Optimization problems

- Optimization problems in standard form
- ► Convex problems in standard form
- ▶ Some special problems

Optimization problems in standard form

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq 0$, $i = 1, \dots, m$
 $h_i(\mathbf{x}) = 0$, $i = 1, \dots, p$

- ▶ $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$: optimization variables
- ▶ $f_0: \mathbb{R}^n \to \mathbb{R}$: objective (or cost) function
- $f_i: \mathbb{R}^n \to \mathbb{R}$: inequality constraint functions
- ▶ $h_i: \mathbb{R}^n \to \mathbb{R}$: equality constraint functions

Optimal value:

$$p^* = \inf \{ f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p \}$$

- $p^* = \infty$ if problem is infeasible
- $p^* = -\infty$ if problem is unbounded below

Implicit contraints

The implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}$$

- $ightharpoonup \mathcal{D}$ is called the domain of the problem
- ▶ the constraints $f_i(x) \le 0$, $h_i(x) = 0$ are called explicit constraints
- ▶ a problem is unconstrained if it has no explicit constraints

Feasibility problems

find
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq 0, \quad i = 1, \cdots, m$
 $h_i(\mathbf{x}) = 0, \quad i = 1, \cdots, p$

can be considered as a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to
$$f_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m$$

 $h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p$

- $p^* = 0$ if the constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if the constraints are infeasible

Convex optimization problems

Convex optimization problems in standard form:

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq 0$, $i = 1, \dots, m$
 $a_i^T(\mathbf{z}) = b_i$, $i = 1, \dots, p$

- f_0, \dots, f_m are convex; equality constraints are affine
- equality constraints are often combined, written as Ax = b
- the feasible set is always convex

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Linear-fractional program

minimize
$$f_0(x) = \frac{c^T x + d}{e^T x + f}$$
 dom $f_0 = \{x \mid e^T x + f > 0\}$
subject to $Gx \leq h$
 $Ax = b$

Define variables $y = \frac{x}{e^T x + f}$ and $z = \frac{1}{e^T x + f}$. Then the problem can be transformed to a LP (variable y, z)

minimize
$$c^T y + dz$$

subject to $Gh \leq hz$
 $Ay = bz$
 $e^T y + fz = 1$
 $z > 0$

Quadratic program (QP)

minimize
$$\frac{1}{2}x^T P x + q^T x + r$$

subject to $Gx \leq h$
 $Ax = b$

- ▶ $P \in S_+^n$; the objective function is convex quadratic
- feasible set is a polyhedron

Quadratically constrained quadratic program (QCQP)

minimize
$$\frac{1}{2}x^T P_0 x + q_0^T x + r_0$$

subject to $\frac{1}{2}x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \dots, m$
 $Ax = b$

- ▶ $P_i \in S_+^n$; the objective and the constraints are convex quadratic
- ▶ if $P_1, \dots, P_m \in S_{++}^n$, feasible regions is intersection of m ellipsoids and an affine set

Second-order cone programming (SOCP)

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$
 $F x = g$

where $A_i \in R^{n_i \times n}$, $F \in R^{p \times n}$.

inequalities are called second-order cone (SOC) constraints:

$$(A_i x + b_i, c_i^T x + d_i) \in \text{ second-order cone in } R^{n_i+1}$$

▶ reduces to LP if $n_i = 0$; reduces to QCQP if $c_i = 0$

Geometric programming

monomial function

$$f(x) = cx_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}, \quad \text{dom } f = R_{++}^n$$

where c > 0, $\alpha_i \in R$

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{\alpha_{1k}} x_2^{\alpha_{2k}} \cdots x_n^{\alpha_{nk}}, \quad \text{dom } f = R_{++}^n$$

geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 1$, $i = 1, \dots, m$
 $h_i(x) = 1$, $i = 1, \dots, p$

with f_i posynomial, h_i monomial, where x > 0

Geometric programming in convex form

change variables to $y_i = \log x_i$, and take logarithm of objective, constraints

monomial function
$$f(x) = cx_1^{\alpha_1} \cdots x_n^{\alpha_n}$$
 transforms to $\log f(e^{y_1}, \cdots, e^{y_n}) = a^T y + b \quad (b = \log c)$

posynomial function $f(x) = \sum_{k=1}^{K} c_k x_1^{\alpha_{1k}} \cdots x_n^{\alpha_{nk}}$ transforms to

$$\log f(e^{y_1}, \cdots, e^{y_n}) = \log \left(\sum_{k=1}^K \exp(a_i^T y + b_i) \right) \quad (b_i = \log c_k)$$

geometric program (GP) transforms to convex problem

minimize
$$\log \left(\sum_{k=1}^{K} \exp(a_{0k}^T y + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{K} \exp(a_{ik}^T y + b_{ik}) \right) \leq 0, \quad i = 1, \dots, m$
 $Gy + d = 0$

Convex problem with generalized inequality constraints

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq_{K_i} 0$, $i = 1, \dots, m$
 $Ax = b$

where $f_0: \mathbb{R}^n \to \mathbb{R}$ convex; $f_i: \mathbb{R}^n \to \mathbb{R}^{k_i}$ K_i -convex wrt proper cone K_i .

- ▶ the feasible set is convex
- any locally optimal point is also globally optimal
- ightharpoonup the optimality condition for differential f_0 stays the same

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1 F_1 + \cdots + x_n F_n + G \leq 0$ $Ax = b$

with $G, F_1, \dots, F_n \in S^k$, and $A \in \mathbb{R}^{p \times n}$.

- ▶ inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints (by forming block diagonal matrices)

LP as SDP

LP: minimize
$$c^T x$$

subject to $Ax \leq b$

written as a SDP:

SDP: minimize $c^T x$ subject to diag $(Ax - b) \leq 0$

SOCP as SDP

SOCP: minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T X + d_i$, $i = 1, \dots, m$

written as a SDP:

$$\begin{split} \mathsf{SDP}: & & \mathsf{minimize} \quad f^T x \\ & & \mathsf{subject} \ \mathsf{to} \ \begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0, \quad i = 1, \cdots, m \end{split}$$