Optimality conditions
Optimization problems in standard form

$$\text{minimize } f_0(x)$$

subject to

$$f_i(x) \leq 0, \quad i = 1, \cdots, m$$

$$h_i(x) = 0, \quad i = 1, \cdots, p$$

- \(x = (x_1, \cdots, x_n) \in \mathbb{R}^n\): optimization variables
- \(f_0 : \mathbb{R}^n \rightarrow \mathbb{R}\): objective (or cost) function
- \(f_i : \mathbb{R}^n \rightarrow \mathbb{R}\): inequality constraint functions
- \(h_i : \mathbb{R}^n \rightarrow \mathbb{R}\): equality constraint functions
- feasible set:
 $$X = \{x \mid f_i(x) \leq 0, i = 1, \cdots, m, h_i(x) = 0, i = 1, \cdots, p\}$$

Optimal value:

$$p^* = \inf \{f_0(x) \mid f_i(x) \leq 0, i = 1, \cdots, m, h_i(x) = 0, i = 1, \cdots, p\}$$

- \(p^* = \infty\) if problem is infeasible
- \(p^* = -\infty\) if problem is unbounded below
Optimal and locally optimal points

\(x^* \) is an **optimal point** if \(x^* \) is feasible (i.e., satisfying the constraints) and \(f_0(x^*) = p^* \).

The **optimal set**, denoted \(X_{opt} \), is the set of all optimal points,

A feasible point \(x \) with \(f_0(x) \leq p^* + \epsilon \) (\(\epsilon > 0 \)) is called \(\epsilon \)-suboptimal

Definition (locally optimal)

A feasible point \(x \) is **locally optimal** if \(\exists R > 0 \) such that \(f(x) \leq f(y) \) for all feasible \(y \) that satisfies \(\|y - x\|_2 \leq R \). In other words, \(x \) solves

\[
\text{minimize } f_0(z) \\
\text{subject to } f_i(z) \leq 0, \quad i = 1, \cdots, m \\
h_i(z) = 0, \quad i = 1, \cdots, p \\
\|z - x\| \leq R
\]
Optimal and locally optimal points: examples

Examples (unconstrained problems):

- $f_0(x) = \frac{1}{x}$, $\text{dom } f_0 = \mathbb{R}^{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, $\text{dom } f_0 = \mathbb{R}^{++}$: $p^* = -\infty$, unbounded below
- $f_0(x) = x \log x$, $\text{dom } f_0 = \mathbb{R}^{++}$: $p^* = -1/e$, $x = 1/e$ is optimal
- $f_0(x) = x^3 - 3x$, $\text{dom } f_0 = \mathbb{R}$: $p^* = -\infty$, $x = 1$ is locally optimal
Local and global optima

Theorem

Any locally optimal point of a convex optimization problem is also (globally) optimal
Local and global optima

Theorem

Any locally optimal point of a convex optimization problem is also (globally) optimal

Proof.

Suppose \(x \) is locally optimal and \(y \neq x \) is globally optimal with \(f_0(y) < f_0(x) \).

\(x \) is locally optimal \(\implies \exists R > 0 \) such that

\[
\text{z is feasible, } \| z - x \|_2 \leq R \implies f_0(z) \geq f_0(x)
\]

Now consider \(z = \theta y + (1 - \theta)x \) with \(\theta = \frac{R}{2\| y - x \|_2} \)

\(\| y - x \|_2 > R \implies \theta \in (0, 1/2) \)

\(z \) is feasible since it is a convex combination of two feasible points

\(\| z - x \|_2 = R/2 \) and \(f_0(z) \leq \theta f_0(x) + (1 - \theta)f_0(y) < f_0(x) \), which contradicts the assumption that \(x \) is locally optimal

\(\square \)
An optimality criterion for differential f_0

Theorem

Suppose that f_0 in a convex optimization problem is differentiable. Let X denote the feasible set. Then x is optimal if and only if $x \in X$ and

$$\nabla f_0(x)^T (y - x) \geq 0 \quad \forall y \in X$$
An optimality criterion for differential f_0: proof

Proof.
Suppose $x \in X$. We need to prove

$$f_0(x) \leq f_0(y) \quad \forall y \in X \iff \nabla f_0(x)^T (y - x) \geq 0 \quad \forall y \in X$$

- To prove \iff, suppose $\nabla f_0(x)^T (y - x) \geq 0$ for all $y \in X$. Because f_0 is convex, for all $y \in X$,

$$f_0(y) \geq f_0(x) + \nabla f_0(x)^T (y - x) \geq f_0(x)$$

- To prove \iff, suppose x is optimal, but there exists a $y \in X$ with $\nabla f_0(x)^T (y - x) < 0$. Consider the point $z(t) = ty + (1 - t)x$ with $t \in [0, 1]$. Clearly $z(t) \in X$. Because

$$\lim_{t \to 0} \frac{f_0(z(t)) - f_0(x)}{t} = \nabla f_0(x)^T (y - x) < 0$$

For sufficiently small t, $f(z) < f(x)$, which contradicts our assumption that x is optimal.
An optimality criterion for differential f_0: some special cases

