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Preface

The course name for Math 227, Mathematical Biology, is somewhat a misnomer.
The course is not so much about quantitative aspects of biology, though there will
be a little bit of that; rather its main goal is to acquaint students with some
basic mathematical and computational techniques useful in quantitative studies of
biological phenomena. It is necessary to know about these mathematical techniques
before we can see how they are used in biology, not to mention doing research in
mathematical and computational biology.

Math 227C is about basic mathematical and statistical techniques for studying
stochastic processes governed by di!erential (and di!erence) equations (or SDE for
stochastic di!erential equations). Roughly, SDE are di!erential equations, ordinary
or partial, that involve uncertainties.

Di!erential equations, ordinary or partial, are important in the quantitative
studies in science and engineering. Natural and social phenomena are generally
governed by certain fundamental principles or laws. Newton’s laws of motion for
deformable bodies and Maxwell theory of electromagnetism are two most prominent
examples of phenomena governed by partial di!erential equations. Many phenom-
ena in developmental biology involve both mass action kinetics and di!usion and
are governed by partial di!erential equations of the reaction-di!usion type. These
equations are typical of parabolic PDE. The steady state problem associated with
reaction-di!usion equations give rise to a new class of PDE known as elliptic equa-
tions. Parabolic PDE, elliptic PDE and a third class of PDE known as hyperbolic
PDE require di!erent mathematical and computational techniques for extracting
information about their solutions and the phenomena they model.

Math 227C is concerned with some basic (analytical and computational) so-
lution techniques for, and conceptual issues associated with ODE and PDE in-
volving uncertainties (with the term stochasticity often used to characterized this
feature). Many important analytical and computational techniques for the study
of such equations feature reduction of SDE to conventional (deterministic) di!eren-
tial equations from which information is to be extracted about the solution of the
original SDE. As such, a good working knowledge of conventional ODE and PDE
is indispensable to take advantage of these techniques. Even the highly computa-
tional Monte Carlo simulation methods are not exempted from this constraint.
While advances in our knowledge of SDE were more recent compared to the con-
ventional PDE, there is still more valuable results than we can convey in a quarter
course. As such we will have to be

• Selective in our choice of material and topics in SDE proper
• Judicious in proofs and details to be included
• Sparse in biological applications that require a great of set up cost
Because of these and other constraints, it is di"cult to nd a textbook
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vi PREFACE

for the intended purpose of this course and the chosen curriculum. The
text by N. G. van Kampen [9] was chosen not because it is ideal; rather
it has many of the topics to be included in our course curriculum (even
if it may take di!erent approaches to these topics). For this reason, it
has been designated as a principal reference. Much of the actual reading
assignments for a good part of Math 227C however will be from the course
notes in the ensuing pages. They are intended to provide a framework
for the readers to acquire the basic information in the prescribed course
curriculum including material not in [9]. In particular, the notes often
states the simpler mathematical results to be learned and applied in fu-
ture work, with the readers asked to justify its validity with appropriate
references provided to assist them on this task. (In the extreme case, this
would mean coming up with the proof for a theorem.) It has been doc-
umented by research in learning that students learn better by an active
learning process..
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Discrete Stochastic Processes





CHAPTER 1

Markov Chains and Linear Di"erence Equations

1. Elementary Probability

1.1. Terminology. It is human nature and necessity to make predictions. It
is likely to rain tomorrow (so we should bring along rain gears when we go out).
It is highly unlikely that I can ll an inside straight (so I should drop out from this
poker hand before losing more money). These and other similar assertions reect
the speaker’s expectation of what is likely to happen based on past experience
under similar (even better yet, identical) circumstances. The role of scientists and
mathematicians is to quantify and make precise such vague predictions and others
involving more complex observed phenomena and executable procedures. We begin
to do this for phenomena and procedures with discrete outcomes, e.g., rain or no
rain and drawing one of the available cards (not already drawn previously) to ll
an inside straight, by introducing some informal terminology and agreeing to their
meaning throughout the ensuing developments.

An experiment is a procedure that can be repeated or a phenomenon that
recurs, possibly with di!erent (well-dened) outcomes in either case even under the
same "setting". Mechanical ipping of a coin (by some machine) under the same
ambience to come up with a head (!) or a tail (" ) is another example. What
constitutes "same setting" may vary from experiment to experiment and is to be
specied in the context of the problem.

A trial of an experiment is one implementation or execution of the procedure
or one observation of the phenomenon in question. All possible outcomes of a trial
is called the sample space of the experiment denoted by #. The sample space of
the coin ipping experiment consists of exactly two elements, $1 = ! and $2 = "
so that # = {$1% $2} = {!%"}& Throwing a dice (or a "die" if you should prefer)
with its faces numbered from 1 to 6 is another experiment with a sample space #
consisting of six elements {1&2% 3% 4% 5% 6} ! {$1% $2% &&&&% $6} in the set #.

An elementary event of an experiment is any of the individual outcomes of
the experiment. For coin ipping, ! and " are the two elementary events of the
experiment; for single dice rolling, 1% 2% 3% 4% 5 and 6 are its six elementary events.

For some problems, we may be interested in combinations of elementary events.
In the single die rolling experiment, we may be interested in betting on an outcome
of an even number, i.e., the event '1 = {2 or 4 or 6}& Other combinations of
elementary events may be of interest: '2 = {an odd number}, '3 = {1 or 4} (=
{a number in red} in some special colored die), etc. An event '! is any subset of
the elementary events, i.e., any subset of the elements in the sample space #. We
have ( = 1% 2% 3% &&&& when there are more than one distinctly di!erent such subsets.

Among the events of an experiment, some are rather special and deserve to be
singled out. One is an event that is certain to occur, called the certain event.

3



4 1. MARKOV CHAINS AND LINEAR DIFFERENCE EQUATIONS

The event ' = {either ! or "}, or ' = {!} " {"} in set notations, is a certain
event. The complement of an event ' relative to its sample space # (or another
event '0) is denoted by '".(= ##' or '0#'). The complement of a certain event
is an impossible event (or a null event) denoted by !. The event {neither !
nor "} cannot occur and is an impossible event.

The notion of a union of two events such as ' = {!} " {"} can be extended
to a collection of events {'1% '2% '3% &&&&% '#} denoted by: ' = '1 " '2 "'3&&&&& =
"#!=1'!. The intersection ' of two events such as '1 = {2 or 4 or 6}and '3 = {1
or 4}, denoted by ' = '1 $ '3, requires both event to occur and hence ' =
{4}. The intersection of the same ) events {'1% '2% '3% &&&&% '#} is denoted by '
= '1 $ '2 $ '3 $ &&&&& = $#!=1'!.

In this chapter, we will be concerned only with experiments that have a nite
number of outcomes so that its sample space has only a nite number of elementary
events. These experiments are said to have a nite sample space. Flipping a coin
and drawing a card from the regular deck of 52 cards are experiments with a nite
sample space.

For an experiment with elementary events that are equally likely to occur,
their sample space is said to be equiprobable. If there are ) elementary events
in the sample space, then the fraction of a particular outcome occurring from a
large number of repeated trials is expected to be approximately 1*) . That is,
if you roll an unbiased die a large number of time, say + (= 60% 000 for example),
the number of times a "5" turns up is expected to be close to ,5 = 10% 000 with
,5*+ = 1*6 in the limit as +%&. Since the die is unbiased, the same would be
true for any other face number so that ,$*+ = 1*6 for any elementary event $.

More generally, relative frequency of an elementary event $ from + trials
of an experiment is ,$*+ where ,$ is the number of times $ occurred. For
an equiprobable sample space, we expect ,$*+ % 1*) as + % && We call
this limiting fraction of occurrence (for an innite number of repeated trials) the
probability of the (elementary) event $, denoted by - ($).

Some elementary properties of - ($) include:
(a) 0 ' - ($) ' 1
(b) If # = {$1% $2% &&&&% $#} (where $!’s are elementary events), then we

have

- ($1) + &&&&& + - ($#) =
#X

%=1

- ($%) = 1&

(c) If ' = $1 " $2, then - (') = - ($1) + - ($2)&
(d) If all ) elementary events {$!} in a sample space # are equally probable
(from relative frequency data, by intuition, or by assumption), then
- ($!) = 1*) for all ( = 1% 2% &&&&&%) .

(e) - (#) = 1 and - (#") = - (!) = 0.

1.2. Some Properties of Probabilities. In these notes, the elementary
events of a particular experiment are usually equally probable unless specically
stated otherwise. In practice, we need to nd a way to estimate - ($!) if a relative
frequency calculation is not practical.

The following property is su"ciently signicant to be designated as a theorem
in most text:

Theorem 1. - ('1 " '2) = - ('1) + - ('2)# - ('1 $ '2)
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Proof. The proof is a combined application of properties (c) and the fact that
the probability of an elementary event should not be counted more than once. ¤

Example 1. The probability of a "3" turn up in a roll of a fair dice is P(3) =
1/6. The probability of getting an even number is - (2 " 4 " 6) = - (2)+- (4)+
- (6) = 1*6 + 1*6 + 1*6 = 1*2 since the three events (of rolling a 2, 4 or 6) are
elementary event and are mutually exclusive.

Corollary 1. If '1 and '2 are mutually exclusive so that '1$ '2 = !% then
- ('1 " '2) = - ('1) + - ('2)&

Corollary 2. - ('") = 1# - (').

Corollary 3. If all ) elementary events of a nite sample space # are
equally probable, and if ' is an event in #, then - (') = .&*) where .& is the
number of distinct elementary events in '.

Definition 1. Suppose the elementary events of a nite sample space are ex-
pressible in terms of numerical values. The expected value of the experiment,
denoted by '[/] or 0, is dened to be

(1.1) '[$] = $1- ($1) +$2- ($2) + · · · · · +$!- ($! )&

Example 2. The six possible outcomes of rolling a dice may be assigned the
numerical values of 1% 2% &&&&% 6 respectively. For a fair die with all faces equally
probable so that - ($!) = 1*6, the expected value of the experiment is 0 = '[/] =
3&5&

Remark 1. An expected value of an experiment whose elementary events are
not numerical values can also be dened once we assign to each $! a distinct
numerical value 1!. For a fair coin, we may assign 0 to the event of a head
turning up and 1 to a tail each with probability 1*2. In that case we have
0 = '[/] = 1*2 · 11 + 1*2 · 12 = 1*2 · (1 + 0) = 0&5. Of course, we can also assign
1 to a tail and 2 to a tail, in which case 0 = '[/] = 1&5. The di!erence between
these expected value is of no real consequences.

2. Discrete Markov Processes and Markov Chains

In the introductory discussion of probability pertaining to a concurrently re-
peatable experiment, it is implicitly assumed that the outcome of each repetition
of the experiment is completely random and independent of the previous trials. Of
interest here are phenomena that evolve with time and have memory. The simplest
of these are Markov processes whose outcome of the trial or observation in the next
instance is inuenced only by the outcomes of recent past trial(s), possibly only
in theory or in thought experiments. We limit our discussion rst to the class of
Markov processes that have the following characteristics:

• The observations of the phenomenon (or the trials of the repeatable ex-
periment) are made in discrete times, a generation, a year, a day, or a
second at a time.

• There are only the same nite number of possible outcomes for each trial
or observation, and hence only ) mutually exclusive elementary events.

• The evolving phenomenon has very short memory with the outcome of a
particular trial or observation depends only on the outcome of the previous
trial/observation and no others.
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• The dependence of the outcome of the current observation on the outcome
of the immediate past observation is linear.

The successive outcomes observed (at discrete instance of time) may be re-
garded as the state of an observable phenomenon that changes with time. The
restricted class of such phenomena specied by the bulletted conditions are known
as rst order (nite) Markov chains, While many biological phenomena (including
membrane channel opening and closing and gene sequencing) may be modeled as
Markov chains for a deeper understanding of these phenomena, the following simple
example illustrates the nature of such evolving processes:

Example 3. Consider the following coin-tossing process involving (the same)
two coins, a dime and a quarter. The rules of the game require that the dime is
tossed next if a head turns up and the quarter next for a tail. Due to the di!erent
engraved patterns on the two sides, the coins are not fair coins. Since the patterns
on the coin faces are di!erent, the probability of getting a head for the dime is
2' (obtained as the limit of repeated tossing of the same coin with each outcome
independent of the outcomes of past tosses). Similarly, the probability of getting
a head for the quarter is 2(& Correspondingly, the probability of getting a tail is
1 # 2( for the dime and 1 # 2( for the quarter, respectively). We are interested
here in whether the dime or quarter would be tossed next after Nth time units.
Mathematically, we would like to know the probabilities of getting to toss each of
the two coins at the +)* toss.

Before discussing other examples, we note that, for this example, the probability
associated with getting a head or a tail from any toss of either coin is determined
by the relative frequency of tossing the same coin and is independent of previous
tosses. But the probability of getting to toss the dime (or the quarter) next does
depend on the outcome of the just completed toss. If we just tossed the dime, then
the probability that we should toss the dime again would be 2' (corresponding to
tossing the dime to get a head allowing us to toss the dime again next). On the
other hand, if the quarter has just been tossed, then the probability of tossing the
dime next would be 2( (corresponding to tossing the quarter to get a head allowing
a toss of the dime next). To obtain answers to the question asked at the end of the
statement of the problem above and others, we take the two possible elementary
event associated with the outcome of a coin toss to be $1 = tossing the dime next
and $2 = tossing the quarter next (with the state of the evolving phenomenon at
any given instance in time being one of these elementary events) and record below
the various probability mentioned in the form of a transition matrix 3 between
the states of consecutive tosses:

(++ 1))* 4566\+)* 4566 dime quarter

dime
quarter

!
2'

1# 2'
2(

1# 2(

¸
=3(2.1)

Let the 71 and 72 be the components of x(+) = (71(+)% 72(+))
+ (with the

superscript " denoting the transpose of a matrix) corresponding to the probability
of tossing a dime and a quarter, respectively, at the +)* toss. The evolution of the
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probability distribution for the states of the game is governed by

(2.2) x(++ 1) =3x(+)% (+ = 0% 1% 2% &&&&)%

where the transition matrix3 is as given in (??), The initial vector x(0) = (1% 0)+

then corresponds to the sure toss of the dime at the start. At the next instance,
+ = 1% we have

x(1) =3x(0) =3

µ
1
0

¶
=

µ
2'

1# 2'

¶

with the components of the vector for x(1) giving the probability of a dime and
quarter for the next toss (designated as the rst or + = 1 toss by our notation),
respectively. At the next instance (+ = 2), we have

x(2) =3x(1) =32

µ
1
0

¶
=

µ
22' + 2((1# 2')

(1# 2')(2' + 1# 2()

¶
&

giving the probability of tossing a dime and a quarter respectively for the next
(second or + = 2) toss. If we continue the process and determine x(3)% x(4)% · · ·· ,
we can get the distribution of the probability x(+) at any future time + among the
state of the evolving phenomenon (of tossing the two coins according the rules set
in Example 3), known as the probability distribution of the phenomenon for brevity.

Before we investigate further the properties of x(+), it is important to observe
that all the elements of the column vectors x(0)%x(1)%x(2)% &&&& and the elements of
the transition matrix 3 are all nonnegative (consistent with the fact that they are
probabilities) and the elements of each column sum up to 1 (consistent with property
(e) of elementary probability that - (#) = 1). Motivated by these observations and
the properties of elementary probabilities discussed in the rst section, we introduce
the following denitions to be used in the rest of Part I of these notes:

Definition 2. A probability vector is column vector p = (21% 22% &&&&% 2,)
+

with 0 ' 2% ' 1 and 21 + 22 + &&&&+ 2, = 1&

Definition 3. A transition matrix of a Markov chain (and more gen-
erally a probability matrix) is an , ×, matrix 3 with each of its , columns
being a probability vector.

It should be noted that some writers prefer to work with probability vectors
in row vector form y(+) = (81(+)% &&&&% 8,(+)). The transition matrix in that case
corresponds to the transpose of the transition matrix here and the state of the
evolving phenomenon is then governed by the relation

y(++ 1) = y(+)3+ % (+ = 0% 1% 2% &&&&)

instead of (2.2).

Exercise 1. Show that the eigenvalues of 3+ is the same as that of 3 and
the eigenvector of the transition matrix 3+ is the transpose of the eigenvector of
3 .

Exercise 2. If x(0) = p is a probability vector, then so is x(+) =3-p&

Lemma 1. Product of two probability matrices is a probability matrix. In
particular, any power of a probability matrix is a probability matrix.

Proof. (Exercise) ¤
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Definition 4. A matrix 3 is a power-positive if all elements of 3% are
positive for all . ( .. ( 0.

Exercise 3. If 3 9 :, show y = 3x 9 0 for any probability vector x. (A
matrix 3 9 : means that all elements of 3 are positive. A vector p 9 0 means
all components of the vector are positive.)

3. Linear Di"erence Equations

As + increases, the expression for x(+) is seen to become unwieldy. It is
desirable to have some simple expression for x(+) for general +. For the simple
example in the last section, we may write the matrix relation (2.2) as the following
two linear algebraic equations:

(3.1) 71(++1) = 2'71(+)+2(72(+)% 72(++1) = (1#2')71(+)+(1#2()72(+)&

Since 2( 9 0% we may solve the rst equation for 72(+) and use the result to
eliminate 72 from the second to get

(3.2) 71(++ 2)# (1 + 2' # 2()71(++ 1) + (2' # 2()71(+) = 0&

Since 2' and 2( do not depend on +, we have a single linear second order (ordinary)
di!erence equation with constant coe"cients. The solution of such an equation
is known to be proportion to some constant to a power: 71(+) = ;<- for some
constant < to be determined by the di!erence equation.(3.2). Upon substituting
the expression into (3.2), we obtain:

;<-
£
<2 # (1 + 2' # 2()<+ (2' # 2()

¤
= 0

With ; 9 0 and < 9 0 for a nontrivial solution, we nd that < must satisfy the
quadratic equation:

<2 # (1 + 2' # 2()<+ (2' # 2() = 0%

or
<1 = 1% <2 = 2' # 2(&

By superposition, the general solution of the di!erence equation for 71 is then

71(+) = ;1<
-
1 + ;2<

-
2 = ;1 + ;2(2' # 2()

-&

Correspondingly, the second component of x(+) can be computed from the rst
equation of (3.1). Since 2( 9 0, we get

72(+) =
1

2(
[71(++ 1)# 2'71(+)] &

Together with the solution for 71(+), we haveµ
71(+)
72(+)

¶
= $1

µ
2(

1# 2'

¶
+$2(2' # 2()-

µ
1
#1

¶
&

The two constants of integration $1 = ;1*2( and $2 = ;2 are to be determined by
the initial probability distribution x(0). For x(0) = (1% 0)+ , we have

$1

µ
2(

1# 2'

¶
+$2

µ
1
#1

¶
=

µ
1
0

¶

which can be solved to give

$1 =
1

1# 2' + 2(
% $2 =

1# 2'
1# 2' + 2(
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so that

(3.3)
µ
71(+)
72(+)

¶
=

1

1# 2' + 2(

½µ
2(

1# 2'

¶
+

µ
1# 2'
#1 + 2'

¶
(2' # 2()-

¾

Given 0 = 2'% 2( = 1% we have |2' # 2(| = 1 and therewith

(3.4) lim
-!"

[x(+)] =
1

1# 2' + 2(

µ
2(

1# 2'

¶
! x"&

Remark 2. For Markov chains with a large number of states, it would be
impractical to reduce the linear system to a single linear di!erence equation for one
unknown. It is more e"cient to obtain the solution corresponding to (3.3) by way
of the eigen-pairs of the transition matrix (see exercise).

4. Regular Markov Chains

A discrete stochastic process governed by (2.2) with3 = > is a Markov chain
(MC) with every column of > qualies as a probability vector. But such a Markov
chain is not very interesting as its states do not evolve with time. The following
more interesting class of MC, known as regular MC, excludes chains with an identity
transition matrix but includes the MC for the coin problem in Example 3.

Definition 5. A Markov Chain is regular if its ,×, transition matrix 3
is a power-positive probability matrix.

For the coin problem of Example 3, it is easily veried that should we take
x(0) = (0% 1)+ , we would get instead of (3.3),

$1 =
1

1# 2' + 2(
% $2 = #

2(
1# 2' + 2(

and

(4.1)
µ
71(+)
72(+)

¶
=

1

1# 2' + 2(

½µ
2(

1# 2'

¶
+

µ
#2(
2(

¶
(2' # 2()-

¾
&

with the same limiting behavior (3.4) as +%&. In fact, it is easy to show for this
example that the limiting value of x(+) is the same for any initial distribution x(0)&
To see that this very special property and related ones are shared more generally,
we consider below another example that is easier to described and for which the
results are easier to interpret.

Example 4. (Social Mobility) From data compiled by government census, it
is known that a fraction of the o!springs of families in a particular income group
becomes signicantly more wealthy and another fraction becomes signicantly less
well o! with the rest not doing any better or worse. To gain some insight to the
properties of regular Markov chains, suppose we simply divide up families into high
($1), middle ($2) and low ($3) low income groups to get the following transition
matrix characterizing a highly simplied summary of the census data:
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generation
(++ 1))*\+)* high middle low

(4.2)

high
middle
low

"

#
0&6
0&3
0&1

0&1
0&8
0&1

0&1
0&2
0&7

$

% =3(4.3)

The transition matrix (4.3) tells us that 3*5 of families in high income group
remain in that bracket after one generation, 3*10 drop to the middle income bracket
and 1*10 drops more drastically to the low income bracket. Correspondingly, only
1*10 of the families in the middle income bracket moves up to the high income
bracket, another 1*10 drops to the low income group while the remaining 4*5
remain in the same income group after one generation. The fractional changes in
income bracket of the low income families after one generation can be read o! the
last column of 3 . Assume for the present discussion that these fractional changes
remain the same from generations to generations.

Compared to the coin tossing problem, the number of states have increased
from 2 to 3 and we have concrete numerical values for the various transition prob-
abilities. Still, the basic structure of the transition matrix remains the same. All
the columns are probability vectors and 3 itself is a positive matrix. A routine
calculations similar to the coin tossing problem (after reducing the three linear
di!erence equations to a single third order linear di!erence equation) shows that
x(+) % x" = (0&2% 0&55% 0&25)+ (after normalization to a probability vector) as
+ % &, again independent of the initial distribution x(0) = c. These and other
properties will be seen to persist for regular Markov chains

For a regular Markov chain with , distinct states, it is rather cumbersome to
reduce the system of linear di!erence equations to a single higher order di!erence
equation to be solved by the method of the previous section. It is simpler to
work with the transition matrix form of the problem starting from some initial
distribution x(0) = c:

(4.4) x(++ 1) =3x(+)% x(0) = c &

Lemma 2. If 3 is the transition matrix of a regular MC and x(0) = p is a
probability vector, then x(+) is a positive probability vector for su"ciently large +.

Proof. (exercise) ¤

The following theorem is the principal result for regular MC. Its proof will be
given in an appendix of this section.

Theorem 2. As + % &, the vectors {x(+)} of a regular Markov chain con-
verges to a limiting vector x" .

Proof. (see Appendix of this section). ¤

Furthermore, if x(0) = p is a probability vector, the limiting probability distri-
bution vector x" will be shown to be the same for all initial distribution and hence
independent of p (see Theorem 3). It follows that x" is unique and asymptoti-
cally stable (analogous to the asymptotic stability of a critical point of a dynamical
systems).
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In the form of a matrix problem, the limit behavior of the regular Markov chain
corresponds to a xed point of the evolving process:

(4.5) x" =3x"&

In the language of matrices, we x" is an eigenvector of the eigenvalue < = 1 of
the transition matrix 3 . It is easy to show that < = 1 is an eigenvalue of 3 for
all Markov chains:

Lemma 3. < = 1 is always an eigenvalue of the transition matrix 3 of a
Markov chain (not necessarily regular) with an associated eigenvector x" which
may be so scaled so that its elements sum to unity.

Proof. Let $ = 3 # >. Then all the rows of $ sum to give a zero row.
Hence zero is an eigenvalue of $ or < = 1 is an eigenvalue of 3 with eigenvector
;v. Choose ;= 1*

P,
!=1 ?! and take x" = ;v& ¤

Lemma 4. All eigenvalues of 3 must be ' 1 in magnitude.

Proof. Suppose < is an eigenvalue of 3 and |<| 9 1& Let {<%y} be an eigen-
pair of 3+ (since < is also an eigenvalue of 3+ as shown in Assignment I). Let
max,!=1[|8!|] = @/ 9 0 Then it follows from 3+y = !y that

|<8/ | = |<|@/ =

¯̄
¯̄
¯

,X

%=1

3%/8%

¯̄
¯̄
¯ ' @/

,X

%=1

3%/ = @/

or |<| ' 1&
¤

Exercise 4. Determine the eigen-pairs of the transition matrix for the so-
cial mobility problem and use it to solve the initial value problem with x(0) =
c = (;1% ;2% ;3)

+ &

We can also show that < = 1 is the only eigenvalue of unit magnitude.

Lemma 5. For a regular MC, there is no complex eigenvalues with |<| = 1&

Proof. Again we take 3 to be positive to reduce the details of the proof.
Suppose A should be a complex eigenvalue of unit magnitude and B = ? + (C is
an associated eigenvector with both ? and C real. Let ; be su"ciently large so
that both ? + ;x" and C + ;x" are both positive vectors (assuming that x" is a
probability vector to be proved later in this section). .It follows that

3(? + (C + ;(1 + ()x") = A(? + (C) + ;(1 + ()x"

with

(4.6) 3-(? + (C + ;(1 + ()x") = A
-(? + (C) + ;(1 + ()x"&

As + %&% we have from Theorem 2

3-(? + (C + ;(1 + ()x") = 3-((? + ;x") + ((C + ;x"))

= 3-(? + ;x") + (3
-(C + ;x")

% Dx" + (Ex"

For |A| = 1% 3-(? + (C) = A-(? + (C) converges as + %& only if A = 1. ¤
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Given the three lemmas above (showing only one eigenvalue < = 1 and all
others with |<| = 1) and the convergence theorem (Theorem 2), there is at least one
limiting distribution x". We still need to show that x" is unique and independent
of x(0).

Theorem 3. Suppose that a regular Markov chain satises (4.4) with a limiting
probability distribution x". Then x" is independent of the initial distribution
x(0) = c (and hence is unique).

Proof. For simplicity, we prove the theorem for 3 9 : (and leave the more
general case as an exercise). Let probability vectors x" and y" be two limiting
distributions corresponding to two initial distributions c and d (which may be
di!erent or the same). Let z" = x"#Dy" with D chosen so that z" has at least
one zero component with all the others positive. Since x" and y" are both xed
points of 3 , we have

3z" =3x" # D3y" = x" # Dy" = z"

But by a previous exercise, we have,(with3 9 :)3z" 9 0, contradicting the fact
that z" on the right hand side has a zero component unless z" = x"#Dy" = 0 or
x" = Dy". In that case, we must have D = 1 as x" and y" are both probability
vectors. It follows that there can only be the same limiting distribution x" for
any two initial distributions (di!erent or not). ¤

Corollary 4. The limiting distribution x" is unique and asymptotically sta-
ble.

Proof. The corollary is a consequence of the fact that x" is independent of
the initial distribution. ¤

Summary 1. 1) A Markov Chain with an , × , transition matrix 3 is
regular if 3% 9 : for all . ( .. ( 1&
2) If x(0) = p is a probability vector, then, for a regular Markov chain, x(+) =
3-p is a positive probability when + is su"ciently large&
3) For a regular Markov chain, x(+) % a limiting (steady state) distribution x"
which is independent of the initial distribution x(0) = p. Hence x" is unique
and asymptotically stable.
4) With 3x" = x", the limit distribution x" is a xed point of 3 and can be
determined by the eigenvector v(1) of 3 for the eigenvalue <1 = 1 with x" = ;v(1)

where ; is chosen so that x" is a probability vector.
5) The transient distribution x(+) can be found by solving the linear rst order
di!erence equation system for which it can be shown directly that except for <1 = 1,
all other eigenvalues of 3 have less than unit modulus, i.e., |<%| = 1, 1 = . ' ,.
(In particular, there are no complex eigenvalues with a unit modulus.)

5. Absorbing Markov Chains

Regular Markov chains constitute an important class of nite stochastic processes
in applications. There are however other Markov chains that are also prevalent in
science and engineering. In this section, we examine the class of absorbing chains
that are characteristically di!erent from regular Markov chains..

Definition 6. A state in a Markov chain is an absorbing state if it is im-
possible to leave it.
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Definition 7. A Markov chain is said to be an absorbing MC if (i) it has at
least one absorbing state, and ii) from every state it is possible go to an absorbing
state (not necessarily in one step).

Theorem 4. In an absorbing Markov chain, it is a certainty that the process
will end up in one of the absorbing states.

