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ABSTRACT

Motivation: Gene Set Enrichment Analysis (GSEA) has been devel-

oped recently to capture changes in the expression of pre-defined sets

of genes.Weproposenumber of extensions toGSEA, including theuse

of different statistics to describe the association between genes and

phenotypes of interest. We make use of dimension reduction proce-

dures, such as principle component analysis, to identify gene sets with

correlated expression. We also address issues that arise when gene

sets overlap.

Results: Our proposals extend the range of applicability of GSEA

andallow for adjustments basedonother covariates.Wehaveprovided

a well-defined procedure to address interpretation issues that can

raise when gene sets have substantial overlap. We have shown how

standard dimension reduction methods, such as PCA, can be used to

help further interpret GSEA.

Contact: zjiang@fhcrc.org

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The classical approach to DNAmicroarray analysis has been to treat

genes as independent agents, to apply some statistical test per gene

and follow that up with some form of P-value correction method.

Those genes whose adjusted P-values cross some predetermined

threshold are deemed interesting and are followed up using other

procedures. Such an approach can be criticized on a number of

grounds. There is the arbitrariness of the cut-off, no matter how

it is chosen, and in almost all experiments genes whose test statistics

yield P-values that differ by a tiny amount are treated completely

differently. By design this approach will find genes where the dif-

ference in mRNA abundance, between the conditions being studied,

is large, but it will not detect a situation where the difference is

small, but evidenced in a coordinated way in a set of related genes.

Gene Set Enrichment Analysis (GSEA) directly addresses these

points. There is no need to use a cut-off. All genes assayed can be

used in GSEA and only simple non-specific filtering, for variation

across samples, is needed. GSEA aggregates the per gene statistics

across genes within a gene set, thus making it possible to detect

situations where all genes in a predefined set change in a small but

coordinated way. Since it is likely that many relevant phenotypic

differences are manifested by small but consistent changes in a set

of genes GSEA is reasonable and seems likely to yield results.

Furthermore, GSEA is likely to also detect the cases where the

effect is due to large changes in a relatively few genes.

Examples of the efficacy of GSEA include Mootha et al. (2003)
who used GSEA approach to identify PGC-1a-responsive genes

involved in oxidative phosphorylation, and Majumder et al.
(2004) who used the approach on prostate cancer to identify a

seven member hypoxia-inducible factor 1 gene set.

In this paper, we consider GSEA from a slightly different

perspective, develop the appropriate notation, and then provide a

number of extensions of the methodology. These extensions include

the use of linear models to adjust for other covariates, the use of a

wide-variety of different statistics on each gene set, an explicit

method to deconvolve the outputs when gene sets have substantial

overlap, and the use of dimension reduction methods on gene sets

that have been found to be interesting with respect to the likely

coordinated activity of the genes involved.

2 MATERIALS AND METHODS

All methods are demonstrated on a large microarray dataset from a

clinical trial in acute lymphoblastic leukemia (ALL) (Chiaretti et al.,

2004). We will focus our attention on the patients with B-cell derived

ALL, and in particular on comparing the group identified as having the

BCR/ABL fusion gene (usually due to a t9;22 translocation) to those

samples with no observed cytogenetics abnormalities, NEG. We make

use of data from KEGG (Kanehisa and Goto, 2000) as our gene sets.

Our analysis procedures will aggregate information from different genes.

Since expression values do not directly reflect the true mRNA abundance, we

standardized the data, by gene, before applying GSEA.

2.1 Background

Subramanian et al. (2005) and Mootha et al. (2003) presented GSEA as a

method to identify predefined gene sets that associate with the differences

between phenotypes. They ranked all genes based on their association

with the phenotype, then calculate an enrichment score for each gene set,

and the maximal enrichment score (MES) is identified. The enrichment score

combines the per gene associations with the phenotype and the distribution

of the genes on the ranked list. A permutation technique was applied to

generate the null distribution of the enrichment score. The P-value for the

MES was then obtained with respect to the estimated null distribution.

Tian et al. (2005) and Kim and Volsky (2005) proposed a similar approach

but instead of using the enrichment score, they used familiar two-sample

statistics, such as the t-statistic. This approach can be viewed as an extension
of GSEA that makes its application both simpler and richer. The test statistic

for a gene set is an aggregate of the per gene test statistics of its members.

They proposed using a permutation test to assess the significance of the

statistics. As we note, there is also a parametric approximation that often

works well.�To whom correspondence should be addressed.
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These two approaches follow a common idea of using combined informa-

tion from individual genes, yet each approach has unique features. The main

difference between the two methods is in the way they treat the genes that are

not in the set. The approach of Subramanian et al. (2005) and Mootha et al.

