An example of a vector with two entries is

\[W = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \]

where \(w_1 \) and \(w_2 \) are any real numbers.

A matrix with only one column is called a column vector, or simply a vector.

The set of all vectors with 2 entries is denoted by \(R^2 \) (read r-two).

Two vectors are equal if and only if their corresponding entries are equal.

Given two vectors \(u \) and \(v \) in \(R^2 \), their sum is the vector \(u + v \) obtained by adding corresponding entries of \(u \) and \(v \).

Given a vector \(u \) and a real number \(c \), the scalar multiple of \(u \) by \(c \) is the vector \(cu \) obtained by multiplying each entry in \(u \) by \(c \).
Given \(u = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \) and \(v = \begin{bmatrix} 2 \\ -5 \end{bmatrix} \), find \(4u \), \((-3)v\) and \(4u-3v\).
Consider a rectangular coordinate system in the plane. Because each point in the plane is determined by an ordered pair of numbers, we can identify a geometric point \((a, b)\) with the column vector \[
\begin{bmatrix}
a \\
b
\end{bmatrix}
\]
So we may regard \(\mathbb{R}^2\) as the set of all points in the plane.
Let u and v be vectors in \mathbb{R}^n

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \in \mathbb{R}^n, \quad v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$$

$au + cv$ is also a vector in \mathbb{R}^n

$$a \times \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + b \times \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} a \times u_1 + b \times v_1 \\ a \times u_2 + b \times v_2 \\ \vdots \\ a \times u_n + b \times v_n \end{bmatrix}$$
The vector whose entries are all zero is called the **zero vector** and is denoted by 0.

For all u, v, w in R^n and all scalars c, d:

- $u + v = v + u$
- $(u + v) + w = u + (v + w)$
- $u + 0 = 0 + u = u$
- $u + (-u) = -u + u = 0$
- $c(u + v) = cu + cv$
- $(c+d)u = cu + du$
- $c(du) = (cd)u$
- $1u = u$
Given $v_1, v_2, ..., v_p$ vectors in \mathbb{R}^n, and given scalars $c_1, c_2, ..., c_p$, then vector y defined by

$$y = c_1 v_1 + c_2 v_2 + ... + c_p v_p$$

is called a linear combination of $v_1, v_2, ...v_p$ with weights $c_1, c_2, ..., c_p$

The weights in a linear combination can be any real numbers, including zero.
Let $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- $1v_1 + 2v_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is a linear combination of v_1 and v_2

- $0v_1 + 0v_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a linear combination of v_1 and v_2
Let \(a_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} \), \(a_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} \), \(b = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix} \). Determine whether \(b \) can be generated (or written) as a linear combination of \(a_1 \) and \(a_2 \). That is, determine whether weights \(x_1 \) and \(x_2 \) exist such that

\[
x_1 a_1 + x_2 a_2 = b
\]
Given \(a_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} \), \(a_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} \), \(b = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix} \), Can \(b \) be written as a linear combination of \(a_1 \) and \(a_2 \) with weights \(x_1 \) and \(x_2 \), i.e., \(x_1 a_1 + x_2 a_2 = b \)?

Solution:

- Write down the augmented matrix of the corresponding linear system.
- Row reduce it to an echelon form:

\[
\begin{bmatrix}
1 & 2 & 7 \\
-2 & 5 & 4 \\
-5 & 6 & -3
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 2 & 7 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{bmatrix}
\]

- There is a solution since there is no pivot in the last column. (The system is consistent)

- The solution is unique: \(x_1 = 3 \), \(x_2 = 2 \). So \(b = 3a_1 + 2a_2 \)
A vector equation

\[x_1a_1 + x_2a_2 + \cdots + x_na_n = b \]

has the same solution set as the linear system whose augmented matrix is

\[
\begin{bmatrix}
a_1 & a_2 & \cdots & a_n & b
\end{bmatrix}
\]

In particular, b can be generated by a linear combination of \(a_1, \cdots, a_n \) if and only if there exists a solution to the linear system corresponding to the above matrix.
Definition If $v_1, v_2, ..., v_p$ are vectors in R^n, then the set of all linear combinations of $v_1, v_2, ..., v_p$, denoted by

$$\text{Span}\{v_1, v_2, ..., v_p\},$$

is called the subset of R^n spanned (generated) by v_1, \cdots, v_p.

- Span $\{v_1, v_2, ..., v_p\}$ is the collection of all vectors that can be written in the form

$$c_1 v_1 + c_2 v_2 + \cdots + c_p v_p$$

with c_1, \cdots, c_p scalars.

- The zero vector 0 is always in the Span.
If \(v = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \), what is \(\text{Span}\{v\} \)?
Example

If \(\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \), what is \(\text{Span}\{\mathbf{v}\} \)?

Solution:

- The collection of all vectors in the form of \(c\mathbf{v} = \begin{bmatrix} c \\ c \end{bmatrix} \), with any scalar \(c \).
- Geometrically, it is represented by the line through points \((1, 1)\) and the origin in a plane.
Example

If $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, what is $\text{Span}\{v_1, v_2\}$?
Example

If \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \) what is \(\text{Span}\{ \mathbf{v}_1, \mathbf{v}_2 \} \)?

Solution: The entire \(\mathbb{R}^2 \) space.
Let v be a nonzero vector in \mathbb{R}^3. Then $\text{Span } v$ is the set of all scalar multiples of v, which is the set of points on the line in \mathbb{R}^3 through v and 0. See the figure below.
If \(u \) and \(v \) are nonzero vectors in \(\mathbb{R}^3 \), with \(v \) not a multiple of \(u \), then \(\text{Span } u, v \) is the plane in \(\mathbb{R}^3 \) that contains \(u \), \(v \), and \(0 \).

In particular, \(\text{Span } u, v \) contains the line in \(\mathbb{R}^3 \) through \(u \) and \(0 \) and the line through \(v \) and \(0 \). See the figure below.