## READING: [FW] Chapters 1: Sections 1-4

EXERCISES: Hand in on Monday, April 3, 2011.

1. On a small island, 250 people have been exposed to an infectious disease. Consider an experiment which consists of determining the number $N$ of people on the island who have the disease.
a) What is the sample space of the experiment?
b) Will this space be an equiprobable space?
c) If $E$ is the event that $N \leq 50$, what is $E^{\text {c }}$ the complement of $E$ ?
d) If $A$ us the event $N \geq 40$, what are $\mathrm{A}^{\mathrm{c}}, A \cup E$ and $A \cap E$ ?
2. Show $P\left(E_{1} \cup E_{2}\right) \leq P\left(E_{1}\right)+P\left(E_{2}\right)$ for any two events $E_{\mathrm{k}}$, not necessarily elementary.
3. Show that the eigenvalues of $M^{T}$ is the same as that of $M$ and the eigenvector of the transition matrix $M^{T}$ is the transpose of the eigenvector of M .
4. If $\mathbf{x}(0)=\mathbf{p}$ is a probability vector, prove that $\mathbf{x}(n)=M^{\mathrm{n}} \mathbf{p}$ is also.
5. Prove that the product of two probability matrices is a probability matrix. In particular, any power of a probability matrix is a probability matrix.
6. If $M>\mathrm{O}$, show $\mathbf{y}=M \mathbf{x}>\mathbf{0}$ for any probability vector $\mathbf{x}$. $(A$ matrix $M>\mathrm{O}$ means that all elements of $M$ are positive. A vector $\mathbf{p}>\mathbf{0}$ means all components of the vector are positive.)
7. If $M$ is the transition matrix of a regular Markov chain and $\mathbf{x}(0)=\mathbf{p}$ is a probability vector, show that $\mathbf{x}(n)=M^{n} \mathbf{p}$ is a positive probability vector for sufficiently large $n$.
8. Obtain $\mathbf{x}(n)$ of the IVP for the first order linear system of difference equations $\mathbf{x}(n+1)=M \mathbf{x}(n)$, with $\mathbf{x}(0)=\mathbf{p}=$ $\left(p_{1}, 1-p_{1}\right)^{\mathrm{T}}$ and

$$
M=\left[\begin{array}{cc}
p_{d} & p_{q} \\
1-p_{d} & 1-p_{q}
\end{array}\right] .
$$

9. Determine the eigen-pairs of the transition matrix for the social mobility problem,

$$
M=\left[\begin{array}{lll}
0.6 & 0.1 & 0.1 \\
0.3 & 0.8 & 0.2 \\
0.1 & 0.1 & 0.7
\end{array}\right]
$$

and use it to solve the initial value problem with $\mathbf{x}(0)=\mathbf{c}=\left(c_{1}, c_{2}, c_{3}\right)^{\mathrm{T}}$.
10. Prove that the Markov chain defined by the transition matrix $A$ below is not a regular Markov Chain:

$$
A=\left[\begin{array}{ccccc}
1 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 1 / 2 & 1
\end{array}\right] .
$$

