ICS 6N Computational Linear Algebra Vector Equations

Xiaohui Xie

University of California, Irvine xhx@uci.edu

January 17, 2017

Xiaohui Xie (UCI) ICS 6N January 17, 2017 1 / 18

Vectors in R^2

An example of a vector with two entries is

$$W = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

where w_1 and w_2 are any real numbers.

- A matrix with only one column is called a column vector, or simply a vector.
- The set of all vectors with 2 entries is denoted by R^2 (read r-two).
- Two vectors are equal if and only if their corresponding entries are equal.
- Given two vectors u and v in R^2 , their sum is the vector u + v obtained by adding corresponding entries of u and v.
- Given a vector u and a real number c, the scalar multiple of u by c is the vector cu obtained by multiplying each entry in u by c.

Xiaohui Xie (UCI) ICS 6N January 17, 2017 2 / 18

Vector equations

Given
$$u = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $v = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$, find 4u, (-3)v and 4u-3v.

Xiaohui Xie (UCI) ICS 6N January 17, 2017 3 / 18

Geometric description of R^2

- Consider a rectangular coordinate system in the plane. Because each point in the plane is determined by an ordered pair of numbers, we can identify a geometric point (a, b) with the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$
- ullet So we may regard R^2 as the set of all points in the plane.

Xiaohui Xie(UCI) ICS 6N January 17, 2017 4 / 18

Vectors in \mathbb{R}^n

• Let u and v be vectors in \mathbb{R}^n

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \in R^n, v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in R^n$$

• au + cv is also a vector in \mathbb{R}^n

$$a \times \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + b \times \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} a \times u_1 + b \times v_1 \\ a \times u_2 + b \times v_2 \\ \vdots \\ a \times u_n + b \times v_n \end{bmatrix}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Xiaohui Xie (UCI) ICS 6N January 17, 2017 5 / 18

Algebraic properties of R^n

- The vector whose entries are all zero is called the zero vector and is denoted by 0.
- For all u, v, w in \mathbb{R}^n and all scalars c, d:
 - u + v = v + u
 - (u+v)+w=u+(v+w)
 - u + 0 = 0 + u = u
 - u + (-u) = -u + u = 0
 - c(u+v)=cu+cv
 - (c+d)u=cu+du
 - c(du) = (cd)u
 - 1u = u

Xiaohui Xie (UCI) ICS 6N January 17, 2017 6 / 18

Linear combinations

• Given $v_1, v_2, ..., v_p$ vectors in \mathbb{R}^n , and given scalars $c_1, c_2, ..., c_p$, then vector y defined by

$$y = c_1 v_1 + c_2 v_2 + ... + c_p v_p$$

is called a linear combination of $v_1, v_2, ... v_p$ with weights $c_1, c_2, ..., c_p$

 The weights in a linear combination can be any real numbers, including zero.

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let
$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 , $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- $1v_1 + 2v_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is a linear combination of v_1 and v_2
- $0v_1 + 0v_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a linear combination of v_1 and v_2

Xiaohui Xie (UCI) ICS 6N January 17, 2017 8 / 18

Linear combinations

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$. Determine whether b can be

generated (or written) as a linear combination of a_1 and a_2 . That is, determine whether weights x_1 and x_2 exist such that

$$x_1\mathbf{a}_1+x_2\mathbf{a}_2=\mathbf{b}$$

Solution

Given
$$a_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$, $b = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$, Can b be written as a linear combination of a_1 and a_2 with weights x_1 and x_2 , i.e., $x_1a_1 + x_2a_2 = b$? **Solution:**

• Write down the augmented matrix of the corresponding linear system. Row reduce it to an echelon form:

$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix} \Longrightarrow \begin{bmatrix} \boxed{1} & 2 & 7 \\ 0 & \boxed{1} & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

- There is a solution since there is no pivot in the last column. (The system is consistent)
- The solution is unique: $x_1 = 3$, $x_2 = 2$. So $b = 3a_1 + 2a_2$

Linear combinations

A vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix}$$

• In particular, b can be generated by a linear combination of a_1, \dots, a_n if and only if there exists a solution to the linear system corresponding to the above matrix.

Xiaohui Xie (UCI) ICS 6N January 17, 2017 11 / 18

Span

• **Definition** If $v_1, v_2, ..., v_p$ are vectors in \mathbb{R}^n , then the set of all linear combinations of $v_1, v_2, ..., v_p$, denoted by

Span
$$\{v_1, v_2, ..., v_p\},\$$

is called the subset of R^n spanned (generated) by v_1, \dots, v_p .

• Span $\{v_1, v_2, ..., v_p\}$ is the collection of all vectors that can be written in the form

$$c_1v_1 + c_2v_2 + ... + c_pv_p$$

with c_1, \dots, c_p scalars.

ullet The zero vector $oldsymbol{0}$ is always in the Span.

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

If
$$v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, what is $Span\{v\}$?

Xiaohui Xie (UCI) ICS 6N January 17, 2017 13 / 18

• If
$$v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, what is Span $\{v\}$?

- Solution:
 - The collection of all vectors in the form of $cv = \begin{bmatrix} c \\ c \end{bmatrix}$, with any scalar c.
 - Geometrically, it is represented by the line through \bar{p} points (1,1) and the origin in a plane.

Xiaohui Xie (UCI) ICS 6N January 17, 2017 14 / 18

If
$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, what is $Span\{v_1, v_2\}$?

Xiaohui Xie (UCI) ICS 6N January 17, 2017 15 / 18

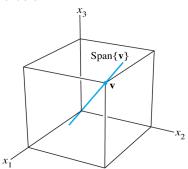
If
$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, what is $Span\{v_1, v_2\}$?

Solution: The entire R^2 space.

Xiaohui Xie (UCI) ICS 6N January 17, 2017 16 / 18

A GEOMETRIC DESCRIPTION OF SPAN V

ullet Let v be a nonzero vector in \mathbb{R}^3 . Then Span v is the set of all scalar multiples of v, which is the set of points on the line in \mathbb{R}^3 through v and 0. See the figure below



Xiaohui Xie (UCI) ICS 6N January 17, 2017 17 / 18

A GEOMETRIC DESCRIPTION OF SPAN U, V

- If u and v are nonzero vectors in \mathbb{R}^3 , with v not a multiple of u, then Span u, v is the plane in \mathbb{R}^3 that contains u, v, and 0.
- In particular, Span u, v contains the line in \mathbb{R}^3 through u and 0 and the line through v and 0. See the figure below.

