_j to destination j with $j=1,\cdots,n$. The amount shipped from origin i to destination j is x_{ij} , at a cost of c_{ij} per unit.

To find the transportation plan that minimizes the total cost, we solve an LP:

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij}$$
s. t.
$$\sum_{j=1}^{n} x_{ij} = a_{i} \quad i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = b_{j} \quad j = 1, \dots, n$$

$$x_{ij} \ge 0$$

Markowitz portfolio optimization

Consider a simple portfolio selection problem with n stocks held over a period of time:

- ▶ $\mathbf{x} = (x_1, \dots, x_n)$: the optimization variable with x_i denoting the amount to invest in stock i
- ▶ $\mathbf{p} = (p_1, \dots, p_n)$: a random vector with p_i denoting the reward from stock i. Suppose its mean μ and covariance matrix Σ are known.
- $\mathbf{r} = \mathbf{p}^T \mathbf{x}$: the overall return on the portfolio. r is a random variable with mean $\mu^T \mathbf{x}$ and variance $\mathbf{x}^T \Sigma \mathbf{x}$.

Markowitz portfolio optimization

The Markowitz portfolio optimization problem is the QP

min
$$\mathbf{x}^T \Sigma \mathbf{x}$$

s.t. $\mu^T \mathbf{x} \ge r_{\min}$
 $1^T x = B$
 $x_i \ge 0, \quad i = 1, \dots, n$

which find the portfolio that minimizes the return variance subject to three constraints:

- ightharpoonup achieving a minimum acceptable mean return r_{\min}
- satisfying the total budget B
- ▶ no short positions $(x_i \ge 0)$

Support vector machines (SVMs)

Input: a set of training data,

$$\mathcal{D} = \{ (\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathbb{R}^p, y_i \in \{-1, 1\}, i = 1, \cdots, n \}$$

where y_i is either 1 or -1, indicating the class to which \mathbf{x}_i belongs.

Problem: find the **optimal separating hyperplane** that separates the two classes and maximizes the distance to the closet point from either class.

Support vector machines (SVMs) 2

Define a hyperplane by $w^Tx - b = 0$. Suppose the training data are linearly separably. So we can find w and b such that $w^Tx_i - b \ge 1$ for all x_i from class 1 and $w^Tx_i - b \le -1$ for all x_i from class -1.

The distance between the two parallel hyperplans, $w^T x_i - b = 1$ and $w^T x_i - b = -1$, is $\frac{2}{\|w\|}$, called **margin**.

To find the optimal separating hyperplane, we choose w and b that maximize the margin:

min
$$||w||^2$$

s.t. $y_i(w^Tx_i - b) \ge 1$, $i = 1, \dots, n$

Undirected graphical models

Input: a set of training data,

$$\mathcal{D} = \{(\mathbf{x}_i) \mid \mathbf{x}_i \in \mathbb{R}^p \ i = 1, \cdots, n\}$$

Assume the data were sampled from a Gaussian graphical model with mean $\mu \in \mathbb{R}^p$ and covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$. The inverse covariance matrix, Σ^{-1} , encodes the structure of the graphical model in the sense that the variables i and j are connected only if the (i,j)-entry of Σ^{-1} is nonzero.

Problem: Find the maximum likelihood estimation of Σ^{-1} with a sparsity constraint, $\|\Sigma^{-1}\|_1 \leq \lambda$.

Undirected graphical models 2

Let S be the empirical covariance matrix:

$$S := \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^T.$$

Denote $\Theta = \Sigma^{-1}$.

The convex optimization problem:

$$\begin{aligned} \min & & -\log \det \Theta + \operatorname{tr}(S\Theta) \\ \text{s. t.} & & \|\Theta\|_1 \leq \lambda \\ & & \Theta \succ 0 \end{aligned}$$

Solving optimization problems

The optimization problem is in general difficult to solve: taking very long long time, or not always finding the solution

Exceptions: certain classes of problems can be solved efficiently:

- ► least-square problems
- linear programming problems
- convex optimization problems

Least-squares

minimize
$$||Ax - b||_2^2$$

where $x \in \mathbb{R}^n$, $b \in \mathbb{R}^k$ and $A \in \mathbb{R}^{k \times n}$.

- ▶ analytical solution: $x^* = (A^T A)^{-1} A^T b$ (assuming k > n and rank A = n)
- reliable and efficient algorithms available
- ▶ computational time proportional to n^2k , and can be further reduced if A has some special structure

Linear programming

min
$$c^T x$$

s.t. $a_i^T x \le b_i$, $i = 1, \dots, m$

where the optimization variable $x \in \mathbb{R}^n$, and $c, a_i, b_i \in \mathbb{R}^n$ are parameters.

- ▶ no analytical formula for solution
- reliable and efficient algorithms available (e.g., Dantzig's simplex method, interior-point method)
- ▶ computational time proportional to n^2m if $m \le n$ (interior-point method); less with structure

Linear programming: example

The Chebyshev approximation problem:

minimize
$$||Ax - b||_{\infty}$$

with $x \in \mathbb{R}^n$, $b \in \mathbb{R}^k$ and $A \in \mathbb{R}^{k \times n}$. The problem is similar to the least-square problem, but with the ℓ_{∞} -norm replacing the ℓ_2 -norm:

$$||Ax - b||_{\infty} = \max_{i=1,\cdots,k} |a_i^T x - b_i|$$

where $a_i \in R^n$ is the *i*th column of A^T .

Linear programming: example

The Chebyshev approximation problem:

minimize
$$||Ax - b||_{\infty}$$

with $x \in \mathbb{R}^n$, $b \in \mathbb{R}^k$ and $A \in \mathbb{R}^{k \times n}$. The problem is similar to the least-square problem, but with the ℓ_{∞} -norm replacing the ℓ_2 -norm:

$$||Ax - b||_{\infty} = \max_{i=1,\cdots,k} |a_i^T x - b_i|$$

where $a_i \in R^n$ is the *i*th column of A^T .

An equivalent linear programming:

min
$$t$$

s.t. $a_i^T x - t \le b_i$, $i = 1, \dots, k$
 $-a_i^T x - t \le -b_i$, $i = 1, \dots, k$

Convex optimization problems

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq \mathbf{b}_i$, $i = 1, \dots, m$

where $x \in \mathbb{R}^n$.

both objective and constraint functions are convex

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for any $0 \le \theta \le 1$, and any x and y in the domain of f_0 and f_i for all i.

- includes least-square and linear programming problems as special cases.
- no analytical formula for solution
- reliable and efficient algorithms available

Topics to be covered

- Convex sets and convex functions
- Duality
- Unconstrained optimization
- Equality constrained optimization
- Interior-point methods
- Semidefinite programming

Brief history of optimization

- ▶ 1700s: theory for unconstrained optimization (Fermat, Newton, Euler)
- ▶ 1797: theory for equality constrained optimization (Lagrange)
- ▶ 1947: simplex method for linear programming (Dantzig)
- ▶ 1960s: early interior-point methods (Fiacco, McCormick, Dikin, etc)
- ▶ 1970s: ellipsoid method and other subgradient methods
- ▶ 1980s: polynomial-time interior-point methods for linear programming (Karmarkar)
- ▶ 1990s: polynomial-time interior-point methods for nonlinear convex optimization (Nesterorv & Nemirovski)
- ▶ 1990-now: many new applications in engineering (control, signal processing, communications, etc); new problem classes (semidefinite and second-order cone programming, robust optimization, convex relaxation, etc)