Proof. (sketched) From a non-absorbing state #/ , let +/ be the minimum
number of steps required to reach an absorbing state. Let 2/ = 1 be the probability
that starting from #/ the process does not reach an absorbing state in +/ steps.
Let + = max[+/ ] and 2 = max[2/ ]& The probability of not reaching an absorbing
state in + steps is less than 2, in 2+ steps is less than 22, etc. In general, the
probability of not reaching an absorbing state in . · + steps is less than 2%. Since
2 = 1 (given that the Markov chain is absorbing), the probability of not reaching
an absorbing state tends to zero as . %&. ¤

For an absorbing Markov chain, there are at least three interesting problems: 1)
What is the probability of the process would end up in a particular absorbing state?
2) On the average, how "long" will it take for the process to reach an absorbing
state starting from a non-absorbing state (also known as a transient state)? and 3)
on the average, how many times the process be in each non-absorbing state?

5.1. Gambler’s Ruin. To learn more about absorbing Markov chains, we
consider here the classical problem of a gambler’s ruin in playing the following
(fair) coin tossing game. Suppose Player 1 has $2 and Player 2 has $3 at the start
of the game. Each time a fair coin is tossed and a H turns up, Player 1 takes $1
from Player 2. If a T turns up, Player 1 gives Player 2 $1. The game ends when
one of the players loses all his/her capital ($). The obvious question of interest is
what happens to this game eventually? Intuitively, Player 1 who has less initial
capital will probably lose. More specically, if the game is played many times, it
is expected that Player 1 would lose more often than not. How can we substantiate
this expectation, i.e. how can we prove it mathematically? Can we formulate a
mathematical problem for this simple game that can be extended to more general
and complicated problems of this type?

To illustrate a Markov chain approach to this class of problems, we begin by
letting the state #(+) (or #- interchangeably) at period (stage) + be the total of
Player 1’s capital after + tosses, designated as period or stage +. There are six
possible states corresponding to the six elementary events {$0% $1% $2% $3% $4% $5}
at each stage.

F0G5H0 +)*4566
$0 $1 $2 $3 #4 $5

$G40H +)*4566

$0
$1
$2
$3
$4
$5

"

&&&&&&#

1 1
2 0 0 0 0

0 0 1
2 0 0 0

0 1
2 0 1

2 0 0
0 0 1

2 0 1
2 0

0 0 0 1
2 0 0

0 0 0 0 1
2 1

$

''''''%
! - = [2!/ ]

with - being the transition matrix of the Markov chain which relates the
state of (++ 1))* stage to that of the +)* stage. More specically, let x(+) =
(71(+)% 72(+)% 73(+)% &&&&)

+ be the distribution vector of the probability of Player
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1’s capital being in the di!erent elementary events. Then the corresponding dis-
tribution vector in the next stage is given by the Markov chain

(5.1) x(++ 1) = -x(+) &

P is clearly a probability matrix since 2!/ ( 0 and
P#

!=1 2!/ = 1 where ) = 6 in
our particular example of the Gambler’s ruin.

The transition relation (5.1) between consecutive states is again a system of
linear di!erence equations. The solution of the initial value problem (IVP) for this
system provides complete information about the evolution of the game with time.
However, some useful observations can be made even before solving the IVP.

(1) < = 1 is again seen to be an eigenvalue of the transition matrix - above
since the rows of the matrix - # > sum up to a zero row.

(2) - is not a power positive matrix (see exercise).
(3) There is more than one equilibrium states since x(1) = (1% 0% 0% 0% 0% 0)+

and x(2) = (0% 0% 0% 0% 0% 1)+ are both xed points of (5.1).

As such, the Markov chain with transition matrix - is not a regular Markov
chain. To the extent that it has absorbing states and hence an absorbing Markov
chain, we expect the behavior of such chain will be di!erent from those of regular
Markov chains.

5.2. Solution of IVP. To motivate some further developments that will un-
cover these di!erences, we work out presently a simpler version of the same problem
with Player 1 having $1 and Player 2 having $2 so that there are four elementary
events in the sample space at each stage: {$0% $1% $2% $3} with a transition matrix
given by

(5.2) - = [2!/ ] =

"

&&#

1 1
2 0 0

0 0 1
2 0

0 1
2 0 0

0 0 1
2 1

$

''% &

The solution of the linear system of di!erence equations

x(++ 1) = -x(+)% x(0) = p

is given in terms of the eigen-pairs of the matrix - with the eigenvalues being the
roots of |- # <>| = (<# 1)2(<2 # 1

4) = 0 . Unlike regular Markov chains, < = 1 is
double root of the characteristic equation for the eigenvalues. Fortunately, - still
has the full set of eigenvectors. The eigen-pairs are:

{1% (1% 0% 0% 0)+ }% {1% (0% 0% 0% 1)+}% {
1

2
% (1%#1%#1% 1% )+}% {#

1

2
% (1%#3% 3%#1)+}

with the eigenvectors determined up to a multiplicative constant. The general
solution of the system x(+ + 1) = -x(+) with the transition matrix (5.2) may be
taken as

x(+) = ;1

(

))*

1
0
0
0

+

,,- (1)
- + ;2

(

))*

0
0
0
1

+

,,- (1)
- + ;3

(

))*

1
#1
#1
1

+

,,- (
1

2
)- + ;4

(

))*

1
#3
3
#1

+

,,- (#
1

2
)-
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where the constants {;%} are determined by the initial probability distribution
x(0) = p = (21% 22% 23% 24)

+ :

x(0) =

"

&&#

1 0 1 1
0 0 #1 #3
0 0 #1 3
0 1 1 #1

$

''%

(

))*

;1
;2
;3
;4

+

,,- =

(

))*

21
22
23
24

+

,,-

or

c =

µ
1

3
(321 + 222 + 23)%

1

3
(22 + 223 + 324)%#

1

3
(22 + 23)%

1

6
(23 # 22)

¶+
&

In the limit as + %&% we get

(5.3) lim
-!"

x(+) =
1

3

(

))*

321 + 222 + 23
0
0

22 + 223 + 324

+

,,- = x"&

which may written as

(5.4) x" =

"

&&#

1 2
3

1
3 0

0 0 0 0
0 0 0 0
0 1

3
2
3 1

$

''%

(

))*

21
22
23
24

+

,,- =3"p&

The solution (5.3) of the IVP provides the answer to the rst question posed in the
introductory paragraph of this section on Absorbing Markov chains. It gives the
probability for the process ending up in a particular absorbing state:

• If x(0) = p =(1% 0% 0% 0)+ and (0% 0% 0% 1)+ we get x" = (1% 0% 0% 0)+ and
(0% 0% 0% 1)+ , respectively. (For these initial distributions, the solution
of the di!erence equations merely re-a"rms that the system will remain
(forever) in a particular absorbing state if it is already in that absorbing
state initially. It is more interesting when the system is not in an absorbing
state initially.)

• If p =(0% 1% 0% 0)+ , then x" = ( 23 % 0% 0%
1
3)
+ with the system ending in (ab-

sorbing) state 1 with probability 2*3 and in (absorbing) state 2 with prob-
ability 1*3.

• On the other hand, if p =(0% 0% 1% 0)+ , then x" = ( 13 % 0% 0%
2
3)
+ with the sys-

tem ending in (absorbing) state 1 with probability 1*3 and in (absorbing)
state 2 with probability 2*3 instead.

• If p =1
4(1% 1% 1% 1)

+ , then x" = (12 % 0% 0%
1
2)
+ with the system equally likely

to reach either absorbing state.
Evidently, equilibrium distributions for other initial distributions can also be

easily read o! the solution of the IVP (5.3) or (5.4). It is also evident that the
solution contains more information than we need. In particular, we do need (5.3)
or (5.4) to know that the game will remain in an absorbing once it is reached. Is it
necessary to expend the e!ort to solve the IVP to obtain information no needed in
practice. If all we need are the consequences of not starting in an absorbing state,
is there a simpler or more e"cient method to get them without solving the IVP?
Would a reduction of the amount of information sought lead to a more attractive
packaging of the needed information? We will work toward some answers to these
question in the next section.
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6. Canonical Transition and Absorption Matrix

To the extent that it is unnecessary to analyze what happens to the evolving
Markov chain if the starting state is an absorbing state, it seems natural to re-order
and re-label the elementary events so that the non-absorbing states take more of
the center stage. We illustrate this re-ordering/re-labelling process using again the
example of the last subsection. In the previous subsection, we order the elementary
event by

$1 $2 $3 $4
$0 $1 $2 $3

To highlight the non-absorbing states, we re-ordered the elementary events as

$#1 $#2 $#3 $#4
$1 $2 $0 $3

with
$#1 = $2 $#2 = $3 $#3 = $1 $#4 = $4 &
For this new labelling of the possible states, the transition matrix for the corre-
sponding probability distribution is taken to be

(6.1) y(++ 1) = - #y(+)

where

- # =

"

&&#

1
2 0 0 0
0 1

2 0 0
0 1

2 1 0
1
2 0 0 1

$

''% !
!
I :
J >

¸

with

I =

!
0 1

2
1
2 0

¸
% J =

!
1
2 0
0 1

2

¸
.

As consequences of all the absorbing states being relegated to the last half
of the grouping elementary events, the matrix > is the identity matrix and the
matrix : is the zero matrix, reecting the fact that the game (ends and hence)
cannot leave any of these states once in it. Also with the rst part of the group
being non-absorbing (also known as transient) states, the elements of I = [H!/ ] and
J = [K!/ ] are less than unity, i.e.,

0 ' H!/ = 1% 0 ' K!/ = 1&

The transition relation (6.1) requires

y(2) = - #y(1) = [- #]2 y(0) = [- #]2 p# =

!
I2 :

J(I+ >) >

¸
p#

and, by induction,

y(+) = [- #]
-
p# =

!
I- :

J(I-$1 +I-$2 + &&&+ I+ >) >

¸
p#&
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As + %&, y(+) approaches the following limit:

lim
-!"

[y(+)] =

!
lim-!" [I

-] :
J(> #I)$1 >

¸
p# =

!
: :
$ >

¸µ
q-
q0

¶

where

(6.2) $ = J(> #I)$1

is called the absorption probability matrix of the absorbing Markov chain. The two
sub-vectors q- and q0 correspond to the initial distribution for the non-absorbing
states and absorbing states, respectively. It follows that

lim
-!"

[y(+)] =

µ
0

$q- + q0

¶
=

µ
0

$q-

¶
+

µ
0

q0

¶
&

The result is consistent with Theorem 4 and delineating explicitly why the
lower half of the vector equation is the truly informative part of the result.

For the transition matrix (5.2), this identies the lower half of the limiting
distribution,

lim
-!"

!
83(+)
84(+)

¸
= $q- + q0 = $

µ
2#1
2#2

¶
+

µ
2#3
2#4

¶
= $

µ
22
23

¶
+

µ
21
24

¶

as the principal information sought for the problem. The 2× 2 absorption matrix
$ is easily calculated to be

$ =

!
2*3 1*3
1*3 2*3

¸

and therewith

(6.3) lim
-!"

!
83(+)
84(+)

¸
= lim
-!"

µ
71(+)

74(+)

¶
=
1

3

µ
321 + 222 + 23
22 + 223 + 324

¶

which was just a condensed version of the complete solution (5.3) with all the
inessentials omitted. Moreover, we now obtain it by performing simple algebraic
operations on the 2 × 2 matrices I and # and not having to solve any matrix
eigenvalue problem for the much larger original transition matrix. More generally,
the reduction of computational e!ort depends on the size of the transition matrix
and the number of absorbing states involved, the fewer the number of absorbing
states the more substantial the reduction.

7. Expected Transient Stops to an Absorbing State

There is more than improved computational e"ciency and reduction of inessen-
tials to the alternate form of the limiting distribution given in (6.3). The absorption
matrix actually provides answers to the two remaining questions posed at the end
of the paragraph after Theorem 4 (the rst already answered by the limit distribu-
tion (5.3) through the solution of the IVP or (6.3) with the help of the absorption
matrix (6.2)). We show below how the absorption matrix also provides the answer
to the question: Starting from one of its transient states, how many transient stops
does the absorbing chain make on the average before reaching an absorbing state ?
The answer to the other question will also be obtained in the process.

Suppose the given absorbing Markov chain is in a transient state '! initially.
Let 6!/ be the expected number of stops the absorbing chain makes at a particular
transient state '/ before it reaches an absorbing state. If ( 6= L, the chain can
reach the state '/ on the rst trial with probability 2!/ . If not, it may reach '/ in
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the second trial with probability
P
2!121/ .by passing through any one intermediate

transient state '1% for D = 1% 2% &&&%,- (with ,- = the number of transient states)
on the rst trial. If not, it may reach '/ in the third trial with probabilityPP

2!121222/ and so on. If ( = L, the chain is already in '/ with probability 1.
Altogether, starting from in '!, the expected number of stops the chain makes in
'/ is therefore

(7.1) 6!/ = 1+2!/+
,"X

1=1

2!121/+

,"X

1=1

,"X

2=1

2!121222/+

,"X

1=1

,"X

2=1

,"X

3=1

2!121222323/+ ····

It gives the number of times, on the average, the absorbing chain dwells in the
particular non-absorbing state '/ when the chain starts from '!. The expected
number of stops (for all initial transient states) the chain makes in '/ is the sum
of 6!/ over (:

#̄/ (= '[$]) =

,"X

1=1

61/ &

As we allow ( and L to range over all the transient states, the relation (7.1) may
be written in terms of the two ,- ×,- matrices # = [6!/ ] and I = [2!/ ] as

# = > +I+I2 +I3 ÷ · · · · ·

To simplify the expression for #, we form I# = I+I2 +I3 + · · ·· = # # > to
get > = (> #I)# or

# = (> #I)$1&
The (expected) transient stop matrix # provides the answer to our original question.
Let

#! =

,"X

%=1

6%! = 61! + 62! + 63! + · · · ·+6,"!&

Evidently, starting at the transient state '!, the sum #! is the expected number
of transient stops incurred by the absorbing chain prior to reaching an absorbing
state. This expected number is the sum of the ()* column of the matrix (> #I)$1.

8. Appendix - Proof of Theorem 2

Below is a proof of Theorem 2: For a regular Markov chain with an , × ,
transition matrix 3 = [,!/ ] and any initial probability distribution x(0) = p,
there exists a probability vector x" to which the sequence of probability vectors
{x(+) = 3-p} converges as + % &. With no loss in generality, we give a proof
for the case 3 9 0.

Form q+3-p = p+ (3+ )-q = p+c for an arbitrary (probability) vector q 6= 0
and set w(+) = (3+ )-q. It su"ces to show that w(+) = (3+ )-q converges as +
%& for any vector q&

Now w(+) satises the di!erence equation

w(++ 1) =3+w(+)% w(0) = q &

For each +, let B(+) be the largest component of w(+) and ?(B) the smallest. Since

C!(++ 1) =
,X

/=1

,/!C/(+)
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and since ,!/ ( 0 and
P,

/=1,/! = 1 for ( = 1% 2% &&&&%,, it follows that

B(++ 1) ' B(+)% ?(++ 1) ( ?(+)&

Therefore {B(+)} is a monotone decreasing sequence bounded from below by zero;
and {?(+)} is a monotone increasing sequence bounded from above by 1, respec-
tively. Hence, both converge to a limit, denoted by B" and ?", respectively. Our
goal is to show B" = ?" as we will do below.

With no loss in generality, let B(+) be the rst component of w(+)% i.e., B(+) =
C1(+) (and hence ( 6= 1). In that case, we have

?(++ 1) = C!(++ 1) =
,X

/=1

,/!C/(+) =
,X

/=2

,/!C/(+) + (,11 # M)C1(+) + MB(+)

(
,X

/=2

,/!?(+) + (,11 # M)?(+) + MB(+) = (1# M)?(+) + MB(+)&

where M = min[,.(] ' 1*2 for , ( 2 (and M 9 0 since 3 is a positive matrix).
Similarly, we have also

B(++ 1) ' (1# M)B(+) + M?(+)&

Combining these two inequalities gives

B(++ 1)# ?(++ 1) ' (1# 2M) [B(+)# ?(+)] ' (1# 2M)- [B(0)# ?(0)] &

Keeping in mind that 0 = M ' 1*2 so that 0 ' 1 # 2M = 1% the di!erence
[B(+)# ?(+)]% 0 as + %& so that B" = ?" in the limit.

Thus, not only the two sequences {B(+)}and {?(+)} converge, they both con-
verge to the same limit resulting in

(8.1) lim
-!"

w(+) = (3+ )-q = C"(1% 1% &&&% 1)
+

where we have denote by C" the two equal limits B" and ?". Since q is nite and
arbitrary, the power matrix (3+ )- = (3-)+ converges and 3- % a well-dened
3̄ . (The .)* column of the limiting matrix 3̄ corresponds to the limiting vector
(8.1) for q = ("1%% "2%% &&&% ",%)

+
)&





CHAPTER 2

Nonlinear Markov Processes

1. Mendelian Genetics and Di"erence Equation

While much more can be said about rst (or higher) order Markov chain, results
are more di"cult to obtain for nonlinear discrete stochastic processes. This chapter
starts with one well-known problem of this type, the simplest type of genetics
problem, to illustrate the di!erence of these processes from Markov chains. Some
techniques for solving nonlinear di!erence equation ensue.

Genetics is a branch of biological science that investigates the mechanism for
passing physiological traits from one generation to the next. Genetic analysis
predates Gregor Mendel, but Mendel introduced a number of innovations to the
science of genetics. They enabled him to formulate laws that provide the theoretical
basis of our understanding of the genetics of inheritance. Briey, Mendel concluded
that the hereditary determinants are of a particulate nature. These determinants
are called genes.

To start, we limit our discussion rst to the inheritance of physical traits with
two phenotypes: Either you are an albino or you are not; either the surface of
an object is wrinkled or it is smooth. (Other physical traits such as the color of
your eyes have more than two phenotypes.) Each parent has a pair of genes (or
gene pair) in each cell for each trait of interest. Each of these two genes can be of
one of two phenotypes, denoted by N (for dominant) and I (for recessive), though
$ and 1 are sometimes used instead by some writer. So a gene pair can be one of
the three genotypes: D = (N%N)% H = (N%I) = (I%N) and R = (I%I)&

Below are some terminology in Mendelian genetics:

• Allele is one alternative form of a given allelic pair; wrinkled and smooth
are the alleles for the surface appearance of an organ. (More than two
alleles can exist for any specic gene, but only two of them will be found
within any individual.)

• Allelic pair is the combination of two alleles which comprise the gene
pair

• Homozygote is an individual which contains only one allele at the allelic
pair; for example NN is homozygous dominant and II is homozygous
recessive; pure lines are homozygous for the gene of interest

• Heterozygote is an individual which contains one of each member of the
gene pair; for example the NI heterozygote

• Genotype is the specic allelic combination for a certain gene or set of
genes

• An allele of a gene is dominant if an organism of genotype D is indistin-
guishable from one of the genotype H

21
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• An allele of a gene is recessive if an organism of genotype R appear to
be di!erent from one of the genotype H

For example, for the gene controlling sickle cell anemia, an individual with
(I%I) pair would show severe anemia while neither a D (dominant) genotype nor
a H (hybrid) genotype shows such a trait. The genotypes themselves are called
dominant, hybrid and recessive, respectively.

In the simplest setting, a gene is drawn for the gene pair of a trait from each of
two parents, male and female, to form the genotype of the o!spring for this trait.
Allele frequencies in a population is to be the same across generations; the static
allele frequencies e!ectively assumes: no mutation (the alleles don’t change), no mi-
gration or emigration (no exchange of alleles between populations), innitely large
population size, and no selective pressure for or against any genotypes. Genotype
frequencies is also to be static while mating is random.

Together, the two alleles comprise the gene pair. With each o!spring gene pair
containing one member of each parent’s gene pair in accordance with Mendel’s two
laws of genetics:

Mendel’s First Law - The Law of Segregation: For the pair of alleles an
o!spring has of some gene (or at some genetic locus), one is a copy of a randomly
chosen one in the father, and the other is a copy of a randomly chosen one in the
mother.

Mendel’s Second Law - The Law of Independent Assortment: Each allele
of a parent’s allelic pair has an equal chance to be the one copied for the o!spring,
and that the copying of alleles to di!erent o!spring or from di!erent parents are
independent.

(Today, we know that some genes are in fact "linked" and are inherited together,
but for the most part Mendel’s laws have proved surprisingly robust.)

Let (M% 2O% H) be the probability of the o!spring be of the dominant, hybrid
and recessive genotype, respectively. The distribution of the three probabilities
evidently depends of the genotypes of the two parents. Below is a table of distri-
butions for the di!erent combinations of parent genotypes with the explanations
given in bullets to follow:

,\G (N%N) (N%I) (I%I)
(N%N) (1&0% 0) (12 %

1
2 % 0) (0% 1% 0)

(N%I) ( 12 %
1
2 % 0) (14 %

1
2 %

1
4 ) (0% 12 %

1
2)

(I%I) (0% 1% 0) (0% 12 %
1
2) (0% 0% 1)

(??)

• If the genotypes of both parents are dominant, denoted by D, and R4

(with the subscript m and f indicating male and female, respectively), it
is certain that the genotype of the o!spring will be dominant and hence
(M% 2O% H) = (1% 0% 0).

• Similarly the genotype of the o!spring will be recessive with (M% 2O% H) =
(0% 0% 1), if the genotypes of the parents are R, and R4 .

• If the genotypes of the two parents are i) D, and H4 , respectively, or ii)
D4 and H,, respectively, then the o!spring genotype would be D (with
probability 1·12 =

1
2) or H (with probability 1·12 =

1
2)% corresponding
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to the entry (12 %
1
2 % 0) in the rst super- and sub-diagonal position of the

matrix (??).
• The o!spring genotype from parents of genotypes iii) R, and H4 , re-
spectively, or ii) R4 and H,, respectively, are similarly R and H% both
with probability 1·12 = &

1
2 , giving the entry (0%

1
2 %

1
2) in the last super- and

sub-diagonal position of the table (??).&

This leaves the complicated case of both parents being of the hybrid genotype,
H, and H4 % each containing one allele for the dominant phenotype and one for the
recessive phenotype. To get a dominant genotype o!spring, we need a dominant
allele from each parent. Each of these occurs with a probability of 12 resulting in a
probability of H = 1

4 the event of a dominant o!spring. Similarly, the probability
of a recessive genotype o!spring is also M = 1

4 . For a hybrid o!spring, we can get it
in two ways: a dominant allele from the "male" parent and a recessive allele from
the "female" parent and the mirror image of this construction. Each of these two
elementary events is with a probability of 14 totaling to a probability of 2O =

1
2 for a

hybrid genotype o!spring. Altogether, the probability distribution for the genotype
o!spring of a pair of hybrid (genotype) parents is (M% 2O% H)+ = ( 14 %

1
2 %

1
4)
+ )&as shown

in the center box of the table above.

2. Hardy-Weinberg Stability Theorem

In evolutionary biology, we are interested more than just the next gen-
eration o!springs but multi-generational evolution of the genotypes of o!springs.
Starting with an initial distribution of "0 = (M0% 2O0% H0)+ % the genotype of subse-
quent generations is not determined by a Markov Chain, "-+1 6= 3"-, where
we now use a subscripted variable, 7-% instead of the previous form of 7(+). For
example, a dominant o!spring in the (++1))* generation given the +)* generation
probability distribution vector "- = (M-% 2O-% H-)

+ can come from combinations
of dominant or hybrid parents. The probability of a dominant allele from the
male parent of the +)* generation is 1 · M- +1

2 · (2O-); the same is true for the
female parent. Together, they give the probability of M-+1 = (M- + O-)

2 for a
dominant genotype o!spring. Similarly, the probability of a recessive genotype
o!spring is H-+1 = (H- + O-)

2 & On the other hand, we can get a hybrid o!spring
in two ways. One is to get a dominant allele from the male parent with proba-
bility (M- + O-) and a recessive allele from the female parent with a probability
(H- + O-) so that the probability of a hybrid genotype o!spring from this combi-
nation is (M- + O-) (H- + O-) & Now, we can also get a hybrid o!spring through a
dominant allele from the female parent and a recessive allele from the male parent
with the same probability so that.2O-+1 = 2 (M- + O-) (H- + O-) & These obser-
vations are summarized as the following systems of three di!erence equations:

M-+1 = (M- + O-)
2 %

2O-+1 = 2 (M- + O-) (H- + O-) %(2.1)

H-+1 = (H- + O-)
2
&

Unlike Markov chains, the di!erence equations that govern the probability distrib-
ution "- = (M-% 2O-% H-)+ are not linear and solutions of the form ;<- is generally
not applicable. In fact, there are much less general methods for analyzing the
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solution of nonlinear di!erence equations (even less than the corresponding linear
ODE).

For the present nonlinear system (2.1), we note that of solution for

M1 = (M0 + O0)
2 %

2O1 = 2 (M0 + O0) (H0 + O0) %(2.2)

H1 = (H0 + O0)
2
&

and

M2 = (M1 + O1)
2
=
h
(M0 + O0)

2
+ (M0 + O0) (H0 + O0)

i2

= (M0 + O0)
2 [(M0 + O0) + (H0 + O0)]

2 = (M0 + O0)
2 &(2.3)

Similarly, we have

2O2 = 2 (M1 + O1) (H1 + O1)

= 2
h
(M0 + O0)

2 + (M0 + O0) (H0 + O0)
i h
(H0 + O0)

2 + (M0 + O0) (H0 + O0)
i2

(2.4)

= 2 (M0 + O0) (H0 + O0) %

and

H2 = (H1 + O1)
2
=
h
(H0 + O0)

2
+ (M0 + O0) (H0 + O0)

i2

= (H0 + O0)
2
[(M0 + O0) + (H0 + O0)]

2
= (H0 + O0)

2
&(2.5)

Upon repeating the calculations for "3% "4% · · ·% we have the following celebrated
Hardy-Weinberg stability theorem in (two allele -) Mendelian genetics:

Theorem 5. Given the initial probability distribution "0 = (M0% 2O0% H0)+ % the
subsequent probability distribution "- is invariant after one generation with

M- = (M0 + O0)
2
% 2O- = 2 (M0 + O0) (H0 + O0) % H- = (H0 + O0)

2
(+ ( 1)&

Proof. (by induction) ¤

In the language of di!erence equations, the probability distribution of genotypes
evolves into a steady state. In the case of a regular Markov chain for which, starting
with an initial distribution that is not the steady state, the latter is approached
through a converging process and reached only in the limit. For the present simple
Mendelian model of genetic evolution, the equilibrium conguration is reached in
two generations and does not change thereafter. The development and attainment
of an equilibrium genotype distribution in this model is remarkably rapid and its
implication is of greatest signicance. It is a very much consistent with the physical
traits in a population being very stable. However, if it were completely stable, there
would be no changes in physical traits, and there would be no evolution.

Fortunately, the Hardy-Weinberg equilibrium distribution is, in the language
of dynamical systems, stable but not asymptotically stable. Suppose at some stage
) (9 1), there is a perturbation from the equilibrium distribution so that we have

"## = (M
#
# % 2O

#
# % H

#
#)

+ instead of "# =
³
(M0 + O0)

2
% 2 (M0 + O0) (H0 + O0) % (H0 + O0)

2
´+
&
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By the Hardy-Weinberg stability theorem, the genotype probability distributions
for all future generations would be

"##+% =
³
(M## + O

#
# )

2
% 2 (M## + O

#
# ) (H

#
# + O

#
# ) % (M

#
# + O

#
# )

2
´+

(. ( 1)&

In other words, the genotype distribution quickly reaches another steady state con-
guration. If "## is close to "# , then the new equilibrium conguration "

#
-+% would

be close to "#+% = "# & In that sense, the Hardy-Weinberg equilibrium congura-
tion is stable but not asymptotically stable; the perturbed genotype distribution
does not evolve and return to the equilibrium conguration before perturbation.
Thus, Hardy-Weinberg is compatible with the view that evolution is a process for
physical traits to change from some existing state apparently with a high degree of
stability.

To see what may be responsible for the observed evolution, it is important to
make explicit the assumptions in the simple Mendelian model of genetics that led
to the Hardy-Weinberg law. These include

• The controlling genes have only two trait alleles
• The genotypes
• The population is bisexual with the same distribution of genotypes in both
• Generations are discrete
• A pair of male and female parents is selected in random in each generation
to produce an o!spring

• The o!spring genotype is determined by an allele from a randomly selected
gene from each parent.

Clearly, Hardy-Weinberg law may not apply when anyone of these assumptions
is violated. Additional biological processes that are implicitly excluded from the
model that led to the Hardy-Weinberg law include

• mutation
• nonrandom mating (inbreeding, selective breeding, assortative mating,
etc.)

• natural selection
• gene ow
• genetic drift

While some of these exclusions are consequences of the assumptions listed
earlier, they are mentioned explicitly because of their importance as biological
processes that may lead to evolutionary changes. We examine a few of these
in some later sections.

3. Linear Di"erence Equations

Many biological phenomena may be modeled by nonlinear di!erence equa-
tions after suitable idealization and simplications as it was done for the simple
Mendelian model of population genetics (2.1). It is therefore desirable to know
some general mathematical techniques for solving such equations. Regrettably,
there are not many such general techniques as there are for linear di!erence equa-
tions. In fact, there are arguably fewer such techniques than the what are available
for nonlinear ordinary di!erential equations. In this section, we briey summarize
the few general approach that have been found useful and e!ective. Most of these
are ways to reduce the equation(s) in question to linear equations which generally
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admit solutions in relatively compact combinations of known functions. As such,
we need to say a few words about solving linear di!erence equations rst.