(2003) puts penalties on the non-member genes that are ranked between the

genes in a gene set, especially when the member genes are clustered together,

while the approach of Tian et al. (2005) ignores them. Our own approach is

more similar to that of Tian et al. (2005).
We adopt some of the notation from Tian et al. (2005). Let i, j and k be

the index of the genes, samples and gene sets, with i ¼ 1, . . . ,B, j ¼ 1, . . . , n

and k ¼1, . . . ,K, respectively. The association between the i-th gene and

the phenotype is represented by zi, and the association between the genes and
the gene sets is presented in an incidence matrix A,

A ¼
a11 a12 � � � a1B
..
. ..

.

aK1 aK2 � � � aKB

0
B@

1
CA ð2:1Þ

where

aki ¼
0 gi =2 Ck

1 gi 2 Ck
:

�
ð2:2Þ

and Ck denotes the set of genes in the k-th gene set. There are situations

where values other than 1, for aki, will be more appropriate. For example, one

practical source of gene lists is other publications on the same disease or

phenotype. Those papers often give a set of genes that are up-regulated and a

second set that are down-regulated. Rather than treat these as two separate

lists, all predictions can be accommodated by using a �1 in the correspond-

ing elements ofA for genes that are down regulated, a 1 for those that are up-

regulated and a zero for genes that were not in the list. In other cases it may

be more appropriate to use non-integer weights, perhaps based on some

probability that a gene is differentially expressed, or the strength of evidence

from the published paper. An example is given in Section 3.2.

The association between the genes and the phenotype is summarized in a

vector Z,

Z ¼ ðz1‚ . . . ‚zBÞT‚ ð2:3Þ

where zi is the observed test statistic for gene i. We denote gene sets asCk and

let nk indicate the number of genes in Ck.

Tian et al. (2005) suggested using the average t-statistic of the members in

a gene set as the statistic for that set. We generalize this definition. Let the

vector of the gene set statistics beX, thenX is the product ofA and Z divided

by the row sums of A, rs(A),

X ¼ A ·Z/rsðAÞ ¼ f ðA‚ ZÞ: ð2:4Þ

Using the approach of Tian et al. (2005), this definition has three compo-

nents: the incidence matrix A, the per-gene statistic vector Z and a per-set

summarization function f. Different choices for any one of them give varia-

tions of the method.

In Section 2.2 we propose several extensions including (1) for f : using the

median or the sign test, (2) for A: adding signs or weights and (3) for Z: the

use of a general linear model or a Bayesian approach. We also note that,

because of the form of the aggregation, which is essentially the summation of

estimated effects, it is important that those effects all be on essentially the

same scale. This is one reason to use t-tests and when using other statistics

care must by taken.

In Section 2.3, we introduce two new approaches that were not discussed

by either Tian et al. (2005) or Subramanian et al. (2005). First we present a
procedure to deal with overlap among gene sets and then we illustrate the

application of dimension reduction methods.

2.1.1 Inference It is straightforward both to state and interpret a null

hypothesis of no association between the observed phenotype and gene

expression. This hypothesis can be tested in many different ways but for

gene set enrichment it has been typical to permute the phenotype labels on

the samples to generate a reference distribution. While some have proposed

an approach that permutes the gene labels we do not advocate this since it

is difficult to interpret the corresponding null hypothesis.

It is also possible to perform a parametric test of the hypothesis of no

association. One advantage of using a t-statistic is provided by considering

the following heuristic argument, first described to us by Dr T. P. Speed.

Under the null hypothesis that there is no difference between the two groups

being compared the t-statistics have a t distribution with degrees of freedom
approximately n� 2 (the value depends on the form of the t-test used). If n is

sufficiently large then these statistics have approximately a N(0, 1) distri-

bution, under the null hypothesis of no difference between the two groups. If

the genes were independent then summing these over a gene set with nk
genes in it would yield a test statistic with a N(0, nk) distribution and dividing

that statistic by the square root of nk returns us to a N(0, 1) distribution.

Hence, the per set sums, divided by the square root of the gene set sizes can

be compared to quantiles of the N(0, 1). In practice this is both fast and

reasonably reliable, but the assumption of independence of genes is not

tenable. Here the null hypothesis is that there is no difference in the

mean values of the two groups, and that is a different null hypothesis

than that for a permutation approach.

2.2 Extensions

We now describe some extensions of the original concept of gene set

enrichment. In some cases the extensions are quite simple, but even for

these examples the results are compelling. In other cases the extensions

are more substantial.

