Math 227C: Introduction to Stochastic Differential Equations

Lecturer: Xiaohui Xie Lecture #13 Scribe: Alissa Klinzmann 5/13/14

In this lecture we begin by focusing on a set of definitions.

1 Filtration

Def: A filtration on (Ω, \mathcal{F}) is a family $X = \{X_t\}_{t \geq 0}$ of σ -algebras $X_t \subset \mathcal{F}$ such that $0 \leq s < t \Rightarrow X_s \subset X_t$ (meaning $\{X_t\}$ is increasing).

Given the probability space (Ω, \mathcal{F}, P) , is a filtration process is formed:

- Where the sub- σ -algebra $F_1 \subset \mathcal{F}_2 \subset ... \subset \mathcal{F}$ such that these \mathcal{F} 's form a filtration.
- $\{X_t\}_{0 \leq t \leq T}$ if X_T is \mathcal{F}_t measurable (i.e., $\sigma(X_t) \subset \mathcal{F}_t$)

2 Independence

Def: $A,B \in \mathcal{F}$ are independent if $P(A \cap B) = P(A)P(B)$.

Def: Suppose G, H are two sub- σ -algebras of \mathcal{F} , we say G,H are independent if $P(A \cap B) = P(A)P(B) \ \forall \ A \in G, \ B \in H.$

Def: X,Y (where X,Y are random variables) are independent if $\sigma(X)$, $\sigma(Y)$ are independent.

3 Conditional Expectation

Define E[Y|X] to be a random variable if $E[Y|X=X_i] = Y_i$.

 $Def: (\Omega, \mathcal{F}, P)$ is a probability space, let G be a sub- σ -algebra $(G \subset \mathcal{F})$, and let X be a random variable that is either non-negative or integrable, then the conditional expectation of X given G, E[X|G], is a random variable that satisfies:

- E[X|G] is G-measurable (note that E[X|Y] is $\sigma(Y)$ -measurable which is the estimation of X provided info about Y, meaning $E[X|Y] = E[X|\sigma(Y)]$).
- Partial Averaging: $\forall A \in G$, $\int_A E[X|G] dp = \int_A X dp$

The existence and uniqueness of E[X|G] comes from the Radon-Nikodym theorem: Let μ be the measure of G defined by

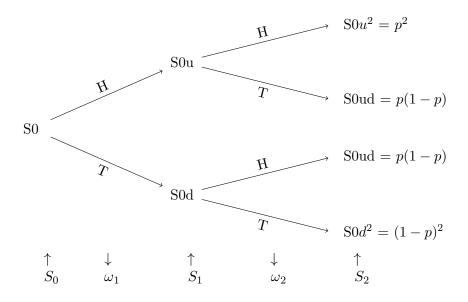
$$\mu(A) = \int_A X dp, A \in G.$$

Then μ is absolutely continuous wrt P|G, so \exists a P|G-unique G-measurable function F on Ω st $\mu(A) = \int_A F dp \ \forall A \in G$.

Thus E[X|G] := F does the job and this function is unique almost surely wrt measure P[G].

Example: Infinite Coin Toss Experiment

Given: (Ω_{∞}, F, P) consider the binomial tree (note: S0u = S0-'up', S0d = S0-'down'):



1.
$$G = F_0$$

 $X = S_2 \Rightarrow E[S_2 | \mathcal{F}_0] = E[S_2],$
where $E[S_2] = [p^2 u^2 + 2p(1-p)ud + (1-p)^2 d^2]S_0$
and $E[S_2 | \mathcal{F}_0]$ is an estimation of S_2 .

2.
$$E[S_2 | \mathcal{F}_1] = \begin{cases} (pu^2 + (1-p)ud)S_0 &, \omega_1 = H \\ (pud + (1-p)d^2)S_0 &, \omega_1 = T \end{cases}$$

3. $E[S_3|\mathcal{F}_2] \neq E[S_3|S_2]$ meaning $\sigma(S_2) \subset \mathcal{F}_2$

$$E[S_3| \mathcal{F}_2] = \begin{cases} \vdots &, \omega_1 = H, \omega_2 = H \\ \vdots &, \omega_1 = H, \omega_2 = T \\ \vdots &, \omega_1 = T, \omega_2 = H \\ \vdots &, \omega_1 = T, \omega_2 = T \end{cases}$$

whereas if

$$E[S_3|\ S_2] = \begin{cases} \vdots &, \ \omega_1 = H, \ \omega_2 = H \\ \vdots &, \ \omega_1 = H, \ \omega_2 = T, \ OR \ \omega_1 = T, \ \omega_2 = H \\ \vdots &, \ \omega_1 = T, \ \omega_2 = T \end{cases}$$

Hence, regarding existence and uniqueness: Yes, there exists a random variable that satisfies the two conditions of Conditional Expectation, and it is usually unique (unless it is at 0).