3.1. A Single First Order Linear Equation. A general single rst order
linear equation may be taken in the form

(3.1) 7(++ 1) = A(+)7(+) + K(+)

where A(+) and K(+) are known scalars, generally functions of +. Even if K(+) = 0,
The usual method (of assuming solution in the form ;<-) does not apply as long
as A(+) varies with +. On the other hand, (3.1) is e!ectively a recurrence rela-
tions giving successive 7(+) in terms of the same quantity at earlier stages, it is
straightforward to deduce the following result:

Proposition 1. The unique solution of the IVP

7(++ 1) = A(+)7(+)% 7(0) = 2

is

(3.2) 7(+) = 2 !
(-$1)
%=0 A(.)&

Proof. The solution follows upon writing

7(+) =
7(+)

7(+# 1)
7(+# 1)
7(+# 2)

· · · ·
7(2)

7(1)

7(1)

7(0)
7(0)

= A(+# 1)A(+# 2) · · · · A(2)A(1)A(0)7(0)

Uniqueness is left to an exercise. ¤
Corollary 5. For a constant coe"cient A(+) = A(0) = A0, (independent of

+), the solution (3.2) reduces to the expected result:

(3.3) 7(+) = 2A-0 %

(with < = A0 and .;1 = 2).

Proposition 2. The unique solution of the IVP

7(++ 1) = A(+)7(+) + K(+)% 7(0) = 2

is

7(+) = !-$1%=0A(.)

"
2+

-$1X

!=0

K(()

!!/=0A(L)

#
&

Proof. We prove the simpler case of a constant A(+) = A0 (and leave the
general case as an exercise)& In this simpler case, we have

7(1) = A07(0) + K(0)%

7(2) = A07(1) + K(1) = A0 [A07(0) + K(0)] + K(1)

= A207(0) + A0K(0) + K(1)%

By induction, we get

7(+) = A-07(0) + A
-$1
0 K(0) + A-$20 K(1) + & · · · · + &A0K(+# 2)&+ K(+# 1)

= A-07(0) +
-$1X

%=0

A-$1$%0 K(.) = A-0

"
2+

-$1X

%=0

A
$(%+1)
0 K(.)

#
&
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Again, uniqueness is straightforward. ¤

While the results above can be seen as consistent counterparts of the corre-
sponding results for a single rst order linear ODE, it is fair to say that they
are merely more compact expressions of the direct consequences of the respective
recurrence relations after + steps (see also exercises in Assignment II for further
exposition of this observation). There is really no creativity in the steps leading to
them. On the other hand, we should be grateful for the fact that we can always get
the solution of a problem involving di!erence equations because of recursive nature
of the problem and the computing power available today.

3.2. Linear Systems with Constant Coe!cients. Similar to the ODE
counterpart, single higher order di!erence equations and a system of more than
one linear di!erence equations are more compactly written in terms of a state
vector as we did for Markov chains in the previous chapter:

(3.4) x(++ 1) =3(+)x(+) + q(+)% x(0) = p

for + = 0% 1% 2% &&&&Taken in the form (3.4), x(+)% q(+) and p are , vectors and 3
is a known ,×, matrix. Among the vectors, q(+) and p are prescribed and x(+)
is to be determined starting with some initial state (distribution) x(0) = p. If
q(+) = 0, the linear system is said to be homogeneous. If 3 does not depend on
+ then, the system is said to be of constant coe"cients. The matrix 3 is said to
be nondefective if it has a full set of eigenvectors.

Theorem 6. The general solution of linear homogeneous systems with a non-
defective constant (transition) matrix 3 may be written as

x(+) = ;1v
(1)<-1 + ;2v

(2)<-2 + · · · · + ;,v
(,)<-,

where {<%% v(%)} are the eigen-pairs of 3 and the constants {;1%;2% · · · ·% ;,} are
determined by the initial condition x(0) = p.

Proof. The proof of this theorem is by diagonalizing 3 similar to what we
did for the ODE counterpart in Math 227A. ¤

The general solution of linear inhomogeneous systems with forcing with a non-
defective constant matrix 3 may be obtained by the method of variation of para-
meters or, for a simple forcing term q(+), the method of undetermined coe"cients.
These methods are analogous to their ODE counterparts and will not be discussed
here. The case of a defective matrix with a multiple eigenvalue for which there is
an inadequate number of eigenvectors, the sure re method of solution would be to
reduce3 to Jordan normal form by a suitable similarity transformation analogous
to what was done for ODE in the Math 227A course notes.

When 3 varies with +, then Theorem 6 does not hold though the method
of variation of parameters continues to apply if we have a complete set of (com-
plementary) solutions for the corresponding homogeneous equation. Techniques
for nding complementary solutions for linear equations with variable coe"cients
can be developed similar to their counterparts in ordinary di!erential equations.
However, the solutions obtained by such methods are no more attractive than a
repeated execution of a the recurrence relation implied by the di!erence equation.
In this latter approach, we have the following compact expression for 7(+) = 7-
using the subscript notation to conserve space:
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Theorem 7. The unique solution of the IVP

x(++ 1) =3(+)x(+)% x(0) = p

may be taken in the form

x(+) = !-$1%=0 [3%]

.
/

02+
-$1X

/=0

!0%=/ [3%]
$1K/

1
2

3

with

(3.5) !%/=![3/ ] =3%3%$1 · · ·3!%

Proof. For + = 0 and + = 1, we have

x1 = 30x0 + q0%

x2 = 31x1 + q1 =31[30x0 + q0] + q1

= p!1%=0[3%] +!
1
%=0[3%][30]

$1q0 +!
1
%=0[3%]!

0
%=1[3%]

$1q1

upon observing the notation (3.5). By induction, we get for general +

x- = 3-$1x-$1 + q-$1

= p!-$1%=0 [3%] +!
-$1
%=0 [3%]

©
!0/=0[3/ ]

$1q0 +!
0
%=1[3%]

$1q1 + · · · ·+!0%=-$1[3%]
$1q-$1

ª

= !-$1%=0 [3%]

.
/

0p+
-$1X

/=0

!0%=/ [3%]
$1q/

1
2

3 &

¤

3.3. Reduction of Order. For numerous problems, we do not have a su"-
cient number of complementary solutions. This is certainly the case of a defective
matrix; but there are others. For the equation

7-+2 # (++ 1)7-+1 + +7- = 0%

we see by inspection that 7- = 1 is a solution. But it is not so easy to spot the
second complementary solution which is needed to solve an IVP. Note that this is
a linear equation of variable coe"cients and can be rewritten as a rst order matrix
di!erence equation by setting 8- = 7-+1 and therewith

x-+1 =

µ
7
8

¶

-+1

=

!
0 1
#+ ++ 1

¸µ
7
8

¶

-

=3(+)x-

While Theorem 7 applies, a more informative solution can be obtained by the
method of reduction of order, a di!erence equation analogue to the same method
for ODE.

Consider the general second order linear equation

(3.6) 7-+2 + A(+)7-+1 + P(+)7- = K(+)

with the initial conditions

70 = 205 71 = 21&

Suppose we know one complementary solution 8- of the homogeneous equation so
that

8-+2 + A(+)8-+1 + P(+)8- = 0&
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To nd a second complementary solution or, better yet, to nd the complete solution
to the IVP, we set, as for the ODE case,

7- = 8-B-

where B- is an unknown function of +. In terms of B-% the original di!erence
equation becomes

8-+2C-+1 + B-+1 [8-+2 + A(+)8-+1 + P(+)8-]# P(+)8-C- = K(+)

where C- = B-+1#B- and where we have added and subtracted terms that sum up
to zero. Now the combination inside brackets vanishes since 8- is a complementary
solution so that the equation above simplies to

(3.7) 8-+2C-+1 = P(+)8-C- + K(+)&

If the known complementary solution 8- does not vanish, (3.7) is a linear rst
order di!erence equation for C- and its solution is given by Theorem 1 with C0 =
B1 # B0 = 21*81 # 20*80. Having C-, we can solve another linear rst order
di!erence equation B-+1 = B-+C- for B- with B0 = 20*80. The product solution
7- = 8-B- evidently satises the initial condition on 7- with 70 = 80B0 = 20 and
71 = 81B1 = 21 . Since (3.6) is the most general form of a linear second order
di!erence equation, we have e!ectively formulated the method for solving the IVP
for any second order linear di!erence equation with variable coe"cients once we
have one complementary solution.

3.4. Variation of Parameters. (To be written.)

4. Single Nonlinear Di"erence Equations

4.1. Taking Logarithms . Consider the nonlinear rst order di!erence
equation

(4.1) 7-+1 = 7
2
- % 70 = 2 9 0

again using the subscript notation to conserve space, i.e., 7- = 7(+)& Let 8- =
log(7-) and take the natural logarithm of both sides to get

8-+1 = 28-% 80 = log(2)&

The new equation for 8- is a a linear di!erence equation and can be solved by the
usual assumed solution of the form 8- = ;<

- to get < = 2 and therewith

8- = log(2)2
- = log(7-)

or

7- = 2
2" (+ = 0% 1% 2% 3% &&&&&)&

For the di!erence equation (4.1), calculating 7- recursively from (4.1) leads
to the same expression for 7-. The method described in this subsection does
demonstrate how some nonlinear di!erence equations become linear upon taking
the logarithm of both side of the equations. The resulting equation may be more
tractable as the example above.
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4.2. Algebraic and Trigonometric Identities. Known functional identi-
ties may be used sometimes to simplify nonlinear di!erence equations and reduce
them to a more tractable form. Below are some examples.

Example 5.

(4.2) 7-+1 = 27
2
- # 1% 70 = 2 (0 = 2 = 1)&

For this nonlinear rst order di!erence equation, set 7- = cos(Q-) and re-write
the di!erence equation (4.2) as

(4.3) cos(Q-+1) = 2 cos
2(Q-)# 1% cos(Q0) = cos(2)&

Though still nonlinear, the new di!erence equation (4.3) is simplied further by
the trigonometric identity cos(27) = 2 cos2(7)# 1

cos(Q-+1) = cos(2Q-)% cos(Q0) = cos(2)&

The equation for Q- above is satised by transformed into

Q-+1 = 2Q- + 2.R% . = 0% 1% 2% 3% &&&&

which is a rst order linear equation to which Proposition 2 applies. With Q0 =
cos$1(2), we get for . = 0

Q- = 2
- cos$1 2

or
7- = cos(2

- cos$1(2))&

Example 6.

(4.4) 7-+1 = 27
2
- # 1% 70 = K (|K| ( 1)&

Given |K| ( 1, the transformation 7- = cos(Q-) is no longer appropriate. In-
stead, we set 7- = cosh(Q-) which satises a similar identity cosh(27) = 2 cosh

2(7)#
1 and reduce the given equation to the more tractable form of

cosh(Q-+1) = cosh (2Q-) % Q0 = cosh
$1 K (|K| ( 1)&

for which a solution is Q-+1 = 2Q-, etc.
These example suggests that many nonlinear di!erence equations become solv-

able upon make use of identities such as the two above and others such as sin(27) =
2 cos(7) sin(7), etc. The resulting may be more tractable as in the case above

4.3. Raising the Order. Given 7(+)% + = 0% 1% 2% &&&&, the di!erence operator
N operating on 7(+) is dened by

(4.5) N[7(+)] = 7(++ 1)# 7(+)

for + in the range where 7(+) = 7- is dened. Evidently, the di!erence operation is
the discrete counterpart of di!erentiation for continuously di!erentiable functions.
Similar to the ODE case, an intractable nonlinear di!erence equation may be made
solvable by further di!erencing it to get a higher order (but hopefully simpler)
equation. Below are some successes of this approach.

Example 7.

(4.6) 7(+)[7(++ 1)# 7(+)] = (++ 1) [7(++ 1)# 7(+)]2 + 1% 7(0) = 2&
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The appearance of the di!erence 7(++1)# 7(+) suggests that something may
be gained by setting

8(+) = 7(++ 1)# 7(+)

and rewrite the di!erence equation (4.5) as

(4.7) 7(+)8(+) = (++ 1) [8(+)]
2
+ 1&

Supercially, the substitution has only made the problem worse; we now have one
equation for two unknowns. To rid of the unknown 7(+) in (4.7), we apply the
di!erence operator to both side of the new equation to get

(4.8) 7(+)[8(++ 1)# 8(+)] = 2(++ 1)8(+) [8(++ 1)# 8(+)]

(see Assignment II for the needed tools to derive the result above). The relation
(4.8) may be satised in two ways:

() 8(++ 1) = 8(+)

or

(() 7(+) = 2(++ 1)8(+) = 2(++ 1) [7(++ 1)# 7(+)]

Each of these is a single linear rst order di!erence equation and can be solved by
the method of the previous section.

Example 8.

7(++ 1) = D#
E

7(+)

Another way to increase the order of a given di!erence equation (in hope of
simplications) is to set 7(+) = S(++1)*S(+). Upon making this substitution, the
equation above becomes

S(++ 2)# DS(++ 1) + ES(+) = 0

which is linear !

4.4. Other Ad Hoc Substitutions.

Example 9.

(4.9) 7(+)7(++ 1) + 1 = A(+) [7(++ 1)# 7(+)] % 7(0) = 2&

Again there is no recipe for such an equation. Someone came up with the
ingenious substitution 7(+) = tan(8-) which transforms (4.9) into

cos(8-+1 # 8-) = A(+) sin(8-+1 # 8-)

or

8-+1 # 8- = cot$1(A(+))&

The equation for 8-(or 8(+)) is linear!
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4.5. Evolving a few stages.

Example 10.

7(++ 1) =
1

1# 7(+)
% 7(0) = 2 ( 6= 1)

With no obvious technique for such an equation, we calculate a few 7(+) as we
did for the Hardy-Weinberg case. Here we have

7(1) =
(

1# 2
% 7(2) =

2# 1
2

= 1#
1

2
% 7(2) = 2&

Evidently, the process evolves cyclically: 2 % (1 # 2)$1 % 1 # 2$1 % 2 % · · ··
. In contrast to Hardy-Weinberg, the present nonlinear Markov process does not
reach a steady state. It is an example how a Markov process does not converge as
+ %&&

5. Almost Nonlinear Systems of Di"erence Equations

(to be written)

6. Selective Breeding

Instead of random mating, suppose only the dominant genotype of one parent
is allowed to breed. For example, a plant ower consists of both the male (with
pollens corresponding to sperms) and female (center of the stamen) parts. A honey
bee usually does the transfer of pollens to complete the cycle. As such, owers are
said to self-fertilize. A ower grower may retain only pollens of genotype for more
brilliant ower colors for the bee to transfer. With male parent gene to have both
dominant alleles, the sample space for the o!spring genotype consists of only two
elementary events {(N,%N4 )% (N,% I4 )} with a recessive genotype o!spring being
an impossibility (and hence H- = 0 for all + 9 0). The probability M-+1 of a
dominant o!spring genotype is then 1 · (M- + O-) and the probability 2O-+1 of a
hybrid o!spring is 1 · (H- + O-) with H-+1 = 0 · (H- + O-) = 0 for + 9 0.

For + = 0, we have

(6.1) M1 = (M0 + O0) % 2O1 = (H0 + O0) % H1 = 0&

with no restriction on the known (prescribed) initial distribution "0 = (M0% 2O0% H0)+

other than that it be a probability vector. For + 9 1, we have

M2 = (M1 + O1) =

!
(M0 + O0) +

1

2
(H0 + O0)

¸
= 1#

1

2
(H0 + O0) %(6.2)

2O2 = (H1 + O1) =
1

2
(H0 + O0) % H2 = 0%(6.3)

and

M3 = (M2 + O2) = 1#
1

4
(H0 + O0) %(6.4)

2O3 = (H2 + O2) =
1

4
(H0 + O0) % H3 = 0%(6.5)

etc. By induction, we get for + 9 0 the following result:
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Proposition 3. For selective breeding with the gene of one breeding parent
to have two dominant alleles, the components of the genotype distribution at the
(++ 1))* stage is given by

M-+1 = (M- + O-) = 1#
1

2-
(H0 + O0) %(6.6)

2O-+1 = (H- + O-) =
1

2-
(H0 + O0) % H-+1 = 0&(6.7)

Proof. (by induction) ¤

In the limit as + %&% we get

"- % (1% 0% 0)+

as we would expect (when there no other changes in the genetic environment).
It is worth mentioning that the relations (6.6) and (6.7) constitute a set of

linear di!erence equations and hence amenable to an explicit solution of the form
;<-with the constant < to be determined by the method Section 3 of Chapter 1.
Equation (6.6) and the rst equation of (6.7) with H- = 0 (by the second equation
in (6.7)) may be written in matrix form,

(6.8) "-+1 =

µ
M-+1
2O-+1

¶
=

!
1
0

1
2
1
2

¸µ
M-
2O-

¶
% (+ ( 1)

with the initial conditions (6.1)

(6.9) "1 =

µ
M1
2O1

¶
=

µ
M0 + O0
H0 + O0

¶
&

A solution proportional to <-%i.e., "- = x<
-, is possible. The linear system of two

di!erence equations requires the constant < to be a root of the quadratic equation

2<2 # 3<+ 1 = 0%

namely <1 = 1 and <2 = 1
2 & Superposition of the two linearly independent solutions

corresponding to the two roots and the auxiliary conditions at + = 0 give

M- = M0 + 2O0

µ
1#

1

2-+1

¶
+ H0

µ
1#

1

2-

¶

2O-+1 =
1

2-
(H0 + O0)

the same as previously obtained.

7. Gene Frequencies

Let

(7.1) 2- = M- + O-% K- = O- + H-&

Evidently, 2- and K- are, respectively, the frequency of the dominant gene and
recessive gene. For the two allele Mendelian model in the rst section of this
chapter, the evolution of genotype distribution may be rewritten as

M-+1 = 2
2
-% 2O-+1 = 22-K-% H-+1 = K

2
-&
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It follows that

2-+1 = 2
2
- + 2-K- = 2-% K-+1 = K

2
- + 2-K- = K-%

for + = 0% 1% 2% &&&&& with 2-+1 + K-+1 = 2- + K- = &&&& = 20 + K0 = 1. Whatever the
initial gene frequency distribution, it remains the same thereafter.

Proposition 4. In the two allele Mendelian model of population genetics, gene
frequency distribution is conserved.

To illustrate the necessary care needed in the delineation of gene frequencies, we
consider the following problem of selective breeding that is the opposite of the one
discussed in the previous section. In the new problem, those individuals of recessive
genotype do not participate in the reproductive process. For example, they may
expire prior to reproductive age or may simply be prohibited from participating in
reproduction.

Suppose we start with a genotype distribution of "0 = (M0% 2O0% H0). By the
Mendelian model without the participation of the recessive genotype in reproduc-
tion, we now have the following genotype distribution for the next generation (in-
stead of (2.1) for + = 1):

(7.2) M1 = (M0 + O0)
2% 2O1 = 2(M0 + O0)O0% H1 = O

2
0&

Before we proceed to calculate the genotype distribution of the next generation, it
is important to note that

M1 + 2O1 + H1 = (M0 + O0)
2 + 2(M0 + O0)O0 + O

2
0%

= (M0 + 2O0)
2 = (1# H0)2&

Evidently, given that not the entire gene pool is allowed to participate in reproduc-
tion, the parts of the pool allowed to participate do not add up to the whole. To
focus on the part of the pool allowed to participate in reproduction as the whole
pool for the reproduction of the next generation, we set .

"#0 = (M
#
0% 2O

#
0% H

#
0) =

µ
M0

1# H0
%
2O0
1# H0

% 0

¶
%

with the frequency distribution taken to be that for the genes allowed to participate
in reproduction

(7.3) 20 = M
#
0 + O

#
0 =

M0 + O0
1# H0

% K0 = H
#
0 + O

#
0 =

O0
1# H0

and

20 + K0 =
M0 + 2O0
1# H0

= 1&

With recessive genotype individuals not participating in the reproductive process,
the next generation’s genotype distribution is appropriately given by

M1 = (M#0 + O
#
0)
2 = 220% H1 = (H

#
0 + O

#
0)
2 = K20 %

2O1 = 2(M#0 + O
#
0)(H

#
0 + O

#
0) = 220K0%

with
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M1 + 2O1 + H1 =

µ
M0 + O0
1# H0

¶2
+ 2

µ
M0 + O0
1# H0

¶
O0

1# H0
+

µ
O0

1# H0

¶2

= &

µ
M0 + 2O0
1# H0

¶2
= 1&(7.4)

For the +)* generation, we again take the gene frequency to be that of the genes
allowed to participate:

2- =
M- + O-
1# H-

% K- =
O-

1# H-
&

with
M-+1 = 2

2
-% 2O-+1 = 22-K-% H-+1 = K

2
-&

Lemma 6. M-+1 + 2O-+1 + H-+1 = 1 (+ ( 0)

Proof. The initial distribution is a probability vector so that M0+2O0+H0 = 1
and consequently M1 + 2O1 + H1 = 1 by (7.4). Suppose M% + 2O% + H% = 1 holds for
. = +; then we have

M-+1 + 2O-+1 + H-+1 = 22- + 22-K- + K
2
- = (2- + K-)

2

=

µ
M- + 2O-
1# H-

¶2
=

µ
1# H-
1# H-

¶2
= 1&

¤

Proposition 5. The evolution of gene frequencies for + 9 0 is given by

(7.5) K-+1 =
K-

1 + K-
% 2-+1 =

1

1 + K-
&

Proof.

2-+1 =
M-+1 + O-+1
1# H-+1

=
22- + 2-K-
1# K2-

=
2-

1# K2-
=

1

1 + K-
%

K-+1 =
O-+1

1# H-+1
=
K2- + 2-K-
1# K2-

=
2-K-
1# K2-

=
K-

1 + K-
&

¤

The rst order di!erence equation for K- in (7.5) and the initial condition for
K0 in (7.3) dene a nonlinear IVP. Its solution is obtained by re-arranging the
di!erence equation into a linear di!erence equation:

K-+1 =
K-

1 + K-
=

1

1 + K$1-
or

7-+1 = 1 + 7-%

where 7- = 1*K- and 70 = 1*K0 = (1# H0)*O0& The solution for IVP for 7- is

7- = ++ 70 =
+O0 + (1# H0)

O0
&

From the calculations above, we have the following result for the evolution of
the gene frequency distribution:
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Proposition 6. The frequency of the recessive gene pool decreases to zero as
+ %& with

K- =
1

++ 70
=

O0
+O0 + (1# H0)

)
1

+
&

Correspondingly, the frequency of the dominant gene pool increases slowly to-
ward unity:

2- =
++ 70 # 1
++ 70

=
(+# 1)O0 + (1# H0)
+O0 + (1# H0)

) 1 +:(
1

+
)&

8. Mutation

Under the appropriate idealized conditions, we were led to the Hardy Weinberg
law of Section 2 which predicts genetic stability for the population after a genera-
tion, The theoretical prediction turns out to be quite consistent with the observed
persistency in the heredity of traits. However, changes do occurs naturally, albeit
very infrequently and/or very slowly. This happens even under selecting breeding
of Section 6 where only the dominant genotype of one parent is allowed to breed;
a recessive genotype occurs on rare occasions, when the modeling result predicts
that it should not. We simply call this observed process a genemutation without
getting into the biological details of how it takes place.

For a simple modeling of the phenomenon of mutation, we consider the situation
that whenever a dominant gene is transmitted, there is a small probability D
(0 = D ¿ 1) that the gene will mutate to a recessive gene. We suppose that the
selection occurs after selection of the dominant gene from a parent. Otherwise,
we retain all the hypotheses of the Mendelian (panmixia) model. In that case,
the Mendelian model (2.1) governing the evolution of genotypes is modied by a
reduction of the dominant gene frequency and an increase in the recessive gene
frequency. The modication is most simply done by working with dominant and
recessive gene frequencies, 2- and K-, introduced in the last section.

The dominant o!spring genotype probability M-+1 is the product of the (avail-
able) dominant gene frequency from the two parents both now reduced to (1# D)2-
by a loss D2- due to mutation

(8.1) M-+1 = (1# D)22-&

The recessive gene frequency available for the o!springs is enhanced by mutation
from K- to D2- + K- thereby giving

2O-+1 = 2(1# D)2-(D2- + K-)(8.2)

H-+1 = &(D2- + K-)
2(8.3)

Note that
M-+1 + 2O-+1 + H-+1 = (2- + K-)

2 = 1

so that gene frequency is conserved.
Instead of solving for the genotype distribution, we form

2-+1 = M-+1 + O-+1 = (1# D)2- [(1# D)2- + (D2- + K-)] = (1# D)2-&

It follows immediately that
2- = 20(1# D)-
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where 20 is the initial dominant gene frequency. Correspondingly, the recessive
gene frequency is

D2- + K- = D2- + (1# 2-) = 1# (1# D)2-
= 1# 20(1# D)-+1 ! 1# R-&

In terms of R- = 20(1# D)-+1, we have

M-+1 = R
2
-% 2O-+1 = 2R-(1# R-)% H-+1 = (1# R-)2&

When there is no mutation so that D = 0 and therewith R- = 20, the above results
reduce to the Hardy-Weinberg scenario with

M-+1 = 2
2
0% 2O-+1 = 220K0% H-+1 = K

2
0&

For 0 = D = 1% we have R- = 20(1# D)-+1 % 0 so that

M-+1 % 0% 2O-+1 % 0% H-+1 % 1&

if the particular type of mutation is the only evolutionary process at work (which
fortunately is not)..
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CHAPTER 3

Continuous Probability

1. Random Variables and Probability Density Functions

In elementary probability theory summarized at the start of the rst chapter,
sample spaces are discrete and nite. The nite number of actual elementary events
may be numerical in nature (such rolling a die to turn up one of its six numbered
faces) or non-numerical (such as ipping a coin to turn up a head or a tail). How-
ever, even for non-numerical elementary events may be assigned numerical labels
for the purpose of mathematical analysis. For example, a "1" could be assigned to
the event of turning up a head and a "2" to a tail. The assignment is not unique;
a "2" may be assigned to a tail and a "5" to a head. An appropriate assignment
may depend on the nature of the quantitative analysis. When elementary events
are numerically labelled, they are specic realizations of a random variable / for
the sample space. Evidently, / assumes numerical values which will restricted to
real numbers for the time being. .

To the extent that numbers need not be restricted to a nite subset of the
integers, elementary events in a sample space need not be discrete and nite. For
example, one can consider an experiment of picking out a real number at random.
The elementary events of this experiment would consist of all points on the entire
real line (#&%&). Correspondingly, the random variable / for this experiment
may assume any number on the real line.

To develop a probability theory for this and other experiments of continuous
sample space, we begin with sample spaces that span the real line (or having been
reformulated into one by relabelling). For such sample spaces, it would not be ap-
propriate to assign a nite probability to each of the elementary events (as the sum
of the probabilities for all elementary events would not be 1 in general). Instead, we
will be concerned with the probability for the occurrence of a range of elementary
events . In particular, we assign a probability - (/ ' $) for the random variable
/ to assume all values less than or equal to $& Since $ is a real number for our
sample space, we have

(1) - (/ ' # &) = 0
(2) - (/ ' &) = 1
(3) - (8 ' / ' S) = - (/ ' S)# - (/ ' 8) (8 and S are real numbers)

For convenience of mathematical analysis, it is customary to work with the
probability distribution function -6($) = - (/ ' $) and introduce a probability
density function 2(7) with

-6(S) =

Z 7

$"
2(7)M7&

41
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with
M-6(S)

MS
= 2(S)&

Evidently, properties 1 (or equivalently -6(#&) = 0) and 3 are automatically
satised by the denition of integrals. Property 2 imposes a constraint on 2(7):

-6(&) =
Z "

$"
2(7)M7 = 1&

The probability theory for continuous sample spaces contains the theory for
discrete and nite sample spaces as special cases. For example, in the experiment
of rolling a die with the conventional sample space of six discrete elementary events
of {1% 2% 3% 4% 5% 6}, the probability density function may be taken to be

2(7) =
6X

-=1

1

6
T(7# +)

where T(7#7#) is theDirac delta function characterized by the following properties:

(() T(7# 7#) = 0 for all 7 6= 7#%

((()

Z "

$"
T(7# 7#)M7 =

Z 8!+ 9

8!$ 9

T(7# 7#)M7 = 1%

(((()

Z "

$"
G(7)T(7# 7#)M7 =

Z 8!+ 9

8!$ 9

G(7)T(7# 7#)M7 = G(7#)%

for any G(7) continuous at 7#. In that case, we have for example

- (/ ' 4) =
Z 4+9

$"
2(7)M7 =

Z 4+ 9

$ "

1

6

6X

-=1

T(7# +)M7 =
2

3

and

- (/ = 4) = - (4# U ' / ' 4 + U) =
Z 4 + 9

4 $ 9

1

6

6X

-=1

T(7# +)M7 =
1

6
&

2. Moments and Characteristic Functions

Given an (integrable) probability density function 2(7) for the random variable
/, we introduce moments of / by the following denitions:

Definition 8. The expectation of a random variable / with a probability
density function 2(7) is given by

(2.1) '[/] =

Z "

$"
72(7)M7 ! A&

For random variables with a discrete and nite sample space, the expression
(2.1) reduces to the previously denition for that special case in (1.1).