While most practitioners have used sums and averages to aggregate the

test statistics per set, this is not the only approach that should be considered.

We note that the average is not used universally in statistics as a means

of measuring the center, largely because it is known to be susceptible to

outliers. The median is another choice for a measure of the center. Other test

statistics, such as the sign test can also be easily accommodated within the

GSEA framework. The permutational method can be used to assess signifi-

cance in these cases as well. We provide an example in Section 3.3.

Linear Modeling. The two sample t-statistic can also be obtained by fitting
a linear model for each gene. We let

Ygi ¼ mg þ bgXi þ egi‚ ð2:5Þ

where Ygi is the vector of gene expression values for gene g and sample i,

Xi is one or zero depending on the phenotype of sample i, and the egi are

assumed to be independent mean zero random variables with variance

s2
g (often assumed to have a Normal distribution). In this model mg repre-

sents the mean for the group with phenotype corresponding to Xi¼ 0, while

bg represents the difference in mean between that group and the group

represented by Xi ¼ 1. The t-statistic is equivalent to b̂bg/sg, where sg is

the natural estimate of sg. Adjusting for other variables, that are likely to

affect expression values, can be handled using a more general regression

equation, such as

Ygi ¼ mg þ b1gX1i þ b2gX2i þ egi‚ ð2:6Þ

where X2i denotes the value of some additional covariate. The parameter

b1g then represents the mean difference in expression due to the phenotype

after adjustment for X2. We again make use of b̂b1g/sb1g
as our standardized

estimate of the phenotypic effect and these values can be used as Z in

Equation (2.4).

The linear model is more flexible than the simple two-sample t-statistic.

If the sample size is large enough, the linear model can be very complex,

including many variables and interactions. Though we lose some degrees of

freedom, including all appropriate variables in the linear model, it will

provide more accurate estimates of the true effect due to the phenotype.

It is important that the quantity being used as a test statistic have a distri-

bution that is the same for all genes, unless there is some reason to prefer
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to work on a different scale. But typically, the observed values for gene

expression data are not intrinsically meaningful and hence standardized

estimates are preferred.

Posterior probability. We now provide a detailed discussion of an

extension of the methodology to deal with a more complicated per-gene

test statistic. We make use of the work of Newton et al. (2001) who

developed a Bayesian approach to detect differentially expressed genes.

This approach assumes a gene can come from one of the two groups, the

equivalently expressed (EE) genes and the differentially expressed (DE)

genes, with probabilities 1� p and p, respectively. The gene expression

from the two groups follows distributions f0(·) and f1(·), respectively. By

Bayes’ rule, the posterior probability of a gene with expression e to come

from the DE group is

pf 1ðeÞ
pf 1ðeÞ þ ð1 � pÞ f 0ðeÞ

: ð2:7Þ

Using the posterior probability as per gene statistic, the gene set statisticX

has a nice interpretation as the expected number of differentially expressed

genes per set, and each component of X follows a Binomial distribution with

parameters nk and pk, the later of which is unknown.

We are interested in finding gene sets having a strong association with a

phenotype of interest. This association can be measured by the estimated

number of DE genes in a gene set. But this number is related to the size of the

gene set and we would naturally expect more DE genes in a larger set. We

use the Binomial probability, pk, which does not depend on the gene set size,

to measure the association between a gene set and the phenotype. An inter-

esting null hypothesis is that the probability of DE does not depend on gene

set, which can be written as:

H0 : p1 ¼ p2 ¼ . . . ¼ pK ¼ p‚ ð2:8Þ

where K is the number of gene sets. The alternative hypothesis is then there

exists at least one gene set that is different from others:

Ha : There exist at least one gene set‚k‚where pk 6¼ p: ð2:9Þ
Under the null hypothesis, we estimate the parameter p as

p̂p ¼
XN
g¼1

ẑzg

 !
=N or‚ ð2:10Þ

p̂p ¼
Xm
k¼1

p̂pk

 !
=K with p̂pk ¼

X
g2Ck

ẑzg

 !
= jCk j ‚ ð2:11Þ

where ẑzg is the estimated posterior probability of gene g being differentially

expressed. Equation 2.10 is the average of individual gene probabilities. It

assumes that all the genes share the same probability of showing differential

expression, which is a stricter null hypothesis than that of Equation 2.8.

Equation 2.11 is the average of gene set probabilities, or it can be viewed as a

weighted average of individual gene probabilities, where the weight for

gene i is:

wi ¼
X

k:i2Ck

1

jCk j

 !
=K: ð2:12Þ

Using this estimate, a gene has more weight if it belongs to a smaller gene

set, or if it belongs to a larger number of gene sets.

