
Math 291B/CS295     Assignment VII        Spring, 2011 
 
READING: [FW] Ch. 7 and 8.  
EXERCISES:  With Problems 4 and 7 worth 20 points each, do enough problems to get 80 points 
and hand them by Wednesday, May 25, 2011. 
 
1.    Find the power spectral density of the following autocorrelation functions: 
 

! 

a)   C
XX

(" ) = e
#2$ "

,           b)   C
XX

(" ) =
1#

"

T
      (" < T)

0             (otherwise)

% 

& 
' 

( ' 
  

 
2.   Suppose ϕ is a random variable with characteristics function Φ(ω) = E[eiωϕ]  and    
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X(t) = cos(t +") .  Show that X(t) is stationary in the wide sense if and only if   
       Φ(1) = Φ(2) = 0.  
 
3.   (This problem is optional and may be used as a replacement for any of the other problems 
except Problem 4.)   Obtain by the PDE method of Liouville:  
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the density function px(x,t) of the solution process for the following scalar stochastic IVP: 
 
 a)   X ′ = aX ,     X(0) = X o ,          b) X ′ = aX 2,     X(0) = X o. 
 
 (Note that the solution for these two problems have already been obtained in class by the 
conventional method of Theorem 9 of Chapter 3.) 
 
4.  For the linear oscillator governed by the second order linear ODE 
 

! 

" " X (t) +# 2
X(t) = 0,       X(0) = X

0
,      " X (0) = V

0  
 
where  ω  is a known constant. 
 
a)  Write the IVP as one for a first order system  X′  = AX,  X(0) = (X 0, V 0)T for a vector process  

X(t) = (X 1 (t), X 2(t))T  by setting  X 1 = X  and X 2 = X  ′ and 
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fundamental matrix solution of the ODE is  
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b)  For the case where X 0 and V 0 are two random variables with a joint density function p(X o,V o),  
show that  
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pX (x, " x ;t) = p(x cos(#t) $#$1 " x sin(#t), #x sin(#t) + " x sin(#t).  
 

c)  Suppose X 0 and V 0 are i.i.d. Gaussian random variables with mean zero and variance 
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Show that 
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5.   

! 

" " X (t) + X(t) = f (t),       X(0) = " X (0) = 0 . 
 

a) Rewrite the IVP as a first order system in vector form  X′  = AX + F(t),  X(0) = (0,0)T for 
a vector process  X(t) = (X 1(t), X 2(t))T  by setting  X 1 = X  and X 2 = X  ′.  Obtain the 
matrix A and the random vector variable F(t)? 

b) Denote correlation matrix by [Cij(t1,t2)]  where Cij = CXi,Xj = < X(t1) XT(t2) >.   Show that  
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c) With  [Fij((t1,t2)] = < F(t1) XT(t2) >, show that  
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d) Express the elements of the matrices < F(t1) XT(t2) > and < F(t1) FT(t2) > in terms the 
components of F and X .  

 
6.   a)    For the stochastic IVP of Problem 5, obtain the following matrix ODE for the covariance  

matrix < X(t) XT(t) > = [Vij(t)] = V(t) and give the elements of F(t) in terms of the  
components of F and X. 

 

     b)   Show that F(t) is a known quantity if the stochastic forcing  f  is temporarily uncorrelated  
(i.e., delta correlated). 
 

7.   a)  The impulse response h(t,s) of the ODE above is its solution for f(t) = δ(t – s).  Show that   
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      b)  Verify that the solution of the IVP is
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  x(t) = h(t " s) f (s)ds
0
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      c)  The long time behavior of x(t) is taken to be
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x(t) = h(t " s) f (s)ds
"#

t

$ .  Suppose f(t) is a  

           wide sense stationary stochastic process with power spectral density F(ω).  Show that so  
           the (steady state) x(t). 

d) If  SX(ω) is the power spectral density of X (t).  Show that 
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2  where  
           H(iω) is the Fourier transform of h(t). 
 



8.  For a scalar ODE forced by a scalar Orstein-Uhlenbeck process U(t), we have the following 
stochastic IVP: 
 
 !X (t) = AX(t)+U(t),!!!!! !U (t) = "!U(t)+DW (t),!!!!!!!X(0) =U(0) = 0.  
 
With Y(t) = (X(t),U(t))T , obtain an IVP for the correlation matrix C
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for t1 > t2  .with the initial condition given in terms of the variance of Y(t). 
 
9.  Formulate an IVP for the variance V (t)!(=!<Y(t)YT

(t)>)  of  Y(t) . 