'[/] is also known as the (statistical) mean or (statistical) average of the
random variable /. It is also a special case of the more general moment of the
random variable.
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Definition 9. The +)* moment of a random variable / with a probability
density function 2(7) is

'[/-] =

Z "

$"
7-2(7)M7 ! A-&

Evidently, A1 is the expected value A of /.

Definition 10. The variance of a random variable / with a probability den-
sity function 2(7) is

V 1H[/] =

Z "

$"
(7# A)2 2(7)M7&

Proposition 7. V 1H[/] = '[/2]#'[/]2 = A2 # A2

Proof. (exercise) ¤
Just as A is often used to denote '[/], W2 is often used to denote V 1H[/].

Corollary 6. A2 ( A2

Proof. (exercise) ¤
The +)* moment of a random variable / is actually a special case of more

general moments of /. Let X(·) be a continuous and continuously di!erentiable
function on the real line. The following denition introduce a general moment of
/&

Definition 11. The expectation '[X(/)] is dened to be

'[X(/)] =

Z "

$"
X(7)2(7)M7&

The particular function X(7) = 0!:8 where B is a parameter that may assume
any real value, is particularly signicant in the theory of continuous probability.
The expectation of 0!:8 is known as the characteristic function of the random
variable /:

Definition 12. The characteristic function of the random variable / with a
probability density function 2(7) is given by

(2.2) 2̂(B) = '[0!:6 ] =

Z "

$"
0!:82(7)M7&

Evidently, 2̂(B) is just the Fourier transform of 2(7). To the extent that 2(7)
is absolutely integrable, we have the following inversion formula for the transform
pair:

Theorem 8. A characteristic function 2̂(B) dened by (2.2) for the probability
density function 2(7) is the Fourier transform of 2(7) with the inversion formula

(2.3) 2(7) =
1

R

Z "

$"
0$!:82̂(B)MB&

Proposition 8. With 2̂(%)(0) =
£
M% {2̂(B)} *MB%

¤
:=0

, the characteristic func-
tion of the random variable / is related to the moments {A%} of the same random
variable by

2̂(B) =
"X

%=0

1

.!
2̂(%)(0)B% =

"X

%=0

(%A%
.!
B%%
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where ( =
*
#1 is the imaginary unit.

Proof. Use the Taylor series for 0!:8about the origin to write

2̂(B) =
"X

-=0

((B)-

+!

Z "

$"
7-2(7)M7 = &

"X

-=0

((B)-

+!
A-&

where ( =
*
#1 is imaginary unit. ¤

3. Some Probability Density Functions

As in the case of nite sample spaces, not all probability distributions for
continuous random variables are known (or can be calculated by combinatorial or
other methods). Most are arrived at by various estimation or assumptions. Below
are two most frequently encountered probability density functions and some of their
elementary properties. Others will be introduced through exercises.

3.1. Normal (Gaussian) Distribution. The normal (or Gaussian) proba-
bility density function is dened by

2(7) =
1

*
2RW

0$(8$;)
2<2=2 ! )(A% W)

where A and W are two real valued parameters. Below are some its properties whose
proofs are assigned as exercises:

Proposition 9. For $ 9 A% we have

- (/ ' $) =
Z $

$"
2(7)M7 =

1

2
+

Z $

0

2(7)M7 =
1

2
+ erf

µ
$# A
W

¶

and
- (/ ' &) = 1

Proof. (exercise) ¤
Proposition 10. '[/] = A% and V 1H[/] = W2

Proof. (exercise) ¤
It follows from these the following two related results:

(()

Z "

$"
7)(0% W2)M7 = 0% ((()

Z "

$"
72)(0% 1)M7 = 1&

The verication of these properties are left as an exercise.

3.2. Poisson’s Distribution. The Poisson’s probability density function is
dened by

2(7) =
"X

%=0

<%0$>

.!
T(7# .)

where A and W are two real valued parameters. Below are some its properties whose
proofs are assigned as exercises:

Proposition 11. For ) = $ = ) + 1% we have

- (/ ' $) =
Z $

$"
2(7)M7 = 0$>

#X

%=0

<%

.!
with - (/ ' &) = 1&
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Proof. (exercise) ¤

Proposition 12. '[/] = <% and '[/2] = <2 + <

Proof. (exercise) ¤
It follows from these the following related result:

Corollary 7. V 1H[/] = <&

Proof. (exercise). ¤

4. Functions of a Random Variable

Suppose / is a random variable with known (probability) density 2(7) and
(probability) distribution -6(7). Let 8 = X(7) denote a real-valued function of
the real variable 7. Consider the transformation

(4.1) @ = X(/)

of the random variable / into another random variable @ . Since / is real-valued,
so is @ . We are interested in the density 2? (8) and the distribution -? (8). The
solution to this problem is both subtle and technical, we note here only a few of
the issues involved before and after giving the main result.

When dealing with @ = X(/), we need to keep track of the following items:
• The domain of X should include the range of /.
• For every 8, the set {@ = X(/) ' 8} must be an event.
• The events {@ = X(/) = ±&} must be assigned a probability of zero.
In practice, these items are assumed to hold, and they do not cause any
problems.

Dene the indexed set

(4.2) >@ = {7 : X(7) ' 8}

the composition of which changes with 8. The distribution of @ can be expressed
as

-? (8) = - [@ ' 8] = - [X(/) ' 8] = - [/ + >@]&
This provides a practical method for computing the distribution function.

Example 11. 8 = X(7) = 17+ Y% where 1 9 0, and Y are constants and / is a
random variable with density function 2(7). Determine the determine the density
2? (8) and distribution -? of the random variable @ = X(/) in terms of 2(7) and
the corresponding distribution of /..

For the density function 2? of @ , we have from the transformation of 8 = X(7)
the inverted relation 7 = (8 # Y)*1 for the entire real line so that we may write
2(7) = 2((8 # Y)*1)& The desired 2? (8) is related to 2(7) by way of

Z $

$"
2(7)M7 =

Z $

$"
2

µ
8 # Y
1

¶
M7 =

Z $#

$"
2

µ
8 # Y
1

¶
M7

M8
M8 =

Z $#

$"
2? (8)M8

where M7*M8 = (MX*M7)$1 = 1*1 and

2? (8) =
1

1
2

µ
8 # Y
1

¶
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For the distribution of @ , we let

>@ = {7: X(7) = 17+ Y ' 8} = {7 : 7 ' (8 # Y)*1}
and note the relation that gives -? in terms of -6 ! - to get:

-? (@ ' $? ) =
Z $#

$"
2? (8)M8 = - (7 U>@) = -

µ
/ '

$? # Y
1

¶
&

Example 12. Let 8 = X(7) = 72.and / be a random variable with density
function 2(7)& With @ = X(/) = /2, nd 2? (8) and -?A

Unlike the previous example, the inverse relation in this case is not so straight-
forward.

• If 8 = 0, then 8 = 72 has no real solutions so that 2? (8) = 0 for 8 = 0.
• If 8 9 0, then 8 = 72 has two solutions 71 =

*
8 and 71 = #

*
8.

Altogether, we have

-? (@ ' $? ) =
½
0 ($? = 0)
- (/1 '

*
$? )# - (/2 ' #

*
$? ) ($? 9 0)

where /% denotes the branch of the random variable corresponding to the
/%(@ ) In arriving at the result for the random variable @ for $? 9
0, we noted that the range of the corresponding random variable / is
necessarily restricted to #

*
$? ' / '

*
$? % for otherwise we would

have @ = /2 9 $? &

To obtain the corresponding density function, we work with the expression for
-? (@ ' $? ) for @ 9 0:

-? (@ ' $? ) =

Z $#

$"
2? (8)M8 =

Z $#

0

2? (8)M8 =

Z %
$#

$
%
$#

2(7)M7

=

Z 0

$$#
2(72(8))

M72
M8
M8 +

Z $#

0

2(71(8))
M71
M8
M8

=

Z 0

$#

2(#
*
8)
#1
2
*
8
M8 +

Z $#

0

2(
*
8)

1

2
*
8
M8

=
1

2

Z $#

0

2(
*
8) + 2(#*8)
*
8

M8&

From this follows

2? (8) =

½
0 (8 = 0)

1
2
%
@

£
2(
*
8) + 2(#*8)

¤
(8 9 0) %

which may be written as

2? (8) =

(
0 (8 = 0)

2(71(8))
¯̄
¯'81'@

¯̄
¯+ 2(72(8))

¯̄
¯'82'@

¯̄
¯ (8 9 0)

for the purpose of generalization to a general function X(7).
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Remark 3. In general, if 8 = X(7) has an inverse, then we can solve for a
unique 7 in terms of 8 (7 = X$1(8)) as in the rst example above. Otherwise,
we will have to do it in segments of di!erentiable inverses. That is, we obtain
solutions of 8 = X(7)) denoted by {71(8)% 72(8)% &&&% 7-(8)}, such that 8 = X(7%(8)),
. = 1% 2% 3% .... in di!erent non-overlapping intervals of the real line as in the second
example above& The range of each 7!(8) covers a part of the domain of X(7). The
union of the ranges of 7!(8), 1 ' ( ' +, covers all, or part of, the domain of X(7) as
in the second example. These observation is summarized in the following theorem:

Theorem 9. Let / be a random variable with density 2(7) and @ = X(/) is
a related random variable. Then

2? (8) =
#X

-=0

2(7-(8))

¯̄
¯̄M7-
M8

¯̄
¯̄ &

It should be evident that the determination of the density and distribution
function of the transformed random variable @ = X(/) is far from straight forward
with additional intricacies not seen in the examples above. Among them are
jump discontinuities and at segments in the image variable. Here it is necessary
however to abbreviate the discussion of this topic to get to the heart of the material
on stochastic di!erential equations. The brief discussion of this section su"ces for
our two main purposes: 1) to introduce reader to an approach to determine the
density and distribution of the image random variable @ given the density of the
pre-image variable /, and 2) to sensitize readers to the di"culty in nding the
density function of the image variable and the need for alternative approach for
obtaining probabilistic information on the image variable.

Example 13. Let / be Rayleigh distributed so that

2(7) =
7

D2
0$(8<1)

2<2!(7)

where !(7) is the Heaviside unit step function, and @ = /2&

Application of Theorem 9 leads to an exponential density function for @ :

2? (8) =
1

2D2
0$@<21

2

!(8)&

Theorem 10. Let / be a random variable with probability density function
2(7) and @ = X(/) where X(·) is continuously di!erentiable. Then

'[@ ] =

Z "

$"
X(7)2(7)M7&

Proof. The result follows from Theorem 9. ¤
Example 14. Let / be a random variable with 2(7) = )(0% W2) and @ = |/|-.

Find '[@ ] for + = 2, (an even integer) and + = 2,+ 1 (an odd integer).

(exercise)

Example 15. Let / be a random variable with 2(7) = )(0% W2) and @ = /2.
Show (by way of '[0!:? ] or otherwise) that

2? (8) =
1p
2RW28

0$@<2=
2

!(8)&

(exercise)
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5. Mutivariate Density and Distribution Functions

We start with two random variables / and @ and their non-negative joint
density function 2(7% 8) dened in the extended plane {|7| ' &% |8| ' &}. An
example is the following joint Gaussian density function

(5.1) 2(7% 8) =
1

2RW8W@
*
1# H2

0
$ 1
2(1"$2)

!"
%
&'

#2
$2B %

&'

(
&)
+

$
(
&)

%2&

with
Z = 7# A8% [ = 8 # A@% A7 = '[\]% W27 = V 1H[\]

where A7 and W
2
7 are the mean and variance of the the random variable \ and

H, #1 ' H ' 1, is known as the correlation coe"cient. The corresponding joint
distribution function is dened in terms of 2(7% 8) by

(5.2) - (/ ' $%@ ' F) =
Z $

$"

Z C

$"
2(7% 8)M8M7&

Evidently, we have the following elementary properties as consequences of the def-
inition:

i) - (/ ' #&% @ ' F) = - (/ ' $%@ ' #&) = 0&
ii) - (/ ' &% @ ' &) = 1&
iii) - ($1 ' / ' $2% @ ' F) = - (/ ' $2% @ ' F) # - (/ ' $1% @ ' F)

and, similarly,
- (/ ' $%F1 ' @ ' F2) = - (/ ' $%@ ' F2)# - (/ ' $%@ ' F1)&

iv) 2(7% 8) = D2E (6&85?&@)
D8D@

The two quantities - (/ ' &% @ ' F)and - (/ ' $%@ ' &) are known as
marginal distributions. It is seen from the domains of these function that they
cover all the elementary events in the half plane @ ' F and / ' $, respectively.
It follows that

- (/ ' &% @ ' F) = - (@ ' F)%
- (/ ' $%@ ' &) = - (/ ' $)%

as well as

2(7) =

Z "

$"
2(7% 8)M8 =

]- (/ ' 7% @ ' &)
]7

%

2(8) =

Z "

$"
2(7% 8)M7 =

]- (/ ' &% @ ' 8)
]7

&

where 2(7) and 2(8) are known as marginal densities. For example, the marginal
densities for the joint Gaussian density function (5.1) is

2(7) =
1

*
2RW8

0
$ 1
2

"
%
&'

#2
% 2(8) =

1
*
2RW@

0
$ 1
2

"
(
&)

#2
&

The following useful result follows from the denition (5.2):

Proposition 13.

- ($1 ' / ' $2% F1 ' @ ' F2) =
- (/ ' $2% @ ' F2)# - (/ ' $1% @ ' F2)# - (/ ' $2% @ ' F1) + - (/ ' $1% @ ' F1)&
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A more general version of - ($1 ' / ' $2% F1 ' @ ' F2) is

- ((/%@ ) ^ N) =

Z Z

F

2(7% 8)M7M8

= probability of occurence of all (/%@ ) in the region N in the 7% 8 # 2_1+0&

Two random variables / and @ are independent if

2(7% 8) = 2(7)2(8)

and correspondingly

- (/ ' $%@ ' F) = - (/ ' $)- (@ ' F)&

For example, the random variables / and @ with the joint Gaussian density func-
tion (5.1) are independent if H = 0.

As in the single random variable case, we are interested in expected values of
functions of several random variables.

Definition 13. Let / and @ be random variables with joint density function
2(7% 8). Their joint ,%+ - moment is dened as

'[/,@ -] =

Z "

$"

Z "

$"
7,8-2(7% 8)M7M8&

The special cases of variances and covariance of/ and @ are particularly useful
in subsequent development the

V 1H[/] = '[(/ # A8)
2] =

Z "

$"

Z "

$"
(7# A8)

22(7% 8)M7M8 ! W88

V 1H[@ ] = '[(@ # A@)
2] =

Z "

$"

Z "

$"
(8 # A@)

22(7% 8)M7M8 ! W@@

`5V 1H[/%@ ] = '[(/ # A8)(@ # A@)] =
Z "

$"

Z "

$"
(7# A8)(8 # A@)2(7% 8)M7M8

= '[/@ ]# A8A@ ! W8@

More generally, for a set of random variables (/1%/2% &&&&&&&/-)+ !
#%
/ , we may form

the varaiances and covariances W!/ for (% L = 1% 2% &&&&% + :

[W!/ ] = ['[(/! # A!)(// # A/)]] ! # ((% L = 1% 2% &&&&% +)&

Note that the covariance matrix # is symmetric.
A square matrix $ is positive semi-denite if #%? +$#%? ( 0 for all real-valued

non-zero vector #%? &It is positive denite if #%? +$#%? 9 0&

Theorem 11. The covariance matrix # is positive semi-denite.

Proof. Let #%? = (?1% ?1% &&&&&&% ?1)+ and \ =
P-
!=1 ?!(/! # A!)& Evidently, we

have \2 ( 0&and therewith '[\2] ( 0. However, we also have

'[\2] =
-X

%=1

-X

/=1

?/'[(// # A/)(/% # A%)]?%

=
-X

%=1

-X

/=1

?/W/%?% =
#%? +##%? &

It follows that #%? +##%? & ( 0 so that # is positive semi-denite. ¤
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The quantity '[/,@ -] and more generally '[X(/%@ )] may be viewed in a
di!erent way by setting \ = X(/%@ ) so that '[X(/%@ )] = '[\]. The expectation
of \ is known to be given by

(5.3) '[\] =

Z "

$"
S2G(S)MS

with 2G(S) to be obtained from 2(7% 8)& Analogous to the one variable case, we have
the following result:

Theorem 12. Let / and @ be random variables with joint density 2(7% 8) and
\ = X(/%@ )%then

'[\] = '[X(/%@ )] =

Z "

$"

Z "

$"
X(7% 8)2(7% 8)M7M8&

Theorem 12 is an immediate consequence of the more fundamental result re-
lating 2G(S) to 2(7% 8) shown in the development below.

Theorem 13. Let / and @ be random variables with joint density 2(7% 8) and

\ = X(/%@ )%then

- [\ ' $] =
Z Z

F

2(7% 8)M7M8&

where N is an appropriate region in the 7% 8- plane dened by X(7% 8)&

To illustrate, consider the simple case of X(7% 8) = 7+8. In that case, we have

- (\ ' $) =
Z "

$"

Z $$@

$"
2(7% 8)M7M8&

Correspondingly, the density function 2G(S) is obtained by di!erentiating - [\ ' $]
with respect to $ to get

2G($) =
M- (\ ' $)

M$
=

Z "

$"
2($# 8% 8)M8

More generally, suppose
#%
/ is a vector random variable of dimension + with

density 2(
#%
/ ) and

#%
\ =

#%
O (
#%
/ ) with a unique inverse

#%
/ =

#%
O $1(

#%
\ )& Then we have

(5.4) - (\ ' $) =
Z

H*

2G(
#%S )M#%S =

Z

H+

2(#%7 )M#%7 =
Z

H*

2(
#%
O $1(#%S )) |a | M#%S

where a is the Jacobian matrix of
#%
O $1(

#%
\ )&

Proposition 14. Under the hypothesis leading to (5.4), we have

2G(
#%S ) = 2(

#%
O $1(#%S )) |a |

where

|a | =
¯̄
¯
#%
,7

³#%
O $1(#%S )

´¯̄
¯ =

¯̄
¯̄
¯̄
¯̄
¯̄

D81
D71

D82
D71

· · D8"
D71

D81
D72

D82
D72

·
· ·
· ·
D81
D7"

D82
D7"

· · D8"
D7"

¯̄
¯̄
¯̄
¯̄
¯̄

with
#%
,7(

#%C (#%S )) being the gradient of #%C (#%S ) in #%S = (S1% S2% &&&&&&% S-)+ space.
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6. Characteristic Functions and Central Limit Theorem

The characteristic function of a multivariate random variable can also be de-
ned analogous to the single random variable case.

Definition 14. The characteristic function of two random variables / and @
with joint probability density function 2(7% 8) is

(6.1) 2̂(B% ?) = '[0!:6+!I? ] =

Z "

$"

Z "

$"
0!(:8+I@)2(7% 8)M7M8&

Evidently, 2̂(B% ?) is just the Fourier transform of 2(7% 8). To the extent that
2(7) is absolutely integrable, we have the usual inversion formula for the transform
which will not be listed here. Instead, we note the important fact that the charac-
teristic function and hence the joint probability density function can be determined
from the collection of all joint moments the random variables:

Proposition 15. Suppose / and @ are two random variables with joint proba-
bility density function 2(7% 8) and 2̂(B% ?) the corresponding characteristic function.
Then,

],+%2̂(B% ?)

]B,]?%

¯̄
¯̄
:=I=0

= (,+%'[/,@ %]

where ( =
*
#1 is the imaginary unit.

Proof. (exercise). ¤

For more random variables, we use the vector notation to write (/1%/2% &&&&&&&/-)+ !#%
/ and

2̂(#%B ) = '[0!
$!: ·$!8 ] =

Z "

$"
· · ·
Z "

$"
0!
$!: ·$!8 2(#%7 )M71 · · · M7-&

The relation between the joint moments and the characteristic function now reads

],2̂(#%B )
]B%11 · · · ]B%"-

¯̄
¯̄
¯$!:=$!0

= (,'[/%1
1 · · ·/%"1

- ]% (, = .1 + · · · ·+.-)&

Suppose {/1%/2% &&&&&&&/-} is a sequence of mutually independent and identi-
cally distributed (often abbreviated as ((M or (&(&M&) random variables with means A
and variances W2. Let / =

P-
%=1/% and @ be the normalized random variable:

@ =
1

*
+W2

(/ # +A) =
1

*
+W2

-X

%=1

(/% # A) &

Theorem 14. The distribution function of @% - (@ ' $)% converges to the zero
mean, unit variance Gaussian distribution as + %&&

Proof. The characteristic function of Y is given by

2̂? (B) = '[0!:? ] =
h
0$!:;<

%
-=2 2̂(B*

*
+W2)

i-

=

"
0$!:;<

%
-=2

(
1 +

(BA
*
+W2

#
A2
2!

µ
B

*
+W2

¶2
+ · · ·

)#-

=

!
1#

B2

2+
+ 5

µ
B2

+

¶¸-
(as +%&)&
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where we have recalled the relation A2 = W
2 + A2 and where

lim
7!0

5(S)

S
= 0&

With the 5(B2*+) negligible compared the rst two terms in the expansion for
2̂? (B), we have

2̂? (B) ˜

!
1#

B2

2+

¸-
% 0$:

2<2 16 +%&%

and 0$:
2<2 is the characteristic function of a zero mean and unit variance Gaussian

distribution. ¤



CHAPTER 4

Mean Square Convergence

1. Metric Space of Random Variables

As n increases, the sequence of numbers {1% 1*2% 1*3% &&&&&% 1*+&&&&} clearly ap-
proaches zero. We say the sequence {7- = 1*+} tends to 0 as n tends to innity:

lim
-!"

[7-] = 0&

For all |7| =&, the sequence of functions {G-(7) = 7-0$-8} also tends to the zero
function as + tends to innity:

lim
-!"

[G-(7)] = 0&

When {/-} is a sequence of random variables, we also would like to ask whether
it converges to something, a number or another random variable. For an answer,
we need to phrase the question in the form of convergence of sequences of numbers
or functions for which we have well developed theories. There many ways we
can do the conversion.. Here, we will limit ourselves to a discussion to a type of
conversion known as convergence in the mean square (often abbreviated as "mean
square convergence" or "limits in the mean (l.i.m.)"). For this purpose, we consider
only random variables for which at least their rst and second moments exist and are
bounded. Such random variables are referred to as second order random variables.

The collection of 2-' order random variables form a vector space since for any
real number ; and any two 2-' order random variables / and @ , ;/ and / + @
are also 2-' order random variables. For a vector space, we need a (vector) norm
to measure the magnitude of the elements (vectors) of the vector space. For the
vector space of second order random variables, we dene the norm of /% k/k, to
be

k/k2 =
Z "

$"
722(7)M7

where 2(7) is the probability density function of /. As such, we have k/k =p
'[/2] ( 0. It can be shown that the denition satises the requirements of a

norm:

• k/k ( 0 and k/k = 0 (GG / = 0 with probability 1.
• k;/k = |;| k/k for and real number ;
• k/ + @ k ' k/k+ k@ k

Verication of the rst two properties is straightforward. The proof of the
third requires a mean square version of the Schwarz inequality:

Lemma 7. Suppose that / and @ are two second order random variables. Then
their second moments satises the following (mean square version of ) Schwarz’s

53
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inequality:
'[/@ ]2 ' '[/2]'[@ 2]&

Proof. \ = (/ # ;@ )2 is a second order random variable.and is nonnegative
for any real number ;. In that case, '[\] is also nonnegative. But

'[\] = '[(/ # ;@ )2] = '[@ 2];2 # 2'[/@ ];+ '[/2]

= (;% 1)

!
'[@ 2] #'[/@ ]
#'[/@ ] '[/2]

¸µ
;

1

¶
! (;% 1)b

µ
;

1

¶
&

The quadratic function of the real constant ; coresponding to '[\] can only be
nonnegative if and only if (i!) the matrix b is positive semi-denite. From the
expression for the eigenvalues of b , this is true i!

'[/@ ]2 ' '[/2]'[@ 2]

which is the inequality we set out to prove. ¤

We now use Schwarz’s inequality to prove the third property of the meansquare
norm. Upon writing out k/ + @ k2 and applying the Schwarz inequality, we get

k/ + @ k2 = '[(/ + @ )2] = '[/2] +'[@ 2] + 2'[/@ ]

' '[/2] +'[@ 2] + 2
p
'[/2]'[@ 2]

=
np

'[/2] +
p
'[@ 2]

o2
= {k/k+ k@ k}2

which is just the property needed.
With a well-dened norm, we can talk about various kinds of convergence:

Definition 15. A sequence of second order random variables {/-}is said to
converge in the mean square to a real number ; i! k/- # ;k% 0 as +%&, often
written as

lim
-!"

k/- # ;k = 0 or _&(&,&-!" [/-] = ;&

The following example can be found in many text:

Example 16. /- =
½
1 with - (1) = 1

-
0 with - (0) = 1# 1

-

Since - (1)% 0 as n %&, we expect that the sequence {/-} to tend to ; = 0
(at least in the mean square sense as dened above). To see that this is in fact the
case, we apply the denition of convergence in the mean square to get

lim
-!"

k/- # ;k = lim
-!"

k/-k =
!
lim
-!"

Z "

$"
72- 2(7)M7

¸1<2
= lim

-!"

r
1 ·
1

+
+ 0 · (1#

1

+
)

= lim
-!"

r
1

+
= 0

as we wanted to show. Note that /- may be 1 however large n may be. Thus,
the sequence {/-} does not converge in the ordinary sense of convergence.

Mean square convergence of a sequence {/-} may also be to another random
variable / instead of a number as illustrated by the following example:
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Example 17. Let {;-} be a sequence of real numbers converging to a nmuber
;%i.e., lim-!"[;-] = ;& Suppose / is a random variable with density function 2(7)
and {/-} = {;-/} is a sequence of new i.i.d. random variables. The sequence
{/-}% ;/ in the mean square as +%&&

This is seen from

lim
-!"

k/- # ;/k = lim
-!"

'[(;-/ # ;/)2} = lim
-!"

'[(;- # ;)2/2}

= lim
-!"

(;- # ;)2'[/2] = 0

In general, there are some additional requirements or restrictions in order for mean
square convergence to another random variable to make sense. In the example
above, the limiting random variable / has the same density function as the /-’s,
i.e., all the random variables involved are i.i.d. If this is not so for another set of
random variables, then we would need to know the joint density function before we
can compute k/- #/k

2 = '[(/- #/)2]. Assuming these requirements and/or
restrictions are met, we have the following more general denition of mean square
convergence:

Definition 16. A sequence of second order random variables {/-}is said to
converge in the mean square to another random variable / i! k/- #/k % 0 as
+%&, often abbreviated as

lim
-!"

k/- #/k = 0 or _&(&,&-!" [/-] = /%

where

k/- #/k
2 =

Z "

$"

Z "

$"
(7- # 7)22(7-% 7)M7-M7

with

k/- # ;k
2 =

Z "

$"
(7- # ;)22(7-)M7-

if / = ; is a constant.

Note that if {/-} and / are i.i.d. with density 2(·), then

k/- #/k
2 =

Z "

$"

Z "

$"
(7- # 7)22(7-)2(7)M7-M7&

Proposition 16. If lim-!" k/- #/k = 0 and lim-!" k@- # @ k = 0%
then

lim
-!"

k(1/- + Y@-)# (1/ + Y@ )k = 0&

Proof. (exercise) ¤

Proposition 17. If a sequence of random variables is mean square convergent,
then its mean square limit is unique.

Proof. (exercise) ¤
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2. Mean Square Cauchy Sequences

Often and especially for convergence to a random variable, we do not know the
limiting random variable or constant. To decide on the mean square convergence
of such sequences, we have the equivalent of Cauchy sequence:

Definition 17. A sequence of second order random variables {/-}is a Cauchy
(fundamental) sequence in the mean square (often abbreviated as mean square Cauchy
or fundamental) if k/% #/,k% 0 as .%,%& in any manner whatsoever&

Theorem 15. A sequence of random variables{/-} converges to / i! the
sequence is Cauchy.

Proof. (omitted) ¤

The following example can be found in many text on continuous probability:

Example 18. /- =
½
+ with - (+) = 1

-2

0 with - (0) = 1# 1
-2

Since we do not have a good idea about a limiting random variable or a constant
(if there is one at all), we apply Proposition 15 by forming

k/, #/%k
2
= '[(/, #/%)2] = '[/2

, # 2/,/% +/
2
% ]

=

!
,2

,2
+ 0

¸
# 2

!
,

,2

.