Under the null hypothesis, the expected number of DE genes in the k-th
gene set is:

n̂ne‚k ¼ jCk j p̂p‚ ð2:13Þ

the observed number of DE genes in the same gene set is:

no‚k ¼
X
g2Ck

ẑzg‚ ð2:14Þ

and, the probability of observing no,k or more DE genes is

XjCk j

s¼ no‚k

jCk j
s

� �
p̂psð1� p̂pÞ jCk j �s: ð2:15Þ

If jCk j is large enough, and p̂p is not too small, the Binomial distribution

can be approximated by a Normal distribution with parameters: mk ¼
jCk j · p̂p ¼ n̂ne‚k and sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCk j · p̂pð1 � p̂pÞ

p
. An approximate P-value

can be obtained from:

F
no‚k � n̂ne‚kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCk j p̂pð1 � p̂pÞ

p
 !

‚ ð2:16Þ

where F is the standard Normal distribution function.

One of the weaknesses of this approach is that the statistical algorithm

detects differential expression without regard to direction. But if our goal is

to detect coordinated changes in expression we should check to ensure that

the estimated effects are in the same direction. For example, in a two sample

comparison we would be interested in gene sets with many differentially

expressed genes provided those samples from one phenotype, or condition,

tended to have higher values than those from the other phenotype. So we

propose that for each significant gene set, we check the change in the gene

expression of each gene with posterior probability larger than the pre-

selected cut-off. An example is shown in Section 3.2.

2.3 Interpreting the gene sets

The approach of computing a single test statistic per gene suggests a belief

that all of the information that is contained in the gene set can be reduced first

to a single number for each gene and then to a single number for all genes in

the gene set. As this is not always the case, we discuss some extensions that

can be used to help make more use of the available data.

We begin with the observation that there is often substantial overlap

between different gene sets. For example, if we use pathways, as defined

by KEGG (Kanehisa and Goto, 2000), we find that the Leukocyte

transendothelial migration pathway and the Regulation of actin cytoskeleton

pathway contain 50 and 78 genes, respectively and there are 23 in both.

Suppose that in an experiment there is an activation of the Leukocyte

transendothelial migration pathway, but not of the Regulation of actin

cytoskeleton pathway, we might still observe an extreme statistic for the

Regulation of actin cytoskeleton pathway merely due to the genes that are

shared between them. If undetected such an observation may mislead an

investigator. We discuss approaches that can be used to better attribute the

observed effect to the appropriate gene set.

There are several statistical methods that can be used to determine

whether genes within a gene set show coordinated expression. We suggest

using visualization methods and dimension reduction techniques, such as

principal component analysis (PCA), (Mardia et al., 1979; Johnson and

Wichern, 1988).

2.3.1 Overlap among gene sets Whenever two gene sets contain at

least one common gene there is the potential for problems in interpretation.

The most extreme case occurs when two, or more, gene sets are identical. In

such a case we say that the gene sets are aliased and the practical implication

is that one cannot determine, from the available data, which gene set is

responsible for the effect. While complete aliasing is unlikely there are

circumstances where it can occur and partial overlap between gene sets

is common and can cause similar problems in interpretation. In particular,

due to the structure of GO (The Gene Ontology Consorium, 2000) if GO

classifications are used to define gene sets there will always be nesting.

Since genes can be in many gene sets, the level of overlap can be quite

substantial with many gene sets being involved. We studied the extent of

overlap for KEGG pathways of genes on the Affymetrix HGU-95Av2 chip.

(Supplementary Table S1). Among 3012 genes that with KEGG pathway

annotation, about half of them are involved in multiple pathways. In this
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report, we restrict our attention to pairwise comparisons of gene sets, but

note that there can be higher level interactions.

When trying to assess whether two gene sets are aliased we must consider

the gene set restricted to the data being analyzed rather than the whole gene

set. Thus, even though two gene sets are not themselves aliased, if a number

of genes have been excluded from the analysis then the gene sets, restricted

to the genes being analyzed, can be aliased. It is not possible to determine

from the available data which of the two (or more) gene sets is responsible

for the observed effect.