3.1 Properties of Conditional Expectation

- Let E[E[X|G]] = E[X] where E[X|G] is a random variable that is an estimation of X (an unbiased estimation).
- If X is G-measurable, then E[X|G] = X.

Suppose X_1 and X_2 are random variables and $a_1, a_2 \in \mathbb{R}$, then the following properties hold:

- 1. Linearity: $E[a_1X_1 + a_2X_2|G] = a_1E[X_1|G] + a_2E[X_2|G]$.
- 2. Positivity: If $X \geq 0$ almost surely then $E[X|G] \geq 0$ almost surely.
- 3. Taking out what is known: if X is G-measurable, then E[XY|G] = X E[Y|G].
- 4. Iterated Conditioning: If $H \subset G \subset \mathcal{F}$ then E[E[X|G]|H] = E[X|H].
- 5. Independence: X is independent of G if E[X|G] = EX.

4 Martingale

Given the probability space (Ω, \mathcal{F}, P) and filtration $\{\mathcal{F}_t\}_{0 \leq t \leq T}$, the stochastic process $\{M_t\}_{0 \leq t \leq T}$ is an adaptive stochastic process with respect to $\{\mathcal{F}_t\}$, then $\{M_t\}_{0 \leq t \leq T}$ is a martingale if $E[M_t|\mathcal{F}_s] = M_s$ for $0 \leq s \leq t \leq T$, meaning on average the expectation stays the same, neither fluctuating up nor down.

Note:

If $E[M_t | \mathcal{F}_s] \geq M_s$ then it is sub-martingale.

If $E[M_t | \mathcal{F}_s] \leq M_s$ then it is super-martingale.

Example: Looking back to the binomial tree:

$$S_{k+1} = \left\{ \begin{array}{ll} uS_k & \text{, } \omega_k = H, \text{ with probability} = \mathbf{p} \\ dS_k & \text{, } \omega_k = T, \text{ with probability} = 1\text{-p} \end{array} \right.$$

Is this martingale?

$$E[S_{k+1}| \mathcal{F}_k] = p \cdot uS_k + (1-p) \cdot dS_k = (pu + (1-p)d)S_k$$

1.If pu + (1-p)d = 1, then $\{S_k\}$ is martingale.

2. If $pu + (1-p)d \ge 1$, then $\{S_k\}$ is sub-martingale.

3. If $pu + (1-p)d \leq 1$, then $\{S_k\}$ is super-martingale.

then it can follow that $E[S_k | \mathcal{F}_\ell] = S_\ell, \ \ell < k.$

Brownian Motion:

Thm: $\{B(t)\}_{0 \le t \le T}$ is a martingale.

 $Proof: Consider (\Omega, \mathcal{F}, P)$

 $\Omega = C[0,T]$ where C = a continuous function

 \mathcal{F} : generated by $\sigma(B(t))_{0 \le t \le T}$

Filtration: $\mathcal{F}_t = \sigma(B(t))_{0 \le t \le T}$ which gives all information of Brownian motion up to time, t.

$$E[B(t)| \mathcal{F}(s)] \underset{0 \le s \le t \le T}{=} E[B(t) - B(s) + B(s)| \mathcal{F}(s)]$$

$$= E[B(t) - B(s)| \mathcal{F}(s)] + E[B(s)| \mathcal{F}(s)]$$

$$= 0 + B(s) = B(s)$$
since Brownian motion = 0 on average.

Example: Given a random variable, $z(t) = e^{-\theta B(t) - \frac{1}{2}\theta^2 t}$ where $\theta \in \mathbb{R}$ will be martingale. To prove this:

Given SDE: dx(t) = a(x,t)dt + b(x,t)dw

- 1. Assume $\mathcal{F}(t)$ is generated by w(t).
- 2. If a(x,t)=0, then x(t) is a martingale (want the drift term = 0).

WTS z(t) is martingale:

$$z(t) = f(t, B(t)) = f(t, x) = e^{-\theta x - \frac{1}{2}\theta^2 t}$$

$$dz(t) = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial x}dB(t) + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(dB)^2$$

where
$$\frac{\partial f}{\partial t} = f(-\frac{\theta^2}{2}), \quad \frac{\partial f}{\partial x} = f(-\theta), \quad \frac{\partial^2 f}{\partial x^2} = f(\theta^2),$$

then
$$dz(T) = f(\frac{-\theta^2}{2})dt + f(-\theta)dB + \frac{1}{2}f(\theta)dt = -\theta f dB$$
, showing that the drift terms cancel, therefore is martingale.

$$\Rightarrow E[z(t)| \mathcal{F}(s)] = z(s)$$

and
$$E[z(t)] = E[z(t)|\mathcal{F}(0)] = z(0) = e^0 = 1.$$