.2

¸
+

!
.2

.2
+ 0

¸

= 2

µ
1#

1

,.

¶
% 2 16 (,%&% . %&) &

Hence, the sequence does not converge in the mean square.

Example 19. Suppose we try to repeatedly measure and record some available
information (such as repeatedly sampling the depolarization voltage of a nerve axon
in a refractory stage) which is actually A. during the refractory period (which may
be very short). Because of the noisy environment, what is recorded through each
sampling is /- = A + [- where the (second order) random noise variables {[-}
are i.i.d. with zero mean and variance W2&(uncorrelated from sample to sample).
Experimentalists typical would average their samples to get rid of the e!ects of the
noise by letting

@- =
1

+

-X

%=1

/%&

Theoretically, we have '[@-] = A and V 1H[/-] = W2; thus @- does appear to average
out the noise. The question is: Does the random sequence {@-} converges in the
mean square?

Since we do not know the limiting random variable, the question can only be
answered with the possibility of a Cauchy sequence by looking at the sequence
k@, # @%k

2. and

k@, # @%k
2
= '[(@, # @%)2] = '[{(@, # A)# (@% # A)}

2
]

= '[(@, # A)2 # 2(@, # A)(@% # A) + (@% # A)2]

=
W2

,
# 2'[(@, # A)(@% # A)] +

W2

.
&
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For , 9 ., we have

'[(@, # A)(@% # A)] =
Z "

$"

Z "

$"
(8, # A)(8% # A)(2(7,% 7%)M7,M7% = 0

given the di!erent sampling noises are i.i.d. so that 2(7,% 7%) = 2(7,)2(7%). This
leaves

k@, # @%k
2
=
W2

,
+
W2

.
% 0 as , and .%&&

Thus, the sequence {@-} is mean square Cauchy and therefore converges in the
mean square to some random variable @ which is what we want to know.

Example 20. Let {/1%/2% &&&} be independent random variables with - [/! =
1] = - [/! = #1] = 0&5. Compute the characteristic function of the random vari-
ables /1, #- = /1+ · · · ·+/- and @- = #-*

*
+ and decide whether the sequences

{#-} and {V-} converge in the mean square.

(exercise)
In the study of stochastic di!erential equations, one of the most often invoked

properties is the communtivity between l.i.m. and another operations. The propo-
sition below establishes the rst such communtativity relation: that l.i.m. com-
mutes with the operation of calculating expectation.

Proposition 18. If a sequence of random variables{/-} converges to / then

_&(&,&-!"'[/-] = '[/]&

Proof. (exercise) ¤

3. Chebyshev Inequality and Sample Size

One topic related to idea of convergence of random variables the Chebyshev
inequality. Suppose that {/1%/2 · · · ·%/-}is a sequence + i.i.d. random variables
with common mean A and common variance W2& Let

@- =
1

+

-X

%=1

/%&

Evidently, @- is the average of the + random variables {/!} and is itself a random
variable. Furthermore, as + increases, we have another new sequence of random
variables {@1% @2 · · · ·% @% · ··% }& We can of course investigate the mean square
convergence of either sequence. But for a nite n (corresponding to a nite sample
of the data from a population), we note the following relations between {/!} and
{@%}:

Proposition 19. Suppose that {/1%/2 ····%/-}is a sequence + i.i.d. random
variables with common mean A and common variance W2 and @- is the average of
the + / 06& Then

A- = '[@-] = A and W2- = V 1H[@-] =
W2

+
&

Proof. (exercise) ¤
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A particular realization of @-% calculated from a particular sample of {/1%/2 ·
· · ·%/-}% will generally not be A- = A& We want to know the di!erence between @-
and A& In particular, we may want to know what is the probability of |@- # A| = 4
(using 4 for tolerance instead of the usual ubiquitous U) for a prescribed 4 value.
This question is answered by the Chebyshev inequality:

Theorem 16. Suppose @- is random variable with mean A- and variance W
2
-&

Then

-{|@- # A-| ( 4) '
W2-
42
% -{|@- # A-| = 4) 9 1#

W2-
42
&

Proof. Observe that @- is also i.i.d. with the same density function as /%
so that

W2- =

Z "

$"
(8- # A-)

22(8-)M8-

=

Z ;"$)

$"
(8- # A-)

22(8-)M8- +

Z "

;"+)

(8- # A-)
22(8-)M8- +

Z ;"+)

;"$)
(8- # A-)

22(8-)M8-

=

Z

|@"$;"|' )
(8- # A-)

22(8-)M8- +$
2(3.1)

with

$2 =

Z ;"+)

;"$)
(8- # A-)

22(8-)M8- ( 0%

given the integrand is non-negative. From (3.1) we obtain

W2 (
Z

|@"$;"|' )
(8- # A-)

22(8-)M8- ( 42
Z

|@"$;"|' )
2(8-)M8- = 4

2-{|@- # A|)

and the rst inequality follows (while the second an elementary consequence of the
rst). ¤

Example 21. Suppose A- = W2- = 9& Use Chebyshev inequality to determine
-{|@- # A-| = 5)& Compare the result with the corresponding probability if the X’s
are Poisson distributed with <(= A- = W

2
-) = 9&

It is straightforward to apply the Chebyshev inequality to get

-{|@- # A-| = 4) = -{|@- # 9| = 5) = -{4 = @- = 14) ( 1#
W2-
42
= 1#

9

25
= 0&64&

The corresponding probability for -{4 = @- = 14) from a Poisson distribution is

-{4 = @- = 14) = 0$9
14X

%=5

9%

.!
= 0&937307 · ··

Evidently the Probability obtained from Chebyshev inequality is quite conserva-
tive. On the other it does not require any knowledge of the underlying density or
distribution of the random variables involved.

Example 22. Suppose @- is the average of the + i.i.d. random variables {/!}
of mean A and variance W2 (such as + samples of a population) Determine the size
+ of the sample in order for -{|@- # A| = 5) ( 0&95&
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Given A- = A and W
2
- = W

2*+ from Proposition 19, we have

- (|@- # A| = 4) = - (|@- # A| = 5) 9 1#
W2-
52
= 1#

W2

25+

We do not know A and W2 (the mean and variance of the population of interest),
but may have some estimate of the variance from data available for the population.

For example, if we know the range of the/!’s (which are i.i.d.), say D ' / ' E,
we can take the average of the two extreme values to get W2 ' (E # D)2*4& In that
case, we have for 4 = 5

- (|@- # A| = 4) ( 1#
W2-
42
= 1#

W2

+42
9 1#

(E # D)2

100+
&

If we want this probability to be 9 0&95, then we take

(E # D)2

100+
= 0&05 or + 9

(E # D)2

5
or + 9 80 if E # D = 20. In other words, the sample size should be 80 or larger
for a better than 95% chance that a sample mean @-to be within 5 of the unknown
population mean A

For another example, if / 0
!6 are i.i.d. Bernoulli trial with proportion of suc-

cesses equal to 2 and failures 1 # 2. Then we have A- = '[@-] = 2 and
W2- = 2(1 # 2)*+ (given W2- = (1 # A-)22 + (0 # A-)2(1 # 2) = 2(1 # 2) for
the each /!). In that case,

- (|@- # 2| = 4) 9 1#
W2-
42
= 1#

2(1# 2)
+42

( 1#
1

4+42
&

For 4 = 0&1 and the desired probability - (|@- # 2| = 4) to be 9 0&95% we should
take

1

4+42
= 0&05 or + 9

1

4 · 0&05 · 0&12
= 500&





CHAPTER 5

Stochastic Processes

1. Random Variables with Continuous Indexing

Up to now we have been discussing scalar and vector random variables and
sequence of scalar variables. While the last of these may be cast as one or more
vector random variables, sequence of scalar (or vector) random variables are charac-
teristically di!erent from vector random variables in that members of the sequence
are associated with di!erent instances in time. We have had many such examples
in chapters 1 - 3, notably the genotypes of the di!erent generations of individuals.
There are three genotypes in the evolution of simple Mendelian genetics (which
form a vector random variable) and they change for generation to generation and
hence form an evolving sequence of vector random variables. It would be concep-
tually awkward, if not inappropriate, to combine them into a single vector random
variable for they separately provide di!erent kind of information about the genetics
of the population.

Stochastic processes are quantities that are even more general than what we
have encountered and studied up to now. If a sequence of random variables is
a random variable evolving in discrete time steps, be it in minutes, hours, days,
months, years, decades or generations, a scalar stochastic process is e!ectively a
sequence of random variables when the parameter that index them changes con-
tinuously (and therefore cannot be assigned integer indices). While the indexing
parameter may be time as it often is, it may also be space or other quantiers that
can be mapped onto the real line or a segment thereof. To focus our discussion,
we start with scalar stochastic processes with a time or time-like index, denoting
such process by /(4) with 4 taking on values in an indexing set " to emphasize this
focus.

As a reminder of examples of stochastic process we have already encountered
earlier in these notes, we recall the solution

8(4) = 800
0()$)0)

of the simple IVP in for exponent growth of a population

80 = 18% 8(40) = 80&

If measurements of the initial data includes some random errors with a known
density function, then 8(4%) is a random variable {which is a function of another
random variable) for any xed 4% 9 40. As 4 changes continuous for a range of
values (40% c) = " , we have a stochastic process indexed by the parameter 4 which
is time in this case. If the growth rate 1 is also a random variable, then 8 would
be a function of two random variable with .its density function determined by the
known joint density function of 1 and 80.

61
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To describe formally what we have come to call a stochastic process by extend-
ing the indexing parameter from an integer valued parameter (discrete) to a real-
valued parameter, i.e., going from {/1%/2% &&&&&%/%% &&&} to/(4) for 4 in a time inter-
val " (which may be#& = 4 =&)% we can take one of several approaches. In class,
we have basically reverse the process by taking, for any collection of instances in
"time" {41% 42% &&&&&% 4-}, /(4) to mean {/1 = /(41)% /2 = /(42)% &&&&&%/- = /(4-)}
where each /% being a random variable with a joint probability density function
among them (which now depends on the {4%} as well). Since there are many possi-
ble sets of time instances in "% there are many such collections of random variables
associated with di!erent combinations of {4%} (which may di!er in the number of
40%6 and/or in the values of the 4

0
%6).

Here in these notes, we describe another characterization of stochastic processes
to o!er a di!erent perspective:

Definition 18. A stochastic process /(4% d) is a function of two variables,
say 4 and d. The domain of d is an index of the sample set (the six possible faces
of a die) and the domain of 4 is in general the real line (#&%&), e.g., the time
axis& For a specic value of d = d!, the quanity /(4% d!) is an ordinary function
corresponding to an elementary event or a sample function. For a specic 4 = 4%,
/(4%% d) is a random variable which ranges over the sample space as d! varies over
its domain. (Finally, for any pair (4%% d!), /(4%% d!) is a mere number.)

It is customary to omit the appearance of the stochastic parameter d and simply
write /(4) for a stochastic process, abbreviated by s.p. This is consistent with the
omission of the sample index parameter d for random variables in the previous two
chapters. As such, /(4) represents four di!erent things: i) A family of functions
(when both 4 and d allowed to vary), ii) a single function of 4 (with an assigned
value for d, iii) a random variable (when 4 is xed), and iv) a single number (when
both 4 and d are xed).

We stipulate that two s.p. are equal when there sample function are identical for
any outcome parameter value d!& Mathematical operations, such as sum, product,
di!erentiation, etc., on one or more s.p. processes operate on their sample functions.

Stochastic processes are generally complicated. One example of a rather com-
plex s. p. is the Brownian motion or the corresponding stochastic process known
as the Wiener process. Originally arose from Robert Brown’s original study of
the zigzag movements of particles in uids. The sample paths (functions) of the
particle for di!erent d! cannot be described by a formula and knowing the past does
not help to predict the future direction of the path.

Sample paths of a stochastic process can also be very regular as illustrated by
the following coin tossing experiment:. A coin is tossed. If a head turns up then
/(4) = 6(+(4). But if a tail turns up, we have /(4) = 4. Even if the sample paths
are simple regular curves, we still have a stochastic process.

To the extent that /(4) is a random variable for a xed value of 4, it is endowed
with a probability density function 2(7% 4) which may vary with the value of the
time-indexing parameter 4. As /(41) and /(42) are generally two related random
variables, there would be a joint probability density function 22(71% 72; 41% 42) for
them with

2(7%; 4%) =

Z "

$"
22(71% 72% % 41% 42)M7/
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for L = 1 or 2 and . 6= L%and with the density function invariant under a permutation
of the order of the arguments;

22(71% 72; 41% 42) = 22(72% 71; 42% 41)&

These two requirements are known as the Kolmogorov compatibility conditions for
22(71% 72; 41% 42). Note that we have used a di!erent notation for the joint density
function, 22(71% 72; 41% 42) instead of 22(71% 41;72% 42) to remind us of the change in
s.p. characterization (though the two forms of 22 are really the same).

We can introduce higher order joint density functions and probability distribu-
tions by looking at the s.p. at more instances in time and thereby moving toward the
description stochastic process adopted in class. In either case, a stochastic process
/(4) is e!ectively seen through its joint density functions (or distributions): For
every nite set of {4!% 42% &&&&&&&% 4-}% there corresponds for a s.p. /(4) a collection
of + random variables {/1 = /(4!)%/2 = /(42)% &&&&&&&%/- = /(4-)} with a joint
probability density function 2-(71% 72% &&&&&% 7-; 4!% 42% &&&&% 4-) and the corresponding
probability distribution

- (/(4!) ' $1% &&&&&&&%/(4-) ' $-) =
Z $"

$"
· ·
Z $1

$"
2-(71% &&% 7-; 4!% &&4-)M71 · · · M7-%

subject to the two Kolmogorov compatibility conditions:

22(71% 72&&&% 7-% ; 41% 42% &&&&% 4-) = 22(7!1 % 7!2 % &&&% 7!" % 4!1 % &&&% 4!")&

and

2,(7!1 % 7!2 % &&&% 7!, % 4!1 % &&&% 4!,) =

Z "

$"
··
Z "

$"
2-(71% 72% &&&% 7-; 41% &&&% 4-)M7!,+1 ·· M7!"

for , = +.
The denitions and their implications above can be extended to vector sto-

chastic processes such as the, vector process X(4) = (/1(4)%/2(4)% &&&&&&&%/,(4))+ &
For either scalar or vector s.p., their joint density functions and probability dis-
tributions are either specied, estimated from available data, or determined from
other stochastic processes (including the special case of random variables with know
statistics). We are particularly interested in the third possibility where stochastic
processes are outputs of functional transformations, ODE and PDE with random
input.

2. Moments and Characteristic Functions

As in the case of random variables, we are interested in various joint moments
and characteristic functions of stochastic processes. The main di!erence is now a
dependence of these quantities on the "time" variable 4. For example, we have for
the +)* moment of a s.p. /(4)

'[/-(4)] =

Z "

$"
7-2(7% 4)M7 = A-(4)

with A1(4) = A(4) being the mean or expectation of /(4).
For the joint moments, we have

'[/-(41)/
,(42)] =

Z "

$"
7-17

,
2 22(71% 72; 41% 42)M71M72 ( A-,(41% 42)
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with the central moments dened to be

AJ-,(41% 42) = '[{/(41)# A(41)}
- {/(42)# A(42)},]&

The central moment AJ11(41% 41) is the variance of /(4):

AJ11(41% 41) = '[{/(41)# A(41)}
2] = W26(4)&

For many problems of interest, it su"ces to work with the central moments as a
change of variable from /(4) to \(4) = /(4) # A(4) results in a related s.p. which
may be simpler to process. Unless it is clear from the context, we we take /(4) to
be of zero mean for all 4 in the domain " henceforth.

Cross-moments of two stochastic processes /(4) and @ (4) such as

'[/-(41)@
,(42)] =

Z "

$"
7-18

,
2 22(71% 72; 41% 42)M71M82 = [-,(41% 42)

also arise in applications with the corresponding central cross-moments

[J-,(41% 42) = '[{/(41)# A6(41)}
- {@ (42)# A? (42)}

,]&

Among these moments, most often encountered are the following second order
moments of stochastic processes:

`66(41% 42) = '[/(41)/(42)] =

Z "

$"

Z "

$"
717222(71% 72; 41% 42)M71M72 = A11(41% 42)

`6? (41% 42) = '[/(41)@ (42)] =

Z "

$"

Z "

$"
718222(71% 82; 41% 42)M71M82 = [11(41% 42)&

They are known as the auto-correlation function and cross-correlation function, re-
spectively. The corresponding central moments AJ11(41% 42) and [

J
11(41% 42) are known

as auto-covariance function and cross-covariance function, respectively. Below are
some properties of these functions:

Proposition 20. (i) `66(41% 42) = `66(42% 41)% (ii) `6? (41% 42) = `? 6(42% 41)%

(iii) `66(4% 4) ( 0% (iv) `266(41% 42) ' `66(41% 41)`66(42% 42)%
(v) `26? (41% 42) ' `66(41% 41)`? ? (42% 42)

Proof. (exercise) ¤

Proposition 21. The matrix [`66(4!% 4/)] = [`!/ ] is positive semi-denite.

Proof. (exercise) ¤

Example 23. i) For /(4) = $4 with A being a random variable of zero mean
and variance W2% show that `66(4% 6) = W246& (exercise)

ii) For @ (4) = $0$0) with A being a random variable of zero mean and
variance W2% nd `? ? (4% 6)& (exercise)

As in the case of random variables, we can dene characteristic functions for
the joint probability density functions of stochastic processes:

2̂-(
#%B ) =

Z "

$"
· ·
Z "

$"
0!
$!: ·$!8 2-(

#%7 ; 41% 42% &&&% 4-)M71 · · M7-

where #%7 = (71% 72% &&&% 7-)+ = x and #%B = (B1% B2% &&&% B-)+ = u (with bold face and
arrow used interchangeably to indicate vector quantities). For stochastic processes
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however, we have the additional possibility of taking the Fourier transform in time
of some of their statistics as we do in the next section.

3. Stationary Stochastic Process

Some stochastic process /(4) is independent of the reference time with its
probabilistic and statistical properties not a!ected by a shift of time. That is the
probabilistic and statistical properties of /(4) and /(4 + c) are the same. Such
a s.p. is said to be (strictly) stationary. Two stochastic processes /(4) and @ (4)
are jointly (strictly) stationary if the joint statistics of {/(4)% @ (4)} are the same
as those of {/(4+ c)% @ (4+ c)}. Note that stochastic processes may individually
stationary but not jointly stationary. Focussing on a single stationary s.p. /(4),
it follows from the above characterization of (strict) stationarity that its +)* order
joint density function must have the property

2-(71% 72% &&&% 7-; 41% 42% &&&% 4-) = 2-(71% 72% &&&% 7-; 41 + c % 42 + c % &&&% 4- + c)&

As an immediate consequence, we have

Lemma 8. For a stationary process /(4), its density fnction is independent of
4, i.e., 2(7; 4) = 2(7) and consequently '[/(4)] = A is also independent of 4.

Proof. For any U 9 0, we have 2(7; 4 + U) = 2(7; 4) for a stationary process.
As this must be true for every U, 2(7; 4) must be independent of 4. With

A(4) = '[/(4)] =

Z "

$"
72(7; 4)M7 =

Z "

$"
72(7)M7%

it follows that A(4) = '[/(4)] is a constant. ¤

Lemma 9. For a stationary process/(4), its joint density fnction 22(71% 72; 41% 42)
depends only on the time increment between the instances of time involved, namely
c = 42 # 41% i.e., 22(71% 72; 41% 42) = 22(71% 72; 42 # 41)& Correspondingly, the au-
tocorrelation function `66(41% 42) also depends only on c and not on 41 and 42,
separately.

Proof. (exercise) ¤

We may assume 42 9 41 so that c is positive only on the basis of the following
observation:

Lemma 10. `66(#c) = `66(c)

Proof. (exercise) ¤

Example 24. Let @ be a random variable with a uniform density function on
[0% 2R] and /(4) be dened in terms of @ by

/(4) = cos(4+ @ )

for all t in (#& = 4 =&)& The /(4) is strictly stationary.

In practice, we often limit discussion to rst and second moments for second
order s.p. and the stationarity of such procesess which can be shown to be inde-
pendent of time:
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Proposition 22. For a second order stationary stochastic process /(4) is
wide-sense stationary s.p., both '[/(4)] and V 1H[/(4)] are independent of t:

'[/(4)] = A% V 1H[/(4)] = W2

where A and W2 are constants.

Definition 19. A second order stochastic process /(4) is a wide- sense (or
weakly) stationary s.p. if

(i) '[/(4)] and V 1H[/(4) are constants (independent of 4), and
(ii) '[/(4+ c)/(4)] = `66(c)&

Note that the denition of wide (or weak) sense stationarity says nothing about
higher order probabilistic and statistical properties being invariant under a time
translation. More importantly, even the joint density 22(71% 72; 41% 42) may not be
invariant under a time shift. The two s.p. in the Example paragraph of the last
section (with /(4) = $4 and /(4) = $0$0)) are clearly not stationary, not even
wide sense stationary. However, the s.p. below is.

Example 25. For /(4) = 1 cos(e4 + f) where the only random variable
f is uniformly distributed in the interval (0% 2R), show that '[/(4)] = 0 and
`66(4+ c % 4) =

1
21
2 cos(ec)& (exercise)

While the s.p. above is wide sense stationary, it can be veried that 2(7; 4) is
not independent of 4&

Example 26. Show that the random telegraph transmission processes of Prob-
lems 8 and 9 of Assignment VI are at least wide sense stationary.

With `66(41% 42) = `66(42#41) = `66(c) for a wide sense stationary process%
consider its Fourier transform with respect to c &

Definition 20. When the autocorrelation function of a wide sense stationary
process is absolutely integrable, the power spectrum or spectral density #(e) of
the s.p. is dened to be

#(e) =

Z "

$"
0!KL`66(c)Mc &

For real-valued s.p. (and our discussion has been limited to such processes),
we have as a consequence of Lemma 10 that

Proposition 23. The spectral density is an even function in its argument
#(#e) = #(e)&

Theorem 17. Given the power spectral density #(e)% the autocorrelation func-
tion of a wide sense stationary stochastic process is given by the inversion formula:

`66(c) =
1

2R

Z "

$"
0$!KL#(e)Me

with equality taken to be the average value at point of discontinuity of `66(c)&

Proof. The result follows from the Fourier inversion formula. ¤
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The pair of formulas for {`66(c)% #(e)} are known as the Wiener-Khintchine
relations in stochastic processes. In some eld of applications, the sign of the
exponentials are reversed.

Corollary 8.
1

2R

Z "

$"
#(e)Me ( 0

Proof. The result follows from the inversion formula and the denition of the
autocorrelation function,

1

2R

Z "

$"
#(e)Me = `66(0) = '[/

2(4)] = W2%

with the second moment being a nonnegative constant for a wide sense stationary
process. ¤

4. Random Walk and the Wiener Process

4.1. One Dimensional Random Walk. Starting at time 4 = 0 and the
position of a marker at /(0) = 0, a coin is tossed every " seconds. If a head turns
up, a step of length 6 is taken to the right. If a tail turns up instead, a step of the
same length is taken to the left. After 4 seconds, the marker position/(4) depends
on the coin tossing outcomes (which are random) and hence a stochastic process
known as random walk (in one dimension). The sample function is an up and
down staircase with equal step length 6 over each " time interval and with jump
discontinuities at 4- = +" . It is a phenomenon we have previously encountered in
Math 227B in connection with the di!usion PDE in one spatial dimension. Here
we are concerned with the statistical aspects of the phenomenon.

Suppose that for the rst + tossings of the coin, . heads turn up. Then at
4 = +" , the marker has moved . steps to the right and +# . steps to the left and
therewith

/(+" ) = .6# (+# .)6 = (2. # +)6 ! H6

where H = 2.#+ . Since . varies from sample to sample, /(+" ) is a random vari-
able taking the value H6 with H may assume one of elementary events in the sample
space {#+% #++ 1% &&&&# 1% 0% 1% 2% &&&% +# 1% +}. In other words, {/(+" ) = H6}
is the event {. heads in + tossings} where . = (++ H)*2. We know from binomial
distribution that

2(7; 4) =

µ
+
.

¶
2%(1# 2)-$%T(7# .)%

or, for a fair coin,

2(7; 4) =
1

2-

µ
+
-+B
2

¶
T(7# .)% - (. heads) = - (/(+" ) = H6) =

1

2-

µ
+
-+B
2

¶
&

Evidently, the random variables {/(L" ) = //} are i.i.d. so that

2-(71% &&&7-; 41% &&&% 4-) = 2(71; 41) · · · · 2(7-; 4-)&

It follows that

(4.1) '[/(+" )] = 0% '[/2(+" )] = +62&
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since

'[/(+" )] = '[
-X

/=1

/(L" )] =
-X

/=1

'[/(L" )] = + · 0 = 0

'[/2(+" )] = '[
-X

/=1

/2(L" )] =
-X

/=1

'[/2(L" )] = +
£
262 + K62

¤
= +62&

For large + and H = :(
*
+)% it can be shown (see Sec. VII.2 of [2]) the following

asymptic relation holds

- {/(+" ) = H6} )
r
2

+R
0$B

2<2-&

with

- {/(+" ) ' H6} )
1

2
+ erf

µ
H
*
+

¶
% erf(7) =

1
*
2R

Z 8

0

0$:
2<2MB&

4.2. The Wiener Process. By setting 4 = +" , we re-write the results of the
previous section as

'[/(4)] = 0% '[/2(4)] =
4

"
62&

Suppose we keep 4 xed and allow 6 and " to tend to zero. The variance '[/2(4)]
approaches a limit only if 62 = N" where N is a constant. We denote the limiting
process by F(4) in honor of Robert Brown for his pioneering work on Brownian
motion but call it the Wiener process for Wiener’s working in relating Brownian
motion to stochastic process. With the relation 62 = N" , we get from (4.1) for
the random walk problem

(4.2) '[F(4)] = 0% '[F2(4)] = N4&

Moreover, we can prove the following result for the limiting case of 6 and " % 0
with 4 xed and 62*" = N:

Theorem 18. In the limit of 62 = N" % 0 while 4 = +" remaining xed, the
limiting stochastic process F(4) is normally distributed with mean zero and variance
N4&

Proof. For the nite " and 6 case, we have with4 = +" and H6 = g,

- {/(4) ' g} )
1

2
+ erf

µ
H
*
+

¶
=
1

2
+ erf

Ã
g*6p
4*"

!
& =

1

2
+ erf

µ
g
*
N4

¶

In the limit as 6% " % 0 with 62*" % N% we have /(4)% F(4) with the probability
distribution

- {F(4) ' g} & =
1

2
+ erf

µ
g
*
N4

¶
=
1

2
+

1
*
2R

Z M<
%
F)

0

0$7
2<2MS

and the corresponding density function

2(7; 4) =
1

*
2RN4

0$8
2<2F)&

¤

Proposition 24. `CC(41% 42) = min[N41%N42]&
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Proof. (exercise) ¤
The Wiener (or Wiener-Lévy) process is related to the interesting and complex

physical phenomenon of Brownina motion we all have heard about. Botanist
Robert Brown rst observed and initiated a study of the irregular movements of
small particles immersed in a liquid. He correctly described them as the results of
impacts of the molecules in the liquid. The phenomenon has since been known as
Brownian motion in recognition of his contribution. In 1923, MIT mathematician
Nobert Wiener established the existence of a Gaussian process with the properties
expected of Brownian movements (including i) continuity of its sample functions,
ii) '[F(4)#F(6)] = 0% and iii) '[{F(4)#F(6)}2] = N |4# 6| for 4% 6 9 0).





CHAPTER 6

Mean Square Calculus

1. Mean Square Continuity

To study stochastic process governed by di!erential equations, we need to know
what is meant by their derivative(s) and integral(s). Similar to ordinary deriva-
tives and integrals, we also need to say what is meant by continuity of a stochastic
process before we can talk about di!erentiation and integration. Clearly, we do
not want these to mean the continuity, di!erentiability and integrability of every
realization of the stochastic process as that can be unwieldly and unmanageable
for quantitative analysis. Having introduce the concept of mean square norm for
measuring the magnitude of random variables, we can extend and apply it to sto-
chastic processes to help us formulate continuity, di!erentiability and integrability
of stochastic processes /(4) in the context of limit in the mean square. As usual,
we limit ourselves to stochastic processes that are second order, i.e., all relevant as-
sociated random variables {/(4%) = /%} have nite rst and second moment. To
the extent that @ (4) = /(4)#'[/(4)] is also a second order random variable with
zero mean, we will consider here only stochastic processes with zero mean and nite
variance with V 1H[/(4)] = '[/2(4)] for simplicity of theoretical development& We
also abbreviate stochastic process and mean square as s.p.and m.s., respectively,
for brevity.

Definition 21. A second order s. p. /(4) for 4 in " is continuous in mean
square (or m.s. continuous) at a xed 4 if

_&(&,&L!0[/(4+ c)] = /((4)% ( 4+ c in " )

or

lim
L!0

k/(4+ c)#/(4)k = lim
L!0

'[{/(4+ c)#/(4)}2] = 0

Remark 4. We could have used the criterion

lim
)!)0

'[{/(4)#/(40)}
2] = 0

But the choice of writing 4 = 40 + c would simplify complications in subsequent
developments.