In cases where two gene sets have common genes, we propose the fol-

lowing approaches. First identify all gene sets which have a significant

effect. Of these, identify those which have substantial overlap in gene mem-

bership. This could be operationalized as either more than l genes in com-

mon, or using some other criteria. Then for each such pair, decompose the

genes involved into three disjoint parts: the genes unique to the first gene set,

the genes unique to the second gene set and the genes found in both gene

sets. These three parts can also be viewed as gene sets and hence can be

analyzed via GSEA. Correct attribution of the observed effect will depend on

which of these three new gene sets have significant effects. To illustrate the

different situations we present two examples in Section 3.7. In the first

example, we find that only one of the gene sets seems to be implicated

in the differences between the phenotypes, the other is significant only due to

those genes shared with the first gene set. In the second example, both sets

are implicated.

2.3.2 Dimension reduction per gene set We consider the problem

from the perspective of the samples. For each gene setCk there are jCk j ¼ nk
genes whose expression values we want to model. We can consider each

sample to be represented by a point in nk dimensional space. If the genes in

gene set Ck show coordinated patterns of expression then the points in the

space should display a pattern that reflects this observation. Gene sets, which

can be reduced to two or three dimensions indicate situations where the

constituent genes are likely to be co-regulated.

PCA (Mardia et al., 1979; Johnson and Wichern, 1988) is one of the

popular tools for dimension reduction. We use it as an example to show how

dimension reduction can help us finding interesting gene sets. Genes will be

standardized [the median subtracted and divided by the median absolute

deviation (MAD)] prior to the application of PCA.

We followed two approaches using principle components (PCs). First, we

found the number of PCs needed to explain a certain percentage, e.g. 70% of

the variation among data. Second, we applied the isotropic test [Chapter 8.4,

Mardia et al. (1979)], on the expression data. The isotropic test identifies a

value k such that the null hypothesis: the last n� k PCs are equally important,

is rejected for k� 1 but not for k. Then the number k is the suggested number

of PCs to keep. Gene sets generally have different sizes and this must be

accounted for in the analysis.

3 APPLICATIONS

Wewill apply the methods discussed in the previous section to ALL

data (Chiaretti et al., 2004). In the use of GSEA on publicly avail-

able data, there is a risk of circularity since the data may have been

used to help define the gene sets in the first place. Analysts should

exercise caution when working with historical data. Since our anal-

ysis uses KEGG we are reasonably sure such circularity is not an

issue here.

3.1 Data processing

Before applying the methods discussed in the previous section to the

ALL data, it must be processed and filtered to some extent. We

describe our choices but emphasize that users can substitute meth-

ods they prefer. We make use of these as we have found that they

often provide a sound basis for analyses.

There are 37 samples for the BCR/ABL group and 42 samples for

the NEG group. We first filtered the probes base on their expression

variation. The probes with very little or no variation (IQR < 0.5)

were filtered out, leaving 4149 probes. In some cases multiple

probes map to a single gene, we retained the one with the largest

t-test statistic between phenotype. Our reason for this approach is

that we are looking for the best evidence we can find of gene set

involvement. Since not all genes are accurately annotated, or

arrayed, it seems reasonable to use the microarray probe for a

gene with the best evidence for differences in phenotype. After

this step, we were left with 3443 genes/probes. Among them,

there are 1144 genes are annotated as members of one or more

KEGG pathways.

Another practical issue that we need to deal with is the size of a

gene set, or what might be termed the effective size of a gene set.

This is a parameter and must be chosen by the user. In some cases it

will be of interest to retain relatively small gene sets, but in most

cases one will be interested in general descriptions and therefore

larger gene sets are more helpful. We do emphasize that this size is

not the size of the gene set that has been curated, but rather the size

of the gene set when restricted to the genes that are going to be used

in the analysis. For the analyses reported here we keep only the

pathways with at least 10 genes. In the end, we have 1031 genes, 79

samples and 77 pathways.

3.2 Simple analyses

We first used the two-sample t-statistic as the per-gene statistic (Z),
the mean as the aggregation function (f) and permutation on the

sample labels to obtain the significance of the gene sets. In the

following sections, we illustrate the extensions described in Section

2.2. We used a permutation test with 5000 permutations and

obtained the P-values for each pathway. There were 14 pathways

with a P-value <0.01. They are reported in Table 1. These pathways
have higher gene expression levels in BCR/ABL versus NEG at the

significant level of 0.01.

3.3 Median/sign-test as f

In this section, we used different summaries of the evidence for each

gene set. In one analysis we used the median of the t-statistics and in
a second analysis we used the sign test on the observed per gene

t-statistics for each gene set and compared with the results from

using the mean. Table 1 contains the GSEA results for the ALL data

using different methods to aggregate the single gene information

into gene set information, the columns pMn, pMd and pST show the

P-values using the mean, the median or sign test to compute the

gene set statistic. The rows are divided into six sections; the path-

ways found by all, two of the three, or only one of the three methods.

If a pathway is