READING: [FW] Ch. 7 and 8.
EXERCISES: With Problems 4 and 7 worth 20 points each, do enough problems to get 80 points and hand them by Wednesday, May 25, 2011.

1. Find the power spectral density of the following autocorrelation functions:
a) $C_{X X}(\tau)=e^{-2 \lambda|\tau|}$,
b) $C_{X X}(\tau)= \begin{cases}1-\frac{\tau}{T} & (|\tau|<T) \\ 0 & \text { (otherwise) }\end{cases}$
2. Suppose φ is a random variable with characteristics function $\Phi(\omega)=E\left[e^{\mathrm{i} \omega \varphi}\right]$ and $X(t)=\cos (t+\varphi)$. Show that $X(t)$ is stationary in the wide sense if and only if $\Phi(1)=\Phi(2)=0$.
3. (This problem is optional and may be used as a replacement for any of the other problems except Problem 4.) Obtain by the PDE method of Liouville:

$$
\frac{\partial p_{x}}{\partial t}+\sum_{k=1}^{n} \frac{\partial\left(p_{x} f_{k}\right)}{\partial x_{k}}=0, \quad p_{x}(\mathbf{x}, 0)=p\left(\mathbf{x}^{o}\right)
$$

the density function $p_{\mathrm{x}}(\mathbf{x}, t)$ of the solution process for the following scalar stochastic IVP:
a) $X^{\prime}=a X, \quad X(0)=X^{0}$,
b) $X^{\prime}=a X^{2}, \quad X(0)=X^{o}$.
(Note that the solution for these two problems have already been obtained in class by the conventional method of Theorem 9 of Chapter 3.)
4. For the linear oscillator governed by the second order linear ODE

$$
X^{\prime \prime}(t)+\omega^{2} X(t)=0, \quad X(0)=X^{0}, \quad X^{\prime}(0)=V^{0}
$$

where ω is a known constant.
a) Write the IVP as one for a first order system $\mathbf{X}^{\prime}=\mathrm{A} \mathbf{X}, \mathbf{X}(0)=\left(X^{0}, V^{0}\right)^{\mathrm{T}}$ for a vector process $\mathbf{X}(t)=\left(X_{1}(t), X_{2}(t)\right)^{\mathrm{T}}$ by setting $X_{1}=X$ and $X_{2}=X^{\prime}$ and $A=\left[\begin{array}{cc}0 & 1 \\ -\omega^{2} & 0\end{array}\right]$. Show that the fundamental matrix solution of the ODE is

$$
\Phi(t, 0)=\left[\begin{array}{cc}
\cos (\omega t) & \omega^{-1} \sin (\omega t) \\
-\omega \sin (\omega t) & \cos (\omega t)
\end{array}\right], \quad \Phi^{-1}(t, 0)=\left[\begin{array}{cc}
\cos (\omega t) & -\omega^{-1} \sin (\omega t) \\
\omega \sin (\omega t) & \cos (\omega t)
\end{array}\right]
$$

b) For the case where X^{0} and V^{0} are two random variables with a joint density function $p\left(X^{0}, V^{0}\right)$, show that

$$
p_{X}\left(x, x^{\prime} ; t\right)=p\left(x \cos (\omega t)-\omega^{-1} x^{\prime} \sin (\omega t), \omega x \sin (\omega t)+x^{\prime} \sin (\omega t)\right.
$$

c) Suppose X^{0} and V^{0} are i.i.d. Gaussian random variables with mean zero and variance $\sigma_{x 0}^{2}$ and $\sigma_{v 0}^{2}$, respectively. The joint density of these processes is then

$$
p\left(x^{o}, v^{o}\right)=\frac{1}{2 \pi \sigma_{x 0} \sigma_{v 0}} e^{-\frac{1}{2}\left(\frac{x^{o}}{\sigma_{x 0}}\right)^{2}} e^{-\frac{1}{2}\left(\frac{v^{o}}{\sigma_{v 0}}\right)^{2}}
$$

Show that

$$
\begin{gathered}
p\left(x, x^{\prime} ; t\right)=\frac{1}{2 \pi \sigma_{x} \sigma_{v}[1-\rho(t)]} e^{-g\left(x, x^{\prime} ; t\right) / 2 \sigma_{x x}^{2} \sigma_{v}^{2}\left[1-\rho^{2}(t)\right]} \\
\text { with } g\left(x, x^{\prime} ; t\right)=\left(x^{\prime}\right)^{2} \sigma_{x}^{2}+x^{2} \sigma_{v}^{2}-2 \rho(t) x x^{\prime} \sigma_{x} \sigma_{v} \\
\sigma_{x}^{2}(t)=\sigma_{x 0}^{2} \cos ^{2}(\omega t)+\sigma_{v 0}^{2} \omega^{-2} \sin ^{2}(\omega t) \\
\sigma_{v}^{2}(t)=\sigma_{v 0}^{2} \cos ^{2}(\omega t)+\sigma_{x 0}^{2} \omega^{2} \sin ^{2}(\omega t) \\
\rho(t)=\left(\sigma_{v 0}^{2}-\omega^{2} \sigma_{x 0}^{2}\right) \cos (\omega t) \sin (\omega t) / \omega \sigma_{x 0} \sigma_{v 0}
\end{gathered}
$$