Definition 22. If a second order s.p. is m.s. continuous at every 4 in
(41% 42) ^ "% then /(4) is m.s. continuous on the interval [41% 42].

Theorem 19. A second order s.p. /(4) is m.s. continuous on an interval
[41% 42] in " i! `(4% 6) is continuous at (4% 4) for every 4 in [41% 42].

Proof. (omitted, see Appendix if interested) ¤
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Example 27. Recall the solution to the simple exponential growth problem
with 8(4) = 8000()$)0). Consider the case that 80 is the only (second order) random
variable with density 2(80). To see whether the resulting s.p. is @ (4) is continuous,
we note that

`? ? (4% 6) = '[@ (4)@ (6)] =

Z "

$"
8202(80)M800

0()+N) = '[820 ]0
0()+N)

is continuous at 4 = 6. Theorem 19 assures us that @ (4) is m.s. continuous.

2. Mean Square Di"erentiation

With m.s. continuity, we can now discuss the m.s. di!erentiability of stochastic
processes.

Definition 23. A second order s.p. /(4), for all 4 in " has a m.s. derivative
/ 0(4) at 4 if

(2.1) _&(&,&L!0
/(4+ c)#/(4)

c
= / 0(4)&

Higher derivatives are dened analogously.

In discussing continuity of stochastic processes, we know the function being
considered and hence what the limit would be (if continuous) in the relevant limit
in the mean square process. In deciding on whether a stochastic process is di!eren-
tiable, we usually do not know its limiting derivative/ 0(4). Hence, it is not possible
to investigate di!erentiability by the denition (2.1) or its actual requirement:

lim
L!0

'

"½
/(4+ c)#/(4)

c
#/ 0(4)

¾2#
= 0&

. Fortunately, we have previously shown that we really do not need to know / 0(4)
or work with the denition (2.1) that requires it be known. We only need to
establish the corresponding mean square Cauchy sequence for the convergence in
the mean square of (/(4+ c)#/(4)) *c . This can be achieved by setting

\-(4) =
/(4+ +)#/(4)

+

with + - 0 (corresponding to c = 1*+) or

@-(4) =
/(4+ +$1)#/(4)

+$1

with + . &. With such a device, we have the following theorem to convert the
denition of di!erentiability into one working with ordinary functions:

Theorem 20. With `(4% 6) ! `66(4% 6) as its autocorrelation function, a sec-
ond order s.p. /(4), for all 4 in " is m.s. di!erentiable i! the second ("generalized")
derivative, &
(2.2)

lim
L5L 0!0

""`(4% 6)

cc 0
! lim
L5L 0!0

1

cc 0
{`(4+ c % 6+ c 0)# `(4+ c % 6)# `(4% 6+ c 0) + `(4% 6)}

exists at (4% 4) and is nite:
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Proof. We prove the "if" part of the theorem by showing the sequence {@-(4)}
is a Cauchy sequence in the mean square if the mixed derivative (2.2) exusts and
is nite at the point (4% 4)& Form

k@-(4)# @,(4)k
2 = '

h
{@-(4)# @,(4)}

2
i
= '[@-(4)]+'[@

2
,(4)]#2'[@-(4)@,(4)]

with the last term on the right (without #2) written out to read

'[@-(4)@,(4)] =
1

c6
' [{/-(4+ c)# /(4)} {/,(4+ c 0)# /(4)}]

=
1

c6
[`-,(4+ c % 4+ c

0)# `0,(4% 4+ c
0)# `-0(4+ c % 4) + `00(4% 4)] &

Letting + and , %& (in any way). we get

'[@-(4)@,(4)]%
1

c6
[`(4+ c % 4+ c 0)# `(4% 4+ c 0)# `(4+ c % 4) + `(4% 4)] &

Similarly, the other two terms also lead to the same expression in the limit as +
and , %& :

'[@ 2- (4)]% '[@ 2,(4)]%
1

c6
[`(4+ c % 4+ c 0)# `(4% 4+ c 0)# `(4+ c % 4) + `(4% 4)] &

It follows that

k@-(4)# @,(4)k
2 % 0 as +%, %& in any way whatsoever.

For the "only if" part, we assume that /(4) is meansquare di!erentiable
so that

lim
-5,!"

'[@-(4)@,(4)] = '[{/ 0(4)}2]

exists for some / 0(4). But the existence of the limit on the left hand side is also
the same as the existence of the autocorrelation function.

It remains to show that the existnce of the mixed (generalized) derivative
of `(41% 42) at the point (4% 4) in "×" implies the existence of `(41% 42) for all (41% 42)
in " × " (to be written). ¤

Remark 5. For problems in applications, the generalized derivative in (2.2) is
the same as the ordinary mixed derivative ]2`(4% 6)*]4]6. There are pathological
examples for which the generalized derivative of (2.2) does not exist (or unbounded)
while the ordinary mixed derivative does.

Example 28. Suppose /(4) = $4 for all 4 in " with $ being a second order
r.v. with mean zero and variance W2& Then `(4% 6) = W246 with

lim
L5L 0!0

W2

cc 0
{(4+ c)(6+ c 0)# (4+ c)6)# 4(6+ c 0) + 46} = W2&

Hence, /(4) is m.s. di!erentiable at every time 4.

Definition 24. If a second order s.p. /(4) is m.s. continuous at every 4 in
(41% 42) in "% then /(4) is m.s. di!erentiable on the interval [41% 42].

Recall that a stochastic process /(4) is second order wide-sense stationary s.p.
if i) '[/(4)] and '[/2(4)] exist; 2) both are nite constants, and '[/(4)/(6)] =
`(4% 6) = `(4# 6). For the di!erentiability of such processes, we have
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Corollary 9. A wide-sense stationary second order s.p. X(t) is m.s. dif-
ferentiable i! the rst and second order derivatives of `(c) exist and are nite at
c = 0&

3. Mean Square Integration

Suppose 7(4) is an ordinary function dened on [1% Y] and continuous in (1% Y).
We inroduce an equally space mesh on [1% Y] by setting 40 = 1, "4 = (Y # 1)*+,
4% = 1+ ."4 so that 4- = Y& Now form an upper Riemann sum

8- =
-X

%=1

7(4%)"4

The function 7(4) is said to be integrable if the limit of 8- exists (and equal to 8)
as +%& and "% 0% so that

lim
-!"

8- = lim
-!"

-X

%=1

7(4%)"4 = 8&

It is customary to relate y to the x(t) by writing

lim
-!"

-X

%=1

7(4%)"4 =

Z O

0

7(4)M4&

The right had side is called the integral of 7(4) over the interval [1% Y]. It is
customary to insist that the limit y is independent how we form the Riemann sum.
For example, it should be the same if we had used the lower Riemann sum and still
get

(3.1) lim
-!"

[8-] = lim
-!"

"
-X

%=1

7(4%$1)"4

#
= 8&

Had an uneven mesh {"%} been used, we should get the same result as long the
maximum mesh size ["%]max % 0 as +%&.

Now suppose /(4) is a second order stochastic process dened over [1% Y] and
we form similarly.

@- =
-X

%=1

/(4%)"4&

Here {/(4%)} and @- are random variables. As + increases (and |"%|max decreases)),
we have a sequence of random variables {@-}& It is natural to dene the convergence
of of the sequence to a limit @ in the mean square sense

Definition 25. For the second order s.p. /(4) dened on [1&Y] with the random
variable @- as dened above. /(4) is said to be Riemann integrable if the sequence
{@-} converges in the mean square to a limit @ as +%& and ["%]max % 0,

_&(&,& -!"
[!-]max!0

[@-] = @&

As in the case of an ordinary function 7(4), it is customary to write the limit,
if it exists, as an integral as well:

_&(&,& -!"
[!-]max!0

"
-X

%=1

/(4%$1)"4

#
!
Z O

0

/(4)M4&
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We note again the notation _&(&,&-!"5 [!-]max!0[@-] = @ is merely a short hand
for

k@- # @ k = '[(@ +# @ )2]% 0

as +%& and ["%]max % 0& which is what we have to check about integrability of
the stochastic process /(4).

Similar to the process of checking mean square di!erentiability of a s.p., we
also do not know the limiting (Riemann) integral @ when we try to apply the
denition of integrability of /(4). Fortunately, we can go with the alternative test
of a Cauchy sequence in the mean square which does not require the knowledge of
the limit being investigated. The use of this alternative test then allows us to reduce
the verication of the integrability of /(4) to an investigation of the integrability
of its autocorrelation function `66(4% 6) which is an ordinary function.

Theorem 21. Suppose /(4) is a second order s.p. and @- is as dened above.
Then a nite limit @ of the sequence of random variables {@-} exists as + % &
(and ["%]max % 0) if the ordinary double integral of the auto-correlation function
`66(4% 6) of /(4) exists and is nite, i.e.,

Z O

0

Z O

0

`66(4% 6)M4M6 = a nite constant&

Proof. (to be written up). ¤

As in integrals of ordinary functions, we have the following useful bound of an
integral of a stochastic process.

Lemma 11. If /(4) is mean square continuous on [1% Y], then
°°°°°

Z O

0

/(4)M4

°°°°° '
Z O

0

k/(4)k M4 '3(Y# 1)%

where 3 = max0&)&O k/(4)k &

Proof. (to be written up) ¤

For later applications, we extend the above results somewhat by considering
the stochastic integral of G(4% Z)/(4) over the interval [1% Y] where /(4) is again a
second order stochastic process and G(4% Z) is an ordinary continuous function of
two variables dened for 4 in [1% Y] and Z in another interval [;% M]. Evidently,

\-(Z) =
-X

%=1

G(4%% Z)/(4%)"%

is a sequence of random variables and integrability requires

_&(&,& -!"
[!-]max!0

\-(Z) = \(Z) !
Z O

0

G(4% Z)/(4)M4&

A theorem analogous to Theorem 21 assures the existence of the limiting value \(Z)
(so that G(4% Z)/(4) is Riemann integrable) if

Z O

0

Z O

0

G(4% Z)G(6% [)`66(4% 6)M4M6 = h (Z% [)

for some well dened bounded function of Z and [&
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An analogous formulation of the Riemann-Stieltjes integral has also been worked
out and will be used when needed in subsequent development. Hence, the integra-
bility of a stochastic process may be either in the sense of Riemann or Riemann-
Stieltjes, whichever is appropriate.

4. Additonal Tools in Mean Square Calculus

Proposition 18 assures us that, for a mean square convergent sequence of ran-
dom variables {/-}, the operation of taking the expectation of /- commutes with
the operation of taking the limit (in the mean square) of the/- . Before we describe
the important consequences of this proposition, we mention at this opportune time
that the expected value of the random variable /- is also known as the ensemble
average of /- denoted by the notation = /- 9 with

A = '[/] =

Z "

$"
72(7)M7 != / 9

W2 = '[(/ # A)2] =
Z "

$"
(7# A)22(7)M7 != (/ # A)2 9%

etc. The notation = / 9 is most often used in stochastic di!erential equations.
For that reason, the same notation is extended for stochastic processes as well with

A(4) = '[/(4)] =

Z "

$"
72(7; 4)M7 != /(4) 9

W2(4) = '[(/(4)# A)2] =
Z "

$"
(7# A(4))22(7; 4)M7 != (/(4)# A(4))2 9%

etc.
Applications of Proposition 18 gives some useful tools in dealing with stochastic

DE. A few of these are listed below while others will be mentioned when needed.

Proposition 25. If G(4% Z) is a function of two real variables and continuous
in 4 in (1% Y), and /(4) is integrable in [1% Y] with

@ (Z) =

Z O

0

G(4% Z)/(4)M4%

then

= @ (Z) 9=

Z O

0

G(4% Z) = /(4) 9 M4&

Proof. (omitted) ¤

Proposition 26. If G(4% Z) is a function of two real variables and di!erentiable
in 4 in some interval (1% Y), and /(4) is di!erentiable in (1% Y) with

@ (4% Z) =
M

M4
[G(4% Z)/(4)] %

then

= @ (4% Z) 9=
M

M4
{G(4% Z) = /(4) 9}&

Proof. (omitted) ¤
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Proposition 27. (Leibniz Rule) Supoose

@ (6) =

Z O(N)

0(N)

G(6% 4)/(4)M4%

then

M@

M6
=

Z O(N)

0(N)

]G(6% 4)

]6
/(4)M4&+ [G(6% 4))/(4)])=O(N)

MY

M6
# [G(6% 4))/(4)])=0(N)

M1

M6
&

Proof. (omitted) ¤

There are many others such tools that are analogous those encountered in
(ordinary) calculus to be mentioned as they arise in subsequent developments.

5. White Noise

Here seems to be a good place to introduce an important stochastic process in
applications, known as the white noise process, with the following denition.:

Definition 26. A stochasiic process i (4) is said to be a white noise process
if it has zero mean and temporally uncorreleted so that

'[i (4)] = 0% `PP (4% 6) = NT(4# 6)

where N is a positive constant and T(·) is the Dirac delta function.

(We we will work with the delta function in the usual way as discussed in Math
227A and Math 227B, fully recognizing that it is not an ordinary function.)

Since i (4) is stationary, we can compute its power spectral density to get

#P (e) = N&

The value of #P (e) for a white noise process is therefore the same at all frequencies.
For that reason, the stochastic process is called white to draw an analogy with the
spectrum of white light. As a conventional integral the inverse Fourier transform
of #P (e)%

1

2R

Z "

$"
0$!KL#P (e)Me =

N

2R(c
lim
"!"

£
0$!"L # 0!"L

¤
=
N

Rc
lim
"!"

[sin (#c)] %

does not exist. If we work in the context of distribution theory (or generalized
function theory) as is done in this area, the integral is known to beNT(c) consistent
with `PP (c) that gave rise to #P (e).

The complication however is that the white noise process is not a second order
stochastic process, since the second moments ofi (4) does not exist. Yet we do want
to make use of such a stochastic process in a mean square theory. given that white
noise is a very good approximation and idealization of many stochastic processes
that arise in applications and enables us to perform many kinds of analysist that
would be possible or very cumbersome otherwise. As such, a great deal of e!ort
has been made to relate white noise to a mean square process. This is accomplished
by the observation that i (4) may be considered as the derivative of the Wiener
process; the latter is a perfectly legitimate second order process given Theorems 18
and 24.
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With Theorem 24, we have
¿
MF(4)

M4

MF(6)

M6

À
=

]2

]4]6
= F(4)F(6) 9=

]2`CC(4% 6)

]6]4

=
]2

]6]4
{Nmin(4% 6)} =

]2

]4]6

½
N4 (4 = 6)
N6 (4 9 6)

Upon taking the partial derivative of `CC(4% 6) rst with respect to 6 , we get

]2

]4]6
{Nmin(4% 6)} = N

]

]4
!(4# 6)&

It follows that ¿
MF(4)

M4

MF(6)

M6

À
= N

]

]4
!(4# 6) = NT(4# 6)&

Proposition 28. Both the white noise process i (4) and the derivative of the
Wiener process, F0(4), are of zero mean and temporally uncorrelated so that

¿
MF(4)

M4

MF(6)

M6

À
= NT(4# 6) == i (4)i (6) 9 &

With the white noise process sharing the same (zero) rst moment and tempo-
rally uncorrelated autocorrelation function with the rst derivative of the Wiener
process F0(4), it is a general practice to think of white noise as the derivative a
Wiener process whenever it suits our purpose. The main reason for this practice is
the reality that we often do not know much about the stochastic input in our ODE
beyond the rst and second order statistics. In subsequent discussions of stochas-
tic di!erential equations, it will become clear that replacing white noise by (the
derivative of) a Wiener process does not necessarily remove the di"culty caused by
the unacceptable mathematical features of the white noise in certain applications.
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CHAPTER 7

Stochastic ODE with Random Initial Data

1. Existence and Uniqueness

Consider the simplest problem in stochastic DE, one with known system prop-
erties and only undercertain intial data. This problem takes the mathematical
form of

(1.1) X0(4) = f(X(4)% 4)% X(40) = X
J

where X(4) is an + vector (short for + dimensional vector) s.p., XJ is a second
order random + vector variable and f is an + vector function. (Note that we have
used bold face letters to indicate vector quantities instead of using an arrow over
the letters as done in earlier chapters and continue to do so henceforth.) In scalar
form, (1.1) is equvalent to

/ 0
/ = G/(/1% &&&&%/-% 4)% //(40) = /

J
/ % (L = 1% 2% &&&&% +)&

Definition 27. In addition to the hypotheses X(4)%XJ and f stipulated above,
suppose the components of f % {G/}% are continuous in all of its arguments on the
time interval " = [40% 4+ ] and all components of the initial data {/J

/ } are second
order random variables. Then X(4) is said to be a mean square (m.s.) solution of
the IVP (1.1) in the interval " if

i) X(4) is mean square continuous on " .
ii) X(40) = XJ;
iii) f(X(4)% 4) is the mean square derivative of X(4) on the interval " .

Theorem 22. X(4) is a mean square solution of the IVP (1.1) in the interval
" if for all t in T,

(1.2) X(4) = XJ +

Z )

)0

f(X(6)% 6)M6N

where the integral is understood to be a m.s. integral.

Proof. (to be written) ¤

Equation (1.2) does not provide an explicit solution for X(4) or its density
(or characteristic) function. It merely transform the IVP for an ODE into a
stochastic integral equation, i.e., an equation involving an integral of the unknown.
It does have the advantage of incorporating the initial condition into the equation
itself. Also integration tends to smooth out any rapid changes. The main reason
for stating the theorem however is that it allows us to prove the existence and
uniqueness of a m.s. solution for the stochastic IVP for any second order random
initial data.

81
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Definition 28. f(X% 4) is Lipschitz continuous in X in the mean square sense
if wÄf(X% 4)# f(Y% 4)

wÄ ' g(4)/X#Y/
for some Lipschitz function g(4) with

Z ).

)0

g(4)M4 =&

Theorem 23. If f(X% 4) is m.s. Lipschitz in X% then there is a unique m.s.
solution X(4) for any initial condition XJ.

Proof. The proof is essentially an analogue of the proof for the deterministic
version of the problem by Picard’s iterations and will be omitted here. ¤

If the ODE is linear and the only randomness comes from the initial data,
demonstration of existence and uniqueness of the m.s. solution for the stochastic
IVP is more elementary and will be discussed in the next section.

2. Linear ODE

If the ODE is linear with known system characteristics but random intial data
as well, the mathematical problem simplies to

X0(4) = $(4)X(4)% X(40) = X
J

where $(4) is a known (deterministic) +×+ matrix continuous for 4 in some interval
(40% 4+ ) = " , and XJ is a second order random + vector variable. If XJis a known
(deterministically), the solution of the problem is known from Math 227A to be

x(4) = $(4% 40)x
J

where $(4% S) is the unique fundamental matrix solution of the linear ODE with
$(S% S) = >. Since $(4% S) is expected to play signicant role in subsequent de-
velopment, we note here that it is constructed from a collection of + linearly inde-
pendent complenentary solution of the given vector ODE in the form of a matrix
#(4) = [v1(4)%v2(4)% &&&&%v-(4)] with

$(4% S) = #(4)#$1(S)% with $(S% S) = >&

A frequently invoked property of $(4% S) is

(2.1) $(4% S)$(S% 6) = $(4% 6)&

Moreover, $(4% S) satises both the given ODE and the corresponding SIE:

$0(4% 40) =
£
#(4)#$1(40)

¤0
= #0(4)#$1(40) = $(4)#(4)#

$1(40) = $(4)$(4% 40)

from which we get upon integration

(2.2) $(4% 40) = > +

Z )

)0

$(s)$(6% 40)M6

Now, if XJ is a second order + vector random variable with a joint probability
density 2(xJ) = 2(7J1% 7

J
2% &&&&&% 7

J
-)% we are assured of a unique m.s. solution of the

IVP by Theorem ?? of Section 1 of this chapter since f is m.s. Lipschitz in the
unknown and continuous in 4. The existence is easily seen in this case from a
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simpler argument to follow: For a prescribed second order (vector) r.v., we can
write down

(2.3) X(4) = $(4% 40)X
J

which is clearly is a second order stochastic process and the mean square calculus
is applicable to that process. That /(4) is a mean square solution is proved by
showing that the expression (2.3) satises the stochastic integral equation (1.2) for
f(X(6)% 6) = $(6)X(6):

X(4) = $(4% 40)X
J = XJ +

Z )

)0

$(s)$(6% 40)X
JM6

or

$(4% 40)X
J =

½
I+

Z )

)0

$(s)$(6% 40)M6

¾
XJ

which is satised for all XJ given (2.2). Uniqueness of the mean square solution is
a consequence of the uniqueness of the fundamental matrix solution.

To obtain the density function for X(4), we note that the relation between
X(4) = h(4%XJ) is invertible because $(4% 40) is nonsingular for the range of 4 of
interese:

XJ = $$1(4% 40)X(4)&

The inverted relation can then be used in conjunction with the joint density function
2(xJ) to determine 26(x% 4) to be

26(x% 4) = 2($
$1(4% 40)x(4)) |a |

where

a = det

!
]/J

%

]//

¸
= det

h£
$$1(4% 40)

¤
!/

i

is the relevant Jacobian.

Example 29. Find 26(7% 4) for the scalar IVP / 0(4) = $/(4)% /(0) = /J

where $ is a constant and /J is a second order random variable with a prescribed
density function 2(7J).

With /(4) = 0$)/J invertible, we can write the inverse relation as

/J = 0$$)/&

Theorem 9 from Chapter 3 gives

26(7% 4) = 2(7
J(7% 4))

¯̄
¯̄M7

J

M7

¯̄
¯̄ = 2(0$$)7)0$$)&

Example 30. Find 26(x% 4) = 26(71% 72% 4) for the IVP X0(4) = $X(4)% X(0) =
XJ where

$ =

!
1 2
4 3

¸

is a constant matrix and XJ is a second order random variable with a prescribed
density function 2(xJ) =.2(7J1% 7

J
2)&

With X(4) = 0$)XJ invertible, we can write the inverse relation as

XJ = 0$$)X&

Proposition 14 from Chapter 3 gives

26(x% 4) = 2(x
J(x% 4)) |a | = 2(0$$)x)0$$)&
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3. Nonlinear ODE

For the general nonlinear system (1.1), suppose we have for the deterministic
problem the exact solution given by

x(4) = h(4;xJ)

If the relation above can be properly inverted to give the unique inverse in the form

xJ = h$1(4;x)&

Proposition 14 then gives

26(x% 4) = 2(h
$1(4;x)) |a |

where a is the relevant Jacobian as previously dened in Chapter 3.

Example 31. Find the density function for the solution X(t) of the nonlinear
stochastic IVP

/ 0(4) = 1 [/(4)]
2
% /0) = /J

where 1 is a known constant and the initial data /J is a random variable with the
density function 2(7J).

For the corresponding deterministic problem, we have from Math 227A

(3.1) 7(4) =
7J

1# 17J4
&

Upon solving for 7J, we obtain

7J =
7

1 + 174
%

M7J

M7
=

1

(1 + 174)2
&

By Proposition 14, the density function for /(4) is

26(x% 4) = 2

µ
7

1 + 174

¶
1

(1 + 174)2
&

It should be evident from the deterministic solution (3.1) that a sample response
may not be dened beyoud a critical value of 4,

4. The Liouville PDE for Density Function

The density function of the solution process can also be obtained in a con-
ceptually di!erent way. This new approach is elegant but of limited usefulness
in practice because it requires solving partial di!erential equations (PDE). Nev-
ertheless, it seems appropriate to describe the alternative method here to relate
stochastic DE to the method of characteristics for PDE discussed in Math 227B.

Theorem 24. (Liouville) Suppose the mean square solution of the nonlinear
IVP (1.1) for the stochastic DE exists. Then the probability density function
26(x% 4) = 26(71% &&&% 7-% 4) is determined by the rst order PDE

(4.1)
]26
]4

+
-X

%=1

](26G/)

]7/
= 0

where f(x% 4) = (G1(x% 4)% &&&&% G-(x% 4))
+ is the right hand side of the stochastic DE

(1.1).

Proof. (see ??) ¤
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Example 32. / 00 + e2/ = 0% /(0) = /J% / 0(0) = V J

Let /1 = /(4) and /2 = / 0(4) to write the ODE as

X0 =

!
0 1
#e2 0

¸
X% X(0) = X

J
&

For this problem, we have ]G%*]7% = 0% . = 1% 2& In that case, the PDE (4.1)
becomes

]26
]4

+ 72
]26
]71

# e271
]26
]72

= 0

The reduced equation is a rst order linear PDE in three independent variables. It
can be solved by the method of characteristics with the initial condition

26(x% 0) = 2(7
J% ?J)&

It remains to solve the IVP for the reduced PDE tobtain the same solution as found
by the method of the two previous sections of this chapter (exercise).





CHAPTER 8

Linear ODE with Random Forcing

1. Existence and Uniqueness

Next, we consider linear a vector ODE with known system characteristics but
time varying random forcing and possibly random intial data as well. Mathemat-
ically, the problem takes the form

(1.1) X0(4) = $(4)X(4) +F(4) X(40) = X
J

where

• $(4) is a known (deterministic) +×+ matrix with elements continuous in
the solution interval (40% 4+ ) = "

• F(4) is an + (dimensional) vector s.p. mean square continuous in "
• XJ is a second order random + vector

If F(4) and XJare both known (deterministically), the solution of the problem
is known from Math 227A to be

(1.2) X(4) = $(4% 40)X
J +

Z )

)0

$(4% 6)F(6)M6

where $(4% S) is the fundamental matrix solution of the linear ODE with$(S% S) equal
to the identity matrix > (reviewed in the last chapter).

Theorem 25. Sippose that $(4), F(4) and XJsatisfy the requirements stated
above. The stochastic IVP (1.1) has a unique m.s. solution given by the (m.s.)
integral representation:(1.2) for all 4 in " .

Proof. (to be written) ¤

2. The Scalar Problem

In the scalar case, the problem becomes

(2.1) / 0(4) = $(4)/(4) + h (4)% /(40) = 0

where we have taken /J = 0 to simplify the presentation. In practice, initial
data are generally statistically independent of the random forcing. With the sec-
ond order s.p. h (4) being the only randomness in the problem, the existence and
uniqueness of a m.s. solution is assured by Theorem 25; we can concentrate on
obtaining the (statistics of the) m.s. solution for the problem. We have a choice
of nding the various joint density functions, characteristic functions or moments.
We begin with the rst two moments of the solution process. These can be done in
several ways. While the last one below (starting with the variance) is the most ef-
cient and e!ective, we rst describe two others as they provide the building blocks
for the third.

87
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2.1. Evaluation of Integral Representations. By taking the various rele-
vant expectations, we get

A8(4) = = /(4) 9= '[/(4)] =

Z )

)0

$(4% S) = h (S) 9 MS

`6Q (6% S) = = /(6)h (S) 9= '[/(6)h (S)] =

Z )

)0

$(6% Z) = h (Z)h (S) 9 MZ = `Q6(S&6)

`66(4% 6) = = /(4)/(6) 9=

Z )

)0

$(4% S) = h (S)/(6) 9 MS =

Z )

)0

$(4% S)`Q6(S&6)MS

with

V [/(4)] = `66(4% 4) =

Z )

)0

$(4% S) = h (S)/(4) 9 M6 =

Z )

)0

$(4% S)`6Q (4% S)M6&

In each case, the statistics of the unknown solution process are given in term of the
statistics of the known stochastic forcing or readily calculated from them. As such,
the problem is reduced to evaluating a number of ordinary integrals, numerically if
necessary. In principle, we can continue the process to determine higher moments
by evaluating more integrals. As such the problem is solved.

In practice, the fundamental solution $(4% 6) (also known as impulse response)
may not be determined exactly in terms of known functions (even for the scalar
case) and some numerical methods would be needed for nding $(4% S) and to carry
out the various integration numerically. In that case, the present approach requires
that we store several two dimensional arrays of numerical data. For each pair of
(4% 6) for example, we need $(6% Z)and `QQ (Z% S) (for a range of Z and S) to calculate
`6Q (6% S) (for a needed range of S) and together with $(4% S) (for a range of S) to
calculate the one value `66(4% 6). We need to do this for a range two dimensional
array of 4 and 6. This may not be much of a problem given today’s computing
capacity. However, we are talking about the simplest problem. The computing
requirements escalate geometrically as the number of unknowns increases. It seems
desirable to have an alternative method that would reduce these requirements, the
most serious of which (in today’s computing environment) seems to be the storage
requirements.

2.2. Initial Value Problems for the Response Statistics. Suppose we
take the expectation of both side of the ODE for X(t). We get with the help of
commutivity of l.i.m. and expectation

MA6
M4

= $(4)A6 + AQ (4)% A6(40) = 0&

Since AQ (4) is known, this is an ordinary IVP in ODE for the mean A6(4) of the
solution process /(4) and can be solved in the usual way, analytically or numeri-
cally.