- **unconstrained problem**: x is optimal iff
 \[x \in \text{dom } f_0, \quad \nabla f_0(x) = 0 \]

- **equality constrained problem** ($Ax = b$): x is optimal iff $\exists \nu$ such that
 \[x \in \text{dom } f_0, \quad Ax = b, \quad \nabla f_0(x) + A^T \nu = 0 \]

- **minimization over nonnegative orthant** ($\min f_0(x)$ s.t. $x \succeq 0$): x is optimal iff
 \[x \in \text{dom } f_0, \quad x \succeq 0, \quad \nabla f_0(x) \succeq 0, \quad \nabla f_0(x)_ix_i = 0 \]
First-order optimality condition

Theorem (Optimality condition)

Suppose f_0 is differentiable and the feasible set X is convex.

- If x^* is a local minimum of f_0 over X, then
 \[\nabla f_0(x^*)^T(x - x^*) \geq 0, \quad \forall x \in X \]

- If f_0 is convex, then the above condition is also sufficient for x^* to minimize f_0 over X
Projection on a convex set

Let \(z \in R^n \) and \(K \subseteq R^n \) closed, convex set

Project problem:

\[
\begin{align*}
\text{minimize} & \quad f(x) = \|z - x\|_2^2 \\
\text{subject to} & \quad x \in K
\end{align*}
\]

denoted: find \(x^* = \text{Pr}_K(z) \)

Projection theorem:

- exists a unique \(x^* \in K \) solution to the problem; denote \([z]^+ = x^*\)
- \(x^* \) is the solution iff \((z - x^*)(x - x^*) \leq 0 \) for all \(x \in K \)
- the map \(g : R^n \rightarrow K \) with \(g(z) = [z]^+ \) is continuous, nonexpansive, i.e.,
 \[
 \| [z_1]^+ - [z_2]^+ \|_2 \leq \| z_1 - z_2 \|_2
 \]
Projection reformulation of optimality condition

First order optimality condition:

\[\nabla f_0(x^*)^T(x - x^*) \geq 0, \quad \forall x \in X \]

is equivalent to

find \(x^* \in X : x^* = \text{Pr}_K(x^* - \rho \nabla f(x^*)) \quad \rho > 0 \)
Theorem (Fritz John necessary conditions)

Let \bar{x} be a feasible solution of the standard form optimization problem. If \bar{x} is a local minimum, then there exists (u_0, u, v) such that

$$u_0 \nabla f_0(\bar{x}) + \sum_{i=1}^{m} u_i \nabla f_i(\bar{x}) + \sum_{i=1}^{p} v_i \nabla h_i(\bar{x}) = 0$$

$(u_0, u) \geq 0, (u_0, u, v) \neq 0$

$u_i f_i(\bar{x}) = 0, \quad i = 1, \ldots, m$
Theorem (KKT necessary conditions)

Let \bar{x} be a feasible solution of the standard form optimization problem and let $I = \{i \mid f_i(\bar{x}) = 0, i = 1, \cdots, m\}$. Suppose that $\nabla f_i(\bar{x})$ for $i \in I$ and $\nabla g_i(\bar{x})$ for $i = 1, \cdots, p$ are linearly independent. If \bar{x} is a local minimum, then there exists (u, v) such that

$$
\nabla f_0(\bar{x}) + \sum_{i=1}^{m} u_i \nabla f_i(\bar{x}) + \sum_{i=1}^{p} v_i \nabla h_i(\bar{x}) = 0
$$

$$
u \succeq 0, \quad u_if_i(\bar{x}) = 0, \quad i = 1, \cdots, m
$$
Sufficient conditions for optimality

The differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ with convex domain X is \textbf{pseudoconvex} if $\forall x, y \in X, \nabla f(x)^T(y - x) \geq 0$ implies $f(y) \geq f(x)$. (All differentiable convex functions are pseudoconvex.) Example: $x + x^3$ is pseudoconvex, but not convex

\textbf{Theorem (KKT sufficient conditions)}

Let \bar{x} be a feasible solution of the standard form optimization problem, and suppose it satisfies

$$ \nabla f_0(\bar{x}) + \sum_{i=1}^{m} u_i \nabla f_i(\bar{x}) + \sum_{i=1}^{p} v_i \nabla h_i(\bar{x}) = 0 $$

$$ u \succeq 0, \quad u_i f_i(\bar{x}) = 0, \quad i = 1, \cdots, m $$

If f_0 is pseudoconvex, $f_i(x)$ is quasiconvex for $i = 1, \cdots, m$, and $h_i(x)$ is linear, then \bar{x} is a global optimal solution.