READING: [FW] Ch. 2: Sec. 1-7.
EXERCISES: Hand in Problems 1-8 to Professor Xie on Monday, April 18, 2011.

1. The difference operator D is defined on $\left\{x(\mathrm{n}) \equiv x_{\mathrm{n}}\right\}$ with $D[x(\mathrm{n})]=x(\mathrm{n}+1)-x(\mathrm{n})=x_{\mathrm{n}+1}-x_{\mathrm{n}}$. Show
a) $D[\alpha x(n) \pm \beta y(n)]=\alpha D[x(n)] \pm \beta D[y(n)]$ (α and β are constants)
b) $D[x(\mathrm{n}) y(\mathrm{n})]=D[x(\mathrm{n})] y(\mathrm{n})+x(\mathrm{n}) D[y(\mathrm{n})]+D[x(\mathrm{n})] D[y(\mathrm{n})]$
c) $D[x(\mathrm{n}) / y(\mathrm{n})]=\{D[x(\mathrm{n})] y(\mathrm{n})-x(\mathrm{n}) D[y(\mathrm{n})]\} /[y(\mathrm{n})\{y(\mathrm{n})+D[y(\mathrm{n})]\}]$
2. With $x(0)=p$, solve the following IVP:
a) $x(n+1)=(n+1) x(n)$,
b) $x(n+1)=(n+1) x(n)+(n+2)$.
3. Solve the IVP; $\quad x(k+1)=\frac{x(k)}{\lambda+\alpha x(k)}, \quad x(0)=p \quad(\lambda$ and α are constants $)$.
4. Solve the IVP: $\quad x(n+1)-x(n)=\frac{2}{x(n+1)+x(n)}, \quad x(0)=p$.
5. Solve the IVP: $\quad x_{n+1}^{2}-3 x_{n+1} x_{n}+2 x_{n}^{2}=0, \quad x(0)=p .$.
6. Solve the IVP: $\quad x(n+1)=\sqrt{[x(n)]^{3}[x(n-1)]^{2}}, \quad x(0)=p, \quad x(1)=q$
7. Suppose in the two-allele Mendelian population model, only a fraction λ of the pure recessive genotype individuals does not participate in reproduction. Formulate a first order difference equation for the gene frequency q_{n} (with $p_{\mathrm{n}}=1-q_{\mathrm{n}}$).
8. The following questions pertain to the inbreeding model discussed during the April 7 lecture.
a) What is the initial probability distribution for the six possible states if the two parents are chosen at random for the normal populations? S
b) Formulate the transition matrix for the inbreeding model discussed in class.
c) Obtain the absorption matrix for this Markov chain.