Next, we multiply the given ODE and initial condition by /(6) and ensem-
ble average (i.e., take the expectation of) the resulting equation and the initial
conditionto get

]`(4% 6)

]4
= $(4)`(4% 6) + `Q6(4% 6)% `(40% 6) = 0

where we have written `(4% 6) = `66(4% 6) to simplify notations (as there is no
possible ambiguity) and `Q6(4% 6) == h (4)/(6) 9= `6Q (6% 4). In arriving at the
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ODE for `(4% 6), we have made use of the commutivity of l.i.m.(in m.s. di!erenti-
ation) and expectation.

Since `Q6(4% 6) involves the unknown solution process /(4), it is itself an un-
known. To determine `Q6(4% 6), we form = h (4) {M/(6)*M6} 9 to get

]`Q6(4% 6)

]6
= $(6)`Q6(4% 6) + `QQ (4% 6)% `Q6(4% 40) = 0&

The pair of equations for `(4% 6) and `Q6(4% 6)may be solved concurrently over a set
of two-dimensional grid points in the rectangle (40% 4)×(40% 6) to get `(4% 6).and ` for
all other grid points in (40% 4)×(40% 6). Alternatively, we mayuse the second equation
to eliminate `Q6(4% 6) from the rst to obtain a single second order hyperbolic PDE
for `(4% 6). By either approach, especially the latter, the storage requirements
for the solution process should be less excessive than the method of the previous
subsection.

2.3. Determination of Solution Variance. In this section, we formulate
a third method of solution by rst calculating the second moment of the solution
process. To the extent that the determination of the expected value of the response
is straightforward and not particularly interesting, we will assume that the expected
value A6(4)% if not zero, has been subtracted from the unknown so that /(4) is of
zero mean. We can then focus on the second moment = 72(4) 9 which is also the
variance and to be denoted by V (4) (= V 1H[/(4)] = & = /2(4) 9) given A6(4) = 0&

To obtain an ODE for V (4), we di!erentiate = /2(4) 9 to get7

V 0(4) = 2 = /(4)/ 0(4) 9= 2$(4)V (4) + 2 = /(4)h (4) 9

For the unknown VQ6(4) == /(4)h (4) 9% we have from

VQ6(4) == /(4)h (4) 9 =

Z )

)0

$(4% Z) = h (Z)h (4) 9 MZ

While we can evaluate VQ6(4) numerically (and possibly analytically in a few cases)
to be used in the equation for V (4), we look instead at a special case when VQ6(4)
is completely known without any calculation. This is the case where the random
forcing is temporally uncorrelated so that

= h (Z)h (4) 9= NT(Z # 4)%

where N is a known constant. A particular class of process with such an autocor-
relation function is the white noise process. For such process, the integral (which
will be seen later not to exist in the m.s. sense) for VQ6(4) simplies to

VQ6(4) =

Z )

)0

$(4% Z)NT(Z # 4)MZ =
1

2
$(4% 4)N =

1

2
N

where we made use of the properties $(4% 4) = 1 of the fundamental solution. Upon
substituting this result into the ODE for V (4), we obtain

(2.2) V 0(4) = 2$(4)V (4) +N% V (40) = 0&

This is conventional IVP for a deterministic ODE; it determines the variance of the
solution process V (4) independent of any other solution process.
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2.4. The Auto-Correlation Function. With V (4) determined, we can de-
velop an e"cient method for calculating the autocorrelation`(4% 6) == /(4)/(6) 9
of the m.s. solution /(4). This is accomplished by forming = /(6)/ 0(4) 9 to get

]`(4% 6)

]4
= $(4)`(4% 6)+ = /(6)h (4) 9 &

Next, we observe that

`Q6(4% 6) == /(6)h (4) 9=

Z N

)0

$(6% S) = h (S)h (4) 9 MS

and, for = h (S)h (4) 9= NT(4# S),

`Q6(4% 6) =

Z N

)0

$(6% S)NT(4# S)MS = 0 (4 9 6)

It follows that for 4 9 6

(2.3)
]`(4% 6)

]4
= $(4)`(4% 6)% `(6% 6) = V (6)&

With V (6) known from the solution of the IVP (2.2) at the end of the last section,
the IVP (2.3) determines `(4% 6) for all 4 9 6 without doing a separate calculation
to get `Q6(4% 6)&The value of `(4% 6) for 4 = 6 follows from the symmetry of the
autocorrelation function, `(4% 6) = `(6% 4).

2.5. Correlated Forcing. The e"cient method for nding the second order
statistics of the solution process developed above depends on the critical assumption
that the input process is temporally uncorrelated with = h (Z)h (4) 9= NT(Z # 4).
If the random forcing F(t) is temporally correlated, we would need to modify the
development above to handle the more general random forcing process. The needed
modication is based the observation that correlated noise processes are often the
output of passing white noise through a lter. Mathematically, this corresponds
to the solution of some di!erential equation with uncorrelated random forcing.
For example, the Ornstein-Uhlenbeck (correlated) process b(4) is the steady state
solution of the stochastic IVP

(2.4)
Mb

M4
+ Db = Ni (4)% b(#&) = 0

wherei (4) is the temporally uncorrelated (or "delta-correlated") with= i (4)i (6) 9=
T(4#6)[8]& (The steady state behavior is ensured by taking 40 = #&.) The integral
representation of the solution process is

b(4) =

Z N

$"
0$1()$7)Ni (S)MS&

Correspondingly, we have

`RP (6% S) = '[b(6)i (S)] =

Z N

$"
0$1(N$S)N = i (Z)i (S) 9 MZ

=

Z N

$"
0$1(N$S)NT(Z # S) 9 MZ = N0$1(N$7)!(6# S)%
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where !(·) is the Heaviside unit step function, and therewith

`RR (4% 6) = N

Z )

$"
0$1()$7) = i (S)b(6) 9 MS

= N2

( R N
$" 0

$1(N+)$27)MS = 1
210

$1()$N) (4 9 6 9 40)R )
$" 0

$1(N+)$27)MS = 1
210

$1(N$)) (40 = 4 = 6)

=
N2

2D
0$1|)$N|

If h (4) in the original stochastic IVP (2.1) is an Ornstein-Uhlenbeck process
b(4), we can convert the IVP with temporally correlated forcing to one with uncor-
related forcing by appending to the original IVP the additional IVP (2.4), resulting
in an IVP for the stochastic vector process Y(4) = (/(4)% b(4))+ :

(2.5) Y0 = F(4)Y(4) +F(4)&

where F(4) is a 2 × 2 coe"cient matrix.and F(4) an + × 1 random vector forcing.
(Exercise: Obtain the quantities F and F.). A vector version of the method of
the previous subsection for calculating the corresponding covariance matrix (and
then the correlation matrix function) needs to be developed for this problem. We
do this in the next section.

3. Linear Vector Stochastic IVP

3.1. The Covariance Matrix. Suppose now the stochastic IVP is for an +
dimsnional vector unknownY(4) that is the solution of the vector ODE (2.5) where
F(4) in that ODE is an +× + matrix whose elements are continuous functions of 4
in an appropriate range of 4 and where F(4) is a second order + vector stochastic
process. The ODE is augmented by an initial condition which we take to be
Y(40) = 0 (where we have taken YJ = 0 to simplify the presentation)& Guided by
the development of the scalar case, we are interested in formulating a conventional
IVP for the covariance matrix V (4) == Y(4)Y+ (4) 9 of the solution process Y(4)&
Note that V(t) is an + × + matrix function (while = Y+ (4)Y(4) 9 is a scalar
function, an inner product of the vector function Y(4)).

With the only randomness in the problem provided by the second order s.p.
F(4), the existence and uniqueness of a m. s. solution is assured by Theorem 25.
We can therefore concentrate on obtaining the m. s. solution for the problem.
Analogous to the scalar case, we assume the forcing process is zero mean so that
the variance is the same as the second moment of the solution. With

V 0(4) == Y0(4)Y+ (4) 9 + = Y(4)
©
Y+ (4)

ª0
9%

we get with the help of the ODE for Y0(4)

(3.1) V 0(4) = F(4)V (4) + V (4)F+ (4) + VT(4)% V (40) = 0

where
VT(4) == F(4)Y

+ (4) 9 + = Y(4)F+ (4) 9 &

For the unknown V? Q (4) == Y(4)F+ (4) 9% we have from

V? Q (4) =

Z )

)0

$(4% Z) = F(Z)F+ (4) 9 MZ
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While we can evaluate V? Q (4) numerically (and possibly analytically in a few cases)
to be used in the equation for V (4), our experience from the scalar case suggests
that we consider instead the special case

(3.2) = h!(Z)h/(4) 9= N!/T(Z # 4)%

where {N!/} are known constants. A particular class of process with such an
autocorrelation function is the white noise process. For such process, the integral
for VQ6(4) simplies to

VQ6(4) =

Z )

)0

$(4% Z) [N!/] T(Z # 4)MZ =
1

2
$(4% 4)[N!/ ] =

1

2
[N!/ ]

where we have made use of the properties $(4% 4) = > of the fundamental matrix
solution. Upon substituting this result into the ODE for V (4), we obtain the
following result:

Theorem 26. If the random forcing vector process is temporally uncorrelated
so that (3.2) holds and the matrix B(t) is nonsingular, then its covariance matrix
V (4) is determined by the IVP

(3.3) V 0(4) = F(4)V (4) + V (4)F+ (4) +N% V (40) = 0&

The relations in (3.3) constitute a conventional IVP for a deterministic ODE;
it completely determines the covariance matrix V (4) of the solution.

3.2. The Auto-Correlation Function. Having found the covariance matrix
V (4), we can now develop an e"cient method for calculating the autocorrelation of
the solution process. This is accomplished by forming = Y0(4)Y+ (6) 9 to get

]`(4% 6)

]4
= F(4)`(4% 6)+ = F(4)Y+ (6) 9 &

Next, we form

`? Q (6% 4) == Y(6)F
+ (4) 9=

Z N

)0

$(6% S) = F(S)F+ (4) 9 MS

and observe that for = F(S)F+ (4) 9= [N!/ ] T(4# S). It follows that

`? Q (6% 4) =

Z N

)0

$(6% S)[N!/ ]T(4# S)MS = 0 (4 9 6)&

Theorem 27. Under the same hypotheses as Theorem 26, the correlation ma-
trix function `(4% 6) == X(4)X+ (6) 9 for the vector response X(4) is determned by
the IVP

(3.4)
]`(4% 6)

]4
= F(4)`(4% 6)% (4 9 6)% `(6% 6) = V (6)&

With V (6) known from the solution of the IVP (3.3) at the end of the last
section, the IVP (3.4) determines `(4% 6) for all 4 9 6 without doing a separate
calculation to get `? Q (6% 4) = `Q? (4% 6)& The value of `(4% 6) for 4 = 6 follows from
the symmetry of the autocorrelation function, `(4% 6) = `(6% 4).
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4. The Matrix Riccati Equation

For the special case of A(t) being a constant matrix with eigenvalues having
only negative real parts, the solution of the IVP (3.3) tends to a steady state
solution VN as 4 %&. Note that VN is a constant matrix determined by the matrix
Riccati equation

(4.1) $VN + VN$
+ = #N

Given the broad range of applications and implications of the matrix Riccati equa-
tion, a few words need to be said about how we may solve the matrix equation for
VN.

Suppose $ is nondefective so that it has a full set of (linearly independent)
eigenvectors with eigen-pairs {<!%p(!)}, ( = 1% 2% &&&% +& Similarly, $+ also has a full
set of eigenvectors with eigen-pairs {<!%q(!)}. Form

- = [p(1)p(2)&&&&&p(-)]% J = [q(1)q(2)&&&&&q(-)]

and pre-multiply the matrix equation (4.1) by -$1 and post-multiply by J to get

%b + b% = [(<! + </)b!/ ] = #N̄

where

b = -$1$J% N̄ = -$1NJ% % = -$1$- = J$1$+J = [<!T!/ ]

where T!/ is the Kronecker delta. It follows that

b!/ = #
N̄!/

<! + </
&

leading to the following result:

Proposition 29. If the constant matrix $ is non-singular and nondefective,
the solution of the Riccati equation (4.1) is given by

VN = #-

"£
-$1NJ

¤
!/

<! + </

#
J$1&

If $ does not have a full set of eigenvectors, we know from linear algebra that
we can still nd matrices P and Q (whose columns are the generalized eigenvectors
of $ and $+ % respectively) so that the same operations applied to (4.1) lead to

(4.2) ab + ba = [(<! + </)b!/ + b!+15/ + b!5/$1] = #N̄

Our experience with reduction of a linear system of rst order ODE (see Chapter 4
of course notes for Math 227A) suggests that Jordan form e!ectively decouples the
linear system so that we only have to solve single rst order linear ODE starting
with the last (or the rst if the Jordan matrix has its 1’s in the sub-diagonal
positions). If now look at the N̄-- elements of the N̄ matrix, the matrix equation
(4.2) gives

2<-b-- + b-5-$1 = #N̄--
which involves two unknowns. If we look at the equation for the element N̄11, then
(4.2) gives

2<1b11 + b21 = #N̄11
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It is again coupled to other equations. Together however, they suggest that we
begin with the equation corresponding to the N̄-1 element, namely,

(4.3) (<- + <1)b-1 = #N̄-1
which can be solved to get b-1&

To see how we may continue to obtain decoupled equations for more unknown
elements, we change to equations corresponding to the N̄%1 elements with . =
+# 1% +# 2% +# 3% &&&&&&% 1 with

(<% + <1)b%1 + b%+151 = #N̄%1&

Starting from . = +# 1 for which the term b%+151 = b-1 is known from (4.3), we
can solve that equation for

b%1 = #
N̄%1 # b%+151
<% + <1

&

Working backwards from unknowns located at the lower left hand corner of the
matrix, it can be shown that the solution of the matrix Riccati equation is as given
by the following proposition:

Proposition 30. The exact solution of the matrix Riccati equation (4.1) is
given by

b/% = #
N̄/% # b/+15% # b/5%$1

</ + <%
({ L = +% (+# 1)% &&&&&% 1}% . = 1% 2% &&&% +)

with b/% = 0 for L = 1% L 9 +% . = 1 or . 9 +.

While not explicitly stated, the result above was more or less suggested by
Bartels and Stewart [1] in the description of their method of solution.

5. Storage Reduction

While the matrix Riccati equation arises naturally in our approach to deter-
mining the variance of a stochastic process, the equation its nds applications in
many other di!erent areas of science and engineering, particularly areas involving
control theory. In connection with subsequent development on linear PDE with
random forcing, we mention here a particular use of the Riccati equation approach
in solving conventional partial di!erential equations. This is illustrated below with
the simplest boundary value problem for elliptic PDE, namely the Dirichlet problem
for Poisson’s equation:

,2? = #G(x) ( x in I)% ?(x) = 0 (x in ]I)

It should be evident that the same benets of a Riccati equation approach extends
to other types of problems in PDE with a "separable" structure.

Suppose we wish to obtain solution of the Dirichlet problem above by some
numerical method. To be concrete, let I be the unit square (so that we have
Poisson’s equation in two dimensions) covered by an equally spaced set of mesh
points, {(7!% 8/)}, (% L = 0% 1% &&&% ++1 with the same spacing " between neighboring
mesh points in both 7 and 8 directions.. Given that v vanishes on the boundary,
we have altogether +2 unknowns {V!/ = ?(7!% 8/)} for (% L = 1% 2% &&&&% +. The PDE
is then written as a (2-dimensional nite di!erence equations:

{V!+1%/ #2V!/ + V!$1%/ }+ {V!%/+1 %#2V!/ + V!%/$1 } = #h!/ % h!/ = "
2h (7!% 8/)&
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The conventional approach would be to line up the unknowns and the corresponding
forcing terms as +2×1 vectors: v = (V11% V21% % &&&% V-1% V12V22% &&&&% V-2% &&&&V1-% &&&% V--)+
and f = (h11% &&&% h-1% h12% &&&&&&% h--)+ and write the linear system as Fv = f to be
solved by any one of the available methods of solution. The problem however is
that we are now dealing with an +2 × +2 matrix F& For n = 100, we are talking
about a 104 × 104 matrix. Most numerical method of solution for determining v
would require the storage of not so sparce +2 × +2 matrix F.

By storing the unknowns as a matrix, then we can write the linear system for
V!/ as the matrix equation,

(5.1) $V + V $ = #h&

where and h are the +×+ matrices[V!/ ] and [h!/ ], respectively. Hence, the storage
requirement is reduced by orders of magnitude. For + = 100, the reduced is
from one 104 × 104 coe"cient matrix to one 100 × 100 coe"cient matrix. Even
if the spacings are not the same in the 7 and 8 direction, we would still have
only two +×, coe"cient matrices the matrix equation instead of one much larger
+,×+, coe"cient matrix for a vector equation. More over, the available methods
for solving the matrix Riccati equation (5.1) works only with + × + (or + × ,)
matrices along the way to the nal solution. Evidently, the reduction in storage
requirements would be even more dramatic for conventional PDE problem in higher
spatial dimensions (see [5]). We will see similar benets in stochastic PDE problems
in the next chapter.





CHAPTER 9

Linear Stochastic PDE

We are generally interested here in linear PDE in the form

u%)= g8[u] + f(x&4) % ( )%7 =
]( )

]S

where u and f are vector functions of the time variable 4 and space variable x% the
latter may be a scalar or vector depending on the number of spatial dimensions.
When the unknown u is a vector function, g8[·] would generally be a matrix dif-
ferential operator involving only spatial derivatives of the component unknowns.
Some examples of such PDE systems can be found in [10] where a general method
of solution is described. We are of course concerned mainly with determining the
response statistics when the components of the forcing term f(x&4) are stochastics
processes. When f(x&4) is a known function, the linear IBVP has an integral rep-
resentation similar to that for linear ODE. The counterpart of the fundamental
matrix solution in that representation is theGreen;s function for the given PDE and
auxiliary conditions. Similar to ODE with random excitation, the response statis-
tics can be calculated as ordinary integrals of the input statistics. The key then is
to determine an appropriate Green’s function for the problem on hand. Methods
for nding the Green’s function of a BVP in ODE have been discussed in Math
227A. The corresponding development for the PDE case is outlined later in this
chapter. But we must rst lay the foundation for a Green’s function representation.

1. Green’s Function

We illustrate the approach for determining the needed Green’s function and
integral representation for PDE problems by focussing on the following IBVP for
the scalar function B(7% 4):

B%) = g8[B] + G(7&4) (0 = 7 = j% 4 9 0)(1.1)

B(0% 4) = B(j% 4) = 0 (4 9 0)% B(7% 0) = BJ(7) (0 ' 7 ' j)(1.2)

where

(1.3) g8[B] = (2(7% 4)B%8 )%58#K(7% 4)B

(with appropriate conditions on the continuity, di!erentiability and positiveness
of the known functions 2 and K similar to those in the standard Sturm-Liouville
theory). For most problems in application, p and q are usually independent of the
time variable. However, real life problems with p and q depending on t do exist.
For example, the bending of a helicopter rotor blade in forward ight described in
[10] is one such application.
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For the problem (1.1)-(1.2), we dene the adjoint Green’sfunction k#(7% 4; 8#% 4#)
to be the solution of the Terminal BVP

#k#%) (7% 4; 8#% 6#) = g8[k
#] + T(7# 8#)T(4# 6#) (0 = 7% 8# = j% 4 9 0)

k#(0% 4; 8#% 6#) = k#(j% 4; 8#% 6#) = 0% (4 = " )% k#(7% 4; 8#% 6#) = 0 (0 ' 7 ' j% 4 9 6#)&

Upon integrating the bilinear form

k#(7% 4; 8#% 4#){B%) (7% 4)# g8[B]}# B(7% 4){#k#%) (7% 4; 8#% 4#)# g8[k#(7% 4; 8#% 4#)]

over 0 = 7 = j and 0 = 4 = " , we get after integration by parts and applications
of the homogeneous auxilliary conditions

(1.4) B(8#% 6#) =

Z U

0

Z N!

0

k#(7% 4; 8#% 6#)G(7% 4)M4M7+

Z U

0

k#(7% 0; 8#% 6#)BJ(7)M7

where we have taken BJ(7) = 0 (to simplify our discussion) and made use of the
(causality) condition k#(7% 4; 8#% 6#) = 0 (0 ' 7 ' j% 4 9 6#).

While (1.4) is an integral representation for the unknown B(7% 4), it involves
solving a backward heat equation type terminal BVP which is unconventional and
undesirable. We will work to transform it into an integral representation involving
the actual Green’s function dened to be the solution of the following IBVP:

k%) (7% 4; 8% 6) = g8[k] + T(7# 8)T(4# 6) (0 = 7% 8 = j% 4 9 0)

k(0% 4; 8% 6) = k(j% 4; 8% 6) = 0% (4 = " )% k(7% 4; 8% 6) = 0 (0 ' 7 ' j% 4 = 6)&

We can now apply the adjoint Green’s function representation to the problem
that denes k(7% 4; 8% 6) to get the following reciprocity relation:

Proposition 31. k(8#% 6#; 8% 6) = k#(8% 6; 8#% 6#)

Proof. Apply (1.4) to the problem dening the Green’s function to get

k(8#% 6#; 8% 6) =

Z U

0

Z N!

0

k#(7% 4; 8#% 4#)T(7#8)T(4#6)M4M7 = k#(8% 6; 8#% 6#)!(6##6)

keeping in mind that k(7% 0; 8% 6) = 0 (so that BJ(7) = 0 in (1.4). ¤

Note that the reciprocity relation preserves causality for both k and k#% i.e.,

k(7% 4; 8% 6) = 0 (4 = 6)% k#(7% 4; 8% 6) = 0 (4 9 6)&

Corollary 10. The IBVP for B(7% 4) has the following Green’s function rep-
resentation:

B(7% 4) =

Z U

0

Z )

0

k(7% 4; 8% 6)G(8% 6)M6M8 +

Z U

0

k(7% 4; 8% 0)BJ(8)M8

Proof. Apply Proposition 31 to the representation (1.4) and obtain (after a
change of notation)

B(7% 4) =

Z U

0

Z )

0

k(7% 4; 8% 6)G(8% 6)M6M8 +

Z U

0

k(7% 4; 8% 0)BJ(8)M8&

¤

We will also need the following property of the Green’s function:

Proposition 32. k(7% 6+; 8% 6) = T(7# 8)
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To prove this property, we let J(7% 4; 8% 6) be the solution of the IBVP

J%) = g8[J] (0 = 7 = j% 4 9 6)

B(0% 4) = B(j% 4) = 0% (4 9 6)% B(7% 6+) = T(7# 8) (0 ' 7 ' j)&

Now set
k(7% 4; 8% 6) = J(7% 4; 8% 6)!(4# 6)

Proposition 33. k(7% 4; 8% 6) = J(7% 4; 8% 6)!(4#6) is the Green’s function for
the IBVP (1.1)-(1.2).

Proof. k(7% 4; 8% 6) as given in the hypotheses of the Proposition satises the
causality condition k(7% 4; 8% 6) = 0 for 4 = 6. It satises the two boundary condi-
tons at 7 = 0 and 7 = j because J does& It remains to show that k satises the
PDE (1.1). But

k%) (7% 4; 8% 6)# g8[k] = J(7% 4; 8% 6)T(4# 6)
= J(7% 6+; 8% 6)T(4# 6) = T(7# 8)T(4# 6)&

¤

Proposition (32) now follows from Proposition 33 given

k(7% 6+; 8% 6) = [J(7% 4; 8% 6)!(4# 6)])=N+ = J(7% 6
+; 8% 6) = T(7# 8)&

2. Random Forcing

2.1. Integrals of Random Forcing. Suppose G(7% 4) is a stochastic process,
to be denoted by h (7% 4). The Green’s function representation allows us to compute
the statistics of B(7% 4) in terms of the statistics of h (7% 4)& For examples, we have
for cases with BJ(7) = 0

= B(7% 4) 9=

Z U

0

Z )

0

k(7% 4; Z% c) = h (Z% c) 9 MZMc%

`(7% 4; 8% 6) =

Z U

0

Z N

0

Z U

0

Z )

0

k(7% 4; Z% c)k(8% 6; [% W) = h (Z% c)h ([% W) 9 MZMcM[MW%

etc. While evaluating the multiple integrals may be manageable for the corre-
sponding ODE problem, computing the response statistics by way of the Green’s
function representation is often not practical for PDE problems. The operation
counts and storage requirement (particularly the latter) are excessive even for the
illustrative example of a single scalar equation in one spatial dimension such as
(1.1). The corresponding requirements for vector unknowns in higher spatial dime-
nions are often beyond available computing capacity today. Whether or not we
have su"cient storage capacity and/or can do the calculation, it is always desirable
to nd a more e"cient method of solution.

To reduce the storage requirement, we can also formulate conventional IBVP
for the response statistics to be solved numerically by a suitable method. Our expe-
rience with the ODE case suggest that we should start by computing the "variance"
of the solution (having already found the expectation, either by calculating it or by
knowing that the forcing is zero mean).
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2.2. Correlation Function. As we proceed to formulate an e"cient method
for nding the response statistics, it soon become clear that for PDE problems, the
rst step in this process is not to calculate the response variance which, assuming
zero mean response, would be = B2(7% 4) 9 but the spatial correlation function
#(7% 8% 4) = = B(7% 4)B(8% 4) 9 instead. To see this, we start with an IBVP for the
correlation function `(7% 4; 8% 6) = = B(7% 4)B(8% 6) 9 by observing that

(2.1)
]`(7% 4; 8% 6)

]4
= g8[`] + `Q:(7% 4; 8% 6)

where

`Q:(7% 4; 8% 6) = = h (7% 4)B(8% 6) 9 = `:Q (8% 6;7% 4)

cam be expressed in terms of the forcing function:

(2.2) `Q:(7% 4; 8% 6) =

Z U

0

k(8% 6% Z% c) = h (Z% c)h (7% 4) 9 MZMc&

However, the expression for the cross correlation function in the form of a double
integral is impractical and we learned from the ODE case that h (7% 4) being white
noise would avoid the need to evaluate the integral.

In that case, we rst limit ourselves to random forcings that are temporally
uncorrelated (so that it is white noise in time) with

(2.3) = h (8% 6)h (7&4) 9 = IQQ (7% 8)T(4# 6)&

In that case, we have

Proposition 34. If the random forcing is temporally uncorrelated so that (2.3)
holds, then

(() `Q:(7% 4; 8% 6) = 0 (4 9 6)

and therewith

((()
]`(7% 4; 8% 6)

]4
= g8[`] (0 = 7 = j% 0 = 6 = 4)

Proof. With (2.3), the expression (2.2) for the cross-correation `Q:(7% 4; 8% 6)
reduces to

`Q:(7% 4; 8% 6) =

Z U

0

k(8% 6% Z% 4)I(Z% 7)MZ = 0 (6 = 4)

which is (i). Application of (i) in (2.1) gives (ii). ¤

To have an IBVP for `(7% 4; 8% 6), we need to augment the PDE (2.1) with
appropriate auxiliary conditions. The boundary conditions

`(0% 4; 8% 6) = `(j% 4; 8% 6) = 0

follow from the given boundary conditions for B(7% 4). Since the PDE only holds
for 4 9 6, we need an initial condition for `(7% 4; 8% 6) at 4 = 6 in the form

`(7% 6; 8% 6) = = B(7% 6)B(8% 6) 9 = #(7% 8% 6)

where #(7% 8% 6) is the spatial correlation function introduced at the start of this
section. Our task is then to nd #(7% 8% 4) (and not the variance = B2(7% 4) 9).
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3. Temporally Uncorrelated Excitations

To obtain a PDE for the spatial correlation funciton, we di!erentiate S(x,y,t)
partially with respect to t to get

#%) (7% 8% 4) = = B%) (7% 4)B(8% 4) 9 + = B(7% 4)B%) (8% 4) 9

= g8[#]+ = G(7% 4)B(8% 4) 9 +g@[#]+ = B(7% 4)G(8% 4) 9(3.1)

where the rst two terms on the right side resulted from using the PDE (1.1) to
eliminate B%) (7% 4) from the expression = B%) (7% 4)B(8% 4) 9 while the last two terms
come doing the same with B%) (8% 4) in = B(7% 4)B%) (8% 4) 9. Upon writing

`,(7% 8% 4) == G(7% 4)B(8% 4) 9 + = B(7% 4)G(8% 4) 9= `,(8% 7% 4)%

we obtain the following result for `,(7% 8% 4):

Lemma 12. Suppose that the forcing process is (zero mean and) delta correlated
in time with autocorrelation function (2.3). Then `,(7% 8% 4) = IQQ (7% 8)&

Proof. By the Green’s function representation, the term = B(7% 4)G(8% 4) 9
becomes

= B(7% 4)G(8% 4) 9=

Z U

0

Z )

0

k(7% 4% Z% c ) = h (Z% c)h (8&4) 9 McMZ

=

Z U

0

Z )

0

k(7% 4% Z% c )I(Z% 8)T(4# c)McMZ =
1

2

Z U

0

k(7% 4% Z% 4)I(Z% 7)MZ

=
1

2

Z U

0

T(7# Z)I(Z% 8)MZ =
1

2
I(7% 8)&

The other term = G(7% 4)B(8% 4) 9 can be similar calculated to arrive at the same
result to complete the proof of the lemma. ¤

With the help of this lemma, we obtain the following principal result for the
determination of the spatial correlation function:

Theorem 28. The spatial correlation function of the response B(7% 4) of the the
IBVP (1.1)-(1.2) is determined by the IBVP

#%) (7% 8% 4) = g8[#] + g@[#] +IQQ (7% 8) (0 = 7% 8 = j% 4 9 0)

#(0% 8% 4) = #(j% 8% 4) = #(7% 0% 4) = #(7% j% 4) = 0 (0 = 7% 8 = j% 4 9 0)

#(7% 8% 0) = 0 (0 = 7% 8 = j)&

Proof. The PDE is a consequence of Lemma 12 and equation (3.1). The
auxilliary conditions are consequence of the denition of #(7% 8% 4) and the auxiliary
conditions (1.2). ¤

Example 33. Suppose 2(7% 4) = 1 and K(7% 4) = 0 in (1.3) so that g8[B] = B%88 &
Determine #(7% 8% 4) of BJ(7) = 0&

(exercises in Assignment VIII)
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4. Vector Unknown

If instead of the parabolic IBVP (1.1)-(1.2), we are interested in the hyperbolic
type IBVP

B%)) = g8[B] + h (7&4) (0 = 7 = j% 4 9 0)(4.1)

B(0% 4) = B(j% 4) = 0 (4 9 0)%(4.2)

B(7% 0) = BJ(7)% B%) (7% 0) = ?
J(7) (0 ' 7 ' j)(4.3)

where g8 is again the second order di!erential operator as dened in (1.3). For
this problem, we can develop an IBVP for the spatial correlation funciton #(7% 8% 4)
for the unknown B(7% 4) for this problem following the steps taken for the parabolic
problem with suitable modication, However, it is more e"cient to cast the new
problem into a form similar to that of the parabolic problem. This would allow us
to apply all the results obtained in the previous section with minimal modication.