5. $\quad X^{\prime \prime}(t)+X(t)=f(t), \quad X(0)=X^{\prime}(0)=0$.
a) Rewrite the IVP as a first order system in vector form $\mathbf{X}^{\prime}=\mathrm{AX}+\mathbf{F}(t), \mathbf{X}(0)=(0,0)^{\mathrm{T}}$ for a vector process $\mathbf{X}(t)=\left(X_{1}(t), X_{2}(t)\right)^{\mathrm{T}}$ by setting $X_{1}=X$ and $X_{2}=X^{\prime}$. Obtain the matrix A and the random vector variable $\mathbf{F}(\mathrm{t})$?
b) Denote correlation matrix by $\left[C_{\mathrm{ij}}\left(t_{1}, t_{2}\right)\right]$ where $\left.C_{\mathrm{ij}}=\mathrm{C}_{\mathrm{Xi}, \mathrm{Xj}}=<\mathbf{X}\left(t_{1}\right) \mathbf{X}^{\mathrm{T}}\left(t_{2}\right)\right\rangle$. Show that

$$
\frac{\partial\left[C_{i j}\left(t_{1}, t_{2}\right)\right]}{\partial t_{1}}=A\left[C_{i j}\left(t_{1}, t_{2}\right)\right]+<\mathbf{F}\left(t_{1}\right) \mathbf{X}^{T}\left(t_{2}\right)>.
$$

c) With $\left[F_{\mathrm{ij}}\left(\left(t_{1}, t_{2}\right)\right]=<\mathbf{F}\left(t_{1}\right) \mathbf{X}^{\mathrm{T}}\left(t_{2}\right)>\right.$, show that

$$
\frac{\partial\left[F_{i j}\left(t_{1}, t_{2}\right)\right]}{\partial t_{2}}=A\left[F_{i j}\left(t_{1}, t_{2}\right)\right]+\left\langle\mathbf{F}\left(t_{1}\right) \mathbf{F}^{T}\left(t_{2}\right)\right\rangle
$$

d) Express the elements of the matrices $\left.<\mathbf{F}\left(t_{1}\right) \mathbf{X}^{\mathbf{T}}\left(t_{2}\right)\right\rangle$ and $\left.<\mathbf{F}\left(t_{1}\right) \mathbf{F}^{\mathbf{T}}\left(t_{2}\right)\right\rangle$ in terms the components of \mathbf{F} and \mathbf{X}.
6. a) For the stochastic IVP of Problem 5, obtain the following matrix ODE for the covariance matrix $\left\langle\mathbf{X}(t) \mathbf{X}^{\mathrm{T}}(t)\right\rangle=\left[\mathrm{V}_{\mathrm{ij}}(\mathrm{t})\right]=\mathrm{V}(\mathrm{t})$ and give the elements of $F(t)$ in terms of the components of \mathbf{F} and \mathbf{X}.

$$
\frac{d V}{d t}=A V+V A^{T}+F(t)
$$

b) Show that $\mathrm{F}(t)$ is a known quantity if the stochastic forcing f is temporarily uncorrelated (i.e., delta correlated).
7. a) The impulse response $h(t, s)$ of the ODE above is its solution for $f(t)=\delta(t-s)$. Show that

$$
h(t, s)=h(t-s)=\left\{\begin{array}{cc}
0 & (t<s) \\
\sin (t-s) & (t>s)
\end{array}\right.
$$

b) Verify that the solution of the IVP is $x(t)=\int_{0}^{t} h(t-s) f(s) d s$.
c) The long time behavior of $x(t)$ is taken to be $x(t)=\int_{-\infty}^{t} h(t-s) f(s) d s$. Suppose $f(t)$ is a wide sense stationary stochastic process with power spectral density $F(\omega)$. Show that so the (steady state) $x(t)$.
d) If $S_{\mathrm{X}}(\omega)$ is the power spectral density of $X(\mathrm{t})$. Show that $S_{X}(\omega)=S_{F}(\omega)|H(i \omega)|^{2}$ where $H(\mathrm{i} \omega)$ is the Fourier transform of $h(t)$.
8. For a scalar ODE forced by a scalar Orstein-Uhlenbeck process $U(t)$, we have the following stochastic IVP:

$$
X^{\prime}(t)=A X(t)+U(t), \quad U^{\prime}(t)=-\alpha U(t)+D W(t), \quad X(0)=U(0)=0
$$

With $\mathbf{Y}(t)=(X(t), U(t))^{T}$, obtain an IVP for the correlation matrix $C_{Y Y}\left(t_{1}, t_{2}\right)=<\mathbf{Y}\left(t_{1}\right) \mathbf{Y}^{T}\left(t_{2}\right)>$ for $t_{1}>t_{2}$. with the initial condition given in terms of the variance of $\mathbf{Y}(t)$.
9. Formulate an IVP for the variance $V(t)\left(=<\mathbf{Y}(t) \mathbf{Y}^{T}(t)>\right)$ of $\mathbf{Y}(t)$.