To recast the new problem in to a parabolic in form (but not in substance), we
set B1 = B(7% 4) and B2(7% 4) = B%) (7% 4)& With u(7% 4) = (B1% B2)+ % we may rewrite
the new IBVP as

u%) (7% 4) = L8[u] + F(7% 4) (0 = 7 = j% 4 9 0)(4.4)

B0 [u(0% 4)] = BU [u(j% 4)] = 0 (4 9 0)(4.5)

u(7% 0) = uJ(7) ! (BJ(7)% ?J(7))+ (0 = 7 = j)(4.6)

where

F(7% 4) =

µ
0

h (7% 4)

¶
% L8[u] =

!
0 1
g8 0

¸µ
B1
B2

¶
&

B0 [u(0% 4)] =

!
1 0
0 0

¸µ
B1(0% 4)
B2(0% 4)

¶
% BU [u(j% 4)] =

!
1 0
0 0

¸µ
B1(j% 4)
B2(j% 4)

¶

Now that both u and F are vectors, there are several new correlation functions asso-
ciated with the di!erent components of these vectors. For example, the correlation
function of u is now

= u+ (8% 6) 9= `(7% 4; 8% 6)

=

!
`11(7% 4; 8% 6) `12(7% 4; 8% 6)
`21(7% 4; 8% 6) `22(7% 4; 8% 6)

¸

where `!/(7% 4; 8% 6) == B!(7% 4)B/(8% 6) 9 & The PDE for this correlation (matrix)
function is

`%) (7% 4; 8% 6) = = u%)(7% 4)u
+ (8% 6) 9

= = {L8[u] +F(7% 4)}u+ (8% 6) 9
= L8[`] + `Q:(7% 8; 8% 6)

where

`Q:(7% 8; 8% 6) =

!
= h1(7% 4)B1(8% 6) 9 = h1(7% 4)B2(8% 6) 9
= h2(7% 4)B1(8% 6) 9 = h2(7% 4)B2(8% 6) 9

¸

with `:Q (7% 4; 8% 6) = `Q:(8% 6;7% 4).
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We may now proceed as in the scalar case by specializing the forcing to be
temporally uncorrelated to get the simpler equation

(4.7) `%) (7% 4; 8% 6) = L8[`] (4 9 6)

and augment it by the auxilliary conditions

B08 [`(0% 4; 8% 6)] = BU8 [`(j% 4; 8% 6)] = 0 (4 9 0)(4.8)

`(7% 6; 8% 6) = = u(7% 6)u+ (8% 6) 9! #(7% 8% 6) (0 = 7% 8 = j)(4.9)

which are consequences of the given auxiliary conditions on u(7% 6) and the deni-
tion of the correlation function. In (4.8), B18 is the boundary operator B1% D = 0
or j (see (4.5)), operating in the (7% 4) space with (8% 6) as parameters. Note that
the spatial correlation function #(7% 8% 4) is now a matrix functon

#(7% 8% 4) = = u(7% 4)u+ (8% 4) 9== [B!(7% 4)B/(8% 4)] 9

=

!
#11(7% 8% 4) #12(7% 8% 8)
#21(7% 8% 4) #22(7% 8% 4)

¸

Proposition 35. Given the spatial correlation matrix function #(7% 8% c), the
correlation matrix function `(7% 4; 8% c) is determined by the IBVP (4.7)-(4.9).

Proof. We have already established the proposition for 4 9 c& The result
for 4 = c is obtained with the help of the symmetry condition `(7% 4; 8% c) =
`(8% c ;7% 4)& ¤

It remains to formulate the IBVP for the determination of the spatial correla-
tion matrix function. It will be left as an exercise to obtain this principal result of
this e"cient method for the second order statistics of the response .u(7% 4).

5. Correlated Excitations

If the random excitation F(x,t) is not delta-correlated in time, it is often ltered
white noise in the sense of the solution of some di!erential equaton with temporally
uncorrelated input. This is similar to the what has been discussed for ODE with
random excitation.except PDE are involved, certainly through the PDE problem
with correlated random forcing such as (1.1) for a scalar B(7% 4) but possibly also
through the ltering system that produces the correlated excitation for the original
PDE problem. For the scalar case such as (1.1), the random forcing h (7% 4) would
be mathematical the solution of the di!erential equation

N[h (7% 4)] = k(7% 4)

where k(7% 4) is temporally uncorrelated so that

= k(7% 4)k(8% 6) 9= I(7% 8)T(4# 6)&

In that case, the DE for h (7% 4) may be appended to the original PDE for B(7% 4)
to get the vector PDE

u%) (7% 4) = L8[u] +F(7% 4)

(similar in form to (4.4) with

u(7% 4) = (B(7% 4)% h (7% 4))+ % F(7% 4) = (0% k(7% 4))+

and

L8[u(7% 4)] =

!
g8 #1
0 N

¸
u&
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The case of h (7% 4) being an Ornstein-Uhlenbeck process can is similar to what
has been done for the ODE problem of the previous chapter and will be left as an
exercise.



CHAPTER 10

Nonlinear Problems

1. Perturbation Methods

(to be written)

2. Equivalent Linearization

(to be written)

3. Conditional Probability

While the methods described in the two preceding sections are approximate in
nature, there are methods which determine probabilistic information of the solution
of stochastic di!erential equations. As an example of such methods, we describe
in this section what is known as the kinetic equation for the probability density
function of the solution of a general rst order stochastic di!erential equation.
The derivation will be for a scalar equation though it may be extended to vector
equations.as well.

The method of derivation is based on the concept of conditional probability
which has not been discussed in these notes. The concept itself is relatively intuitive
as seen from the simple problem of rolling a fair die. The sample space of the
random variable / in this case is known to consist of six elementary events. More
specically, we have #6 = {1% 2% 3% 4% 5% 6} For a fair coin, the probability of turning
up a 2 is 1*6 for any roll, - (/ = 2) = 1*6. However, the probability of getting a
2 would be greater if it is known that the outcome is even. With the new sample
space consisting only of three elementary events, the probability of getting a 2 is
increased to - (/ = 2 | / = 0?0+) = 1*3;. The notation - (/ = 2 | / = 0?0+)
means the probability of / = 2 "assuming" (also "given" or "condintion on") /
being even. In general, we have the following restricted form of the denition for
the concept of conditional probability distribution and density:

Definition 29. The conditional probability distribution - (/ ' 7 | / ' 8) of
the random variable / to be ' 7 condition on the random variable / being ' 8 is
dened as

- (/ ' 7 | / ' 8) =
- (/ ' 7 %/ ' 8)

- (/ ' 8)
%

where - (/ ' 8) 9 0 and where by writing - (/ ' 7 %/ ' 8) (instead of just
- (/ ' 7)) we have made explicit that the intersection of two events / ' 7 and
/ ' 8 is not empty.&

Implicit in the denition is the understanding that the event {/ ' 7} is con-
tained in {/ ' 8}, i.e., 7 ' 8. The following two properties are evident:

- (/ ' #& | / ' 8} = 0% - (/ ' & | / ' 8} = 1&

105
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The denition above can be extended to allow for replacing / ' 8 in - (/ '
7 | / ' 8) by @ ' 8 for a di!erent random variable @ .

Correspondingly, the density function is dened in the natural way with

- (/1 ' / ' /2% @1 ' @ ' @2) =
Z 62

61

Z ?2

?1

2(7% 8)M8M7&

The probability distribution.- (/1 ' / ' /2% @ = @1) is taken to be the limiting
value as "8 % 0

- (/1 ' / ' /2% @ ' @1 +"8)# - (/1 ' / ' /2% @ ' @1)
"8

%
Z 62

61

2(7% @1)M7&

with - (/ ' /2) being short for - (#& = / ' /2). Correspondingly, we have
from Denition 29

- (/ ' 7 % @ ' 8) = -6? (/ ' 7 | @ = 8)-? (@ = 8)
= -6? (/ ' 7 | @ = 8)2? (8)

and
26? (7% 8) = 26? (7 | 8)2? (8)

Similarly, we have

Definition 30. The conditional density function 2(7 | 8} of the random vari-
able / is dened by

26? (7 | 8} =
M

M7
-6? (/ ' 7 | @ = 8) =

26? (7% 8)

2? (8)
%

where 26? (7% 8) is the usual joint density function.

Definition 31. The random variables / and @ are statistically independent
if 26? (7 | 8) = 26(7) so that

26? (7% 8) = 26(7)2? (8)&

4. The Kinetic Equation for Density

In the die rolling experiment, the events / and @ share the same sample space
For solutions of stochastic DE, we are interested also in conditional probability and
density functions of random variables / and @ that are related in a di!erent way.
The solution of a stochasic DE is a stochastic process /(4)& For 4 and 4+"4, /(4)
and /(4 +"4) are two di!erent random variables. From the development of the
previous section, we have

2(7% 4+"4; 8; 4) = 2(7% 4+"4 | 8% 4)2(8% 4)

where we have omitted the subscripts of the density functions (especially when @
and / are just / at di!erent time) and thereby

(4.1) 2(7% 4+"4) =

Z "

$"
2(7% 4+"4 | 8% 4)2(8% 4)M8&

We are interested in the characteristic function for the conditional density 2(7% 4+
"4 | 8% 4):



4. THE KINETIC EQUATION FOR DENSITY 107

f(B% 4+"4 | 8% 4) = '[0!:!8|8% 4] ("7 = 7# 8)

=

Z "

$"
0!:!82(7% 4+"4 | 8% 4)M7(4.2)

where "7 is an abbreviation for /(4 + "4)# /(4) = 7 # 8& The corresponding
inverse
Fourier transform is

2(7% 4+"4 | 8% 4) =
1

2R

Z "

$"
0$!:!8f(B% 4+"4 | 8% 4)MB&

We now expand f(B% 4+"4 | 8% 4) as a Taylor series in B to get

2(7% 4+"4 | 8% 4) =
"X

-=0

1

+!

]-f(B% 4+"4 | 8% 4)
]B-

¯̄
¯̄
:=0

1

2R

Z "

$"
B-0$!:!8MB ("7 = 7# 8)

=
"X

-=0

f(-)(0&4+"4 | 8% 4)
+!

1

2R

Z "

$"

1

(#()-
]-

]7-

n
0$!:(8$@)

o
MB

=
"X

-=0

(#)
+!

-

1-(8% 4)
]-

]7-
1

2R

Z "

$"

n
0$!:(8$@)

o
MB

where in conjunction with (??)

1-(8% 4) =
1

(()
-f

(-)(0&4+"4 | 8% 4)

=
1

(()-

Z "

$"
(("7)-2(7% 4+"4 | 8% 4)M7 = '[("/)-|8% 4]

= '[{/(4+"4)#/(4)}- | /(4) = 8](4.3)

with

f(-)(0&4+"4 | 8% 4) =
]-f(B% 4+"4 | 8% 4)

]B-

¯̄
¯̄
:=0

But the inverse Fourier transform of 1 is the Dirac delta function:

1

2R

Z "

$"
0$!:!8MB =

1

2R

Z "

$"
0$!:(8$@)MB = T(7# 8)

so that the expression for 2(7% 4+"4 | 8% 4) is simplied to

2(7% 4+"4 | 8% 4) =
"X

-=0

(#)
+!

-

1-(8% 4)
]-

]7-
{T(7# 8)} &

Upon substituting the above expression for 2(7% 4 + "4 | 8% 4) into (4.1), we
obtain

2(7% 4+"4) =
"X

-=0

(#)-

+!

]-

]7-

Z "

$"
1-(8% 4)2(8% 4)T(7# 8)M8

=
"X

-=0

(#)-

+!

]-

]7-
[1-(7% 4)2(7% 4)] &
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This is essentially the result sought except for some re-arrangment of the terms.
Moving the rst term on the right side to the left side and divide by "4. we get

(4.4) lim
!)!0

2(7% 4+"4)# 2(7% 4)
"4

=
]2(7% 4)

]4
=

"X

-=1

(#)-

+!

]-

]7-
[Y-(7% 4)2(7% 4)]

where

Y-(7% 4) = lim
!)!0

1-(7% 4)

"4
= lim
!)!0

1

"4
'[("/)-|8% 4](4.5)

= lim
!)!0

1

"4

n
f(-)(0% 4+"4 | 8% 4)

o
&

We summarize the result in the following theorem:

Theorem 29. Suppose G and X are continuous functions of their arguments
and continuously di!erentiable in the rst argument /& Suppose also that F(4) is
a standard Wiener proces with zerio mean and unit variance, Then the density
function of the solution of the stochastic IVP

(4.6) M/(4) = G(/(4)&4)M4+ X(/(4)% 4)MF(4)% /(0) = /J%

satises the kinetic equation (4.4).

Recall that the Wiener process satises the following properties:
1) F(0) = 0 (with probability one).
2) For 4 9 6% "F = F(4)#F(6) is Aussian with mean zero and variance

2N(4# 6) for some constant N.
3) For 4 9 6 9 B 9 ?, the increments F(4) # F(6) and F(B) # F(?) are

independent.
As F(4) is not mean square di!erentiable, the IVP (4.6) is only a formal di!erential
equation version of the stochastic integral equation

(4.7) /(4) = /J +

Z )

0

G(/(6)% 7)M6+

Z )

0

X(/(S)% S)MF(S) (0 ' 4 ' " )

to be analogous to conventional ODE. It is in the form of di!erentials rather than
derivatives to acknowledge the fact that the Wiener process is not mean square
di!erentiable.

Corollary 11. When the innite series of derivatives in the kinetic equation
terminates after a nite number of terms, the PDE (4.4), the initial condition

(4.8) 2(7% 0) = 2J(7)%

and suitable boundary conditions such as

(4.9) lim
|8|!"

2(7% 4) = 0%

constitute an IBVP for the determination of 2(7% 4).

While the boundary conditions (4.9) seem reasonable in view of the fact that
we must have

(4.10)
Z "

$"
2(7% 4)M7 = 1%
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it is not always appropriate. For example, the spatial domain for 2(7% 4) may be
nite (similar to a uniformly distributed density function). In that case, we may
have a Dirichlet, Neumann or mixed end conditions such as

2(±1% 4) = 0% or 2%8 (±1% 4) = 0

with the rst group corresponds an absorbing boundary at both ends while the
second corresponds to a reecting boundary at the two ends. Other combinations
are also possible including the total probability condition (4.10) itself as the sole
requirement in the spatial variable(s) as we see presently in the next section.

5. A Work Example

There are two issues related to the application of the kinetic equation to specic
problems. One obvious issue is whether the innite series of derivative terms
terminates. The other is the evaluation of Y-(7% 4) in the limit as "4% 0. In one
way, the two issues are related. If we can evaluate Y-(7% 4) for all +, we would know
whether or not the series terminates. But it would be more desirable to be able
to know about the termination without determining Y-(7% 4) explicitly, at least not
for all +. In this section, we illustrate the use of the kinetic equation by a simple
example which gives some indication why the series should terminate, giving us
some impetus to deduce a more general theorem on that issue.

Suppose we want to nd the density function 2(7% 4) for the stochastic DE

M/(4) = #D/(4)M4+ MF(4)% /(0) = /J

where F(4) is a Wiener process with "F = F(4)#F(6) being Gaussian with mean
zero and variance 2N(4# 6)& We approximate the SDE by

(5.1) "/(4) = #D/(4)"4+"F(4)

except for terms small of higher order in "4%i.e. the di!erence between "/(4) and
M/(4) is 5("4) with

lim
!)!0

5("4)

"4
= 0&

To apply the kinetic equation, we need to evaluate the expression

Y-(7% 4) = lim
!)!0

1-(7% 4)

"4
= lim
!)!0

1

"4
'[("/)-|8% 4]

found in (4.5). With "/(4) given by (5.1), we have

Y1(7% 4) = lim
!)!0

1

"4
'["/ | 8% 4] = lim

!)!0

1

"4
'[#D/(4)"4+"F(4) | 8% 4]

= lim
!)!0

1

"4
'[#D/(4)"4 | 8% 4] + lim

!)!0

1

"4
'["F(4) | 8% 4]&

The last term on the right vanishes because "F(4) is zero mean and the rst term
is #DB"4 since the expectation is conditioned on /(4) = 8& We have then

Y1(7% 4) = #D7&
It appears that higher (conditional) moments of"/ are proportional to higher

powers of "4 and hence would tend to zero with "4 even after dividing through by
"4& But this cannot be since we know fromMath 227B that, in an appropriate limit,
the density function 2(7% 4) for the random walk problem is the solution of the heat
equation which involves the second partial derivative of 2(7% 4) with respect to 7.
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Hence, we need to look at the second order moment Y2(7% 4) = '[{"/}
2 | 8% 4]*"4

more carefully. With

Y2(7% 4) = lim
!)!0

1

"4
'[{"/}2 | 8% 4]

= lim
!)!0

1

"4
'[{#D/(4)"4+"F(4)}2 | 8% 4]

= lim
!)!0

1

"4
'[
n
D2/2(4) ("4)2 # 2D/(4)"4"F(4) +"2F(4)

o2
| 8% 4]

= lim
!)!0

©
D282"4

ª
# 2D8' ["F(4)] + lim

!)!0

1

"4
'[{"F(4)}2]

= lim
!)!0

1

"4
'[{"F(4)}2] = 2N

keeping in mind that "F(4) is of mean zero and variance 2N"4.2
It can now be veried that for + ( 3, 1-(7% 4) is generally of the order of

("4)
-$1

% i.e., &1-(7% 4) = :({"4}
-$1

) with

lim
!)!0

:({"4}-$1)
{"4}-$1

= `

for some constant `. It follows that

Y-(7% 4) = lim
!)!0

1

"4
'[{"/}- | 8% 4] = lim

!)!0
:({"4}-$2) = 0

given + ( 3& In that case, the kinetic equation (4.4) for our problem becomes

(5.2)
]

]4
[2(7% 4)] =

]

]7
[D72(7% 4)] +N

]2

]72
[2(7% 4)] &

The linear PDE (5.2) and the auxiliary conditions (4.8)-(4.9) dene a conven-
tional IBVP. For D = 0% the kinetic equation simplies to

]

]4
[2(7% 4)] = N

]2

]72
[2(7% 4)]

which is just the heat equation (or di!usion equation) we studied in Math 227B.
We showed there that the equation arises from the problem of one dimensional
random walk with 2(7% 4) being the probability density function for the distance
from the starting point after time 4 in a certain small step size limit. Here we
obtain the same result by a completely di!erent approach.

6. Eigenfunction Expansions

For D 6= 0, the IBVP can be solved by the method of separation of variables
discussed in Math 227B. Though not necessary to do so, we transform the PDE
into one conforming to a standard ODE after separation of variables. For this
purpose, we set

c = D4% 8 = (7

r
N

D

and re-write the PDE as
]2

]c
= #

]22

]82
+ 8

]2

]8
+ 2
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Upon setting 2(8% c) = #(8)" (c)% equation (5.2) may be re-arranged to read

" ·(c)

" (c)
=
[8#(8)]

0 # [#00(8)]
#(8)

= <2

for some constant <2. (The sign of the separation constant is chosen anticipating
real eigenvalues for the spatial part of the Sturm-Liouville problem.) From the 4
dependent part, we get

">(c) = $>0
>2L &

The corresponding 7 dependent part #>(8) is determined by the ODE

#00> # 8#
0
> + (<

2 # 1)#> = 0&

For the solution of the ODE for #>, we note that y = 0 is an ordinary point of
the ODE. By Fuchs’ theorem, we expect two linearly independent complementary
solutions in the form of Taylor series about the origin convergent for all |8| % &.
The usual method of undetermined coe"cients gives

#>(8) = ;16
(1)
> (8) + ;26

(2)
> (8)%

with

6
(1)
> (8) =

"X

%=0

D%(<)8
2%% 6

(2)
> (8) =

"X

%=0

E%(<)8
2%+1

where D0 = 1, E0 = 1 and

D%+1 =
2. #

¡
<2 # 1

¢

(2. + 2)(2. + 1)
1%% E%+1 =

(2. + 1)#
¡
<2 # 1

¢

(2. + 3)(2. + 2)
E%

. = 0% 1% 2% &&&&. The rst series solution 6(1)> (8) reduces to a polynomial of degree

. when <2 # 1 = 2. or <2 = 2. + 1& The second series solution s(2)> (y) reduces
to a polynomial of degree k when <2 # 1 = 2. or <2 = 2. + 1& In either case, the
resulting polynomial is called the Hermite polynomials.

7. Methods of Characteristics

For the work example discussed in the previous two sections, there is an alter-
native method of solution which may be less cumbersome. For D 9 0, the PDE
(??) for the density function is linear. We take the Fourier transform of the equa-
tion (by multiplying through by 0!%8 and integrate with respect to 7 over the real
line) to get

]f

]4
= #N.2f+ D

Z "

$"
7
]2

]7
0!%8M7

= #N.2f+ D
]

].

Z "

$"
(#()

]2

]7
0!%8M7

= #N.2f+ D
]

].

n
(#()20!%8

¯̄"
$" # .f

o

or

(7.1)
]f

]4
+ D.

]f

].
= #

¡
N.2 + D

¢
f
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where f(.% 4) is the characteristic function of the stochastic process with

f(.% 4) =

Z "

$"
2(7% 4)0!%8M7%

and we have made use of the requirements 2% 0 as |7|%&.
The PDE (7.1) for f(.% 4) is a linear rst order PDE and may be solved by the

method of characteristics. The characteristic equations for the PDE (7.1) are

(7.2)
M4

MZ
= 1%

M.

MZ
= D.%

Mf

MZ
= #

¡
N.2 + D

¢
f

with

(7.3) 4(Z = 0) = 0% .(Z = 0) = .0% f(Z = 0) = f0(.) =

Z "

$"
20(7)0

!%8M7

where
2(7% 0) = 20(7)

is the (initial) density at 4 = 0. The ODE (7.2) and the initial conditions (7.3)
form an IVP in ODE. The solutions for the rst two ODE are

(7.4) 4 = Z% . = .00
1S = .00

1)

twhere we have used the rst two initial conditions to x the constants of integration
in these solutions. From (7.4), we get

(7.5) .0 = .0
$1)

With .(Z) known, the last ODE in (7.2) is separable and can be solved to get

f = f0(.0)0
${1)+F%20(V2/0$1)<21}

= f0(.0
$1))0${1)+F%

2(1$V"2/0)<21}&

The density function 2(7% 4) can then be obtained from the inversion formula

(7.6) 2(7% 4) =
1

2R

Z "

$"
f(.% 4)0$!%8M.&

8. Fokker-Planck-Kolmogorov Equations

For the work example investigated in the three previous sections, we found the
so-called derivate moments Y-(7% 4) vanish for + ( 3. This reduces the kinetic
equation to a second order linear PDE of the parabolic type and thereby makes it
solvable by known methods. Naturally, we would like to know when does something
similar happen for other stochastic di!erential equations (SDE), perhaps not with
Y-(7% 4) = 0 for + ( 3 but least for + ( . for some nite . 9 1. The innite
series of higher and higher derivatives terminating is needed to make the kinetic
equation useful for the determination of 2(7% 4). While we would like to have a
set of conditions for this termination in terms of the prescribed quantities such as
the functional structure of G and X in the stochastic DE (4.6), we have here only a
result that simplify the search for the termination of the series.

Theorem 30. Suppose the derivate moment Y/(7% 4) exist for all L = 1% 2% 3% &&&&
and vanishes for some even j = 2k, i.e., Y2%(7% 4) = 0 for some integer . 9 1&
Then .Y-(7% 4) = 0 for all + ( 3&
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Proof. If + ( 3 is an odd integer, we write the derivate moment Y-(7% 4) as

Y-(7% 4) = lim
!)!0

1

"4
'[("/)-|/(4) = 7]

= lim
!)!0

1

"4
'[("/)(-$1)<2("/)(-+1)<2|/(4) = 7]

By Schwarz’s inequality, we have

Y2-(7% 4) ' lim
!)!0

1

"4
'[("/)-$1|/(4) = 7]'[("/)-+1|/(4) = 7]

= Y-$1(4)Y-+1(4) (+ 5MM% + ( 3)&(8.1)

Similarly, we have for + = 2.% . ( 2

(8.2) Y2-(7% 4) ' Y-$2(4)Y-+2(4) (+ 0?0+% + ( 4)&

By hypothesis, we have Y2%(7% 4) = 0 for some . ( 1& By setting + = 2. # 1 and
2. + 1 in (8.1), we get

(8.3) Y22%$1(7% 4) ' Y2%$2(4)Y2%(4) (. ( 2)% Y22%+1(7% 4) ' Y2%+2(4)Y2%(4)& (. ( 1)

Similarly, by setting + = 2. # 2 and 2. + 2 in (8.2), we get
(8.4)
Y22%$2(7% 4) ' Y2%$4(4)Y2%(4) (. ( 3) Y22%+2(7% 4) ' Y2%+4(4)Y2%(4) (. ( 1)&

Since Y2%(7% 4) = 0 (and Y-(7% 4) exists for all +), the last inequality of (8.3) and
(8.4) imply that

(8.5) Y-(7% 4) = 0 (+ ( 2.)

and the rst inequality of (8.3) and (8.4) imply that

(8.6) Y-(7% 4) = 0 (3 ' + = 2.)&

¤
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Markov and Di"usion Processes

1. Markov Processes

2. Di"usion Processes and Ito SDE

3. Examples

115





Bibliography

[1] R.H. Bartels and G.W. Stewart, "Solution of the matrix equation AX + XB = C," Comm.
ACM, vol. 15, 1972, 820-826.

[2] W. Fuller, An Introduction to Probability Theory and Its Applications, vol. I, 2!" ed., John
Wiley and Sons, Inc. 1957.

[3] G. Golub, S. Nash and C. Van Loan, "A Hessenberg-Schur Method for the Problem AX
+XB = C," Tras. Automatic Control, vol AC-24, (6), 1979, 909-913.

[4] F. Kozin, "On the probability densities of the output of some random systems," J. App.
Mech., vol. 28, 1961, 161-165.

[5] Q. Nie, F.Y.M. Wan, Y.-T. Zhang and X.-F. Liu, "Compact integration factor methods in
high spatial dimension," J. Comp. Phys., vol. 227, 2008, 5238-5525.

[6] H. C. Tuckwell, Introduction to theoretical neurobiology, vol. 1 - Linear cable theory and
dendritic structure, Cambridge University Press, 1988

[7] H. C. Tuckwell, Introduction to theoretical neurobiology, vol. 1I - Nonlinear and stochastic
theories, Cambridge University Press, 1988

[8] H. C. Tuckwell, F.Y.M. Wan and J.-P.Rospars, "A spatial stochastic neuronal model with
Ornstein-Uhlenbeck input current," Biol. Cybern. vol. 86, 2002, 137-145.

[9] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed., Elsevier, 2008
[10] F.Y.M. Wan, "A Direct Method for Linear Dynamical Problems in Continuum Mechanics

with Random Loads," Studies in Appl. Math. vol. 52, 1973, 259-276.

May 29, 2011

117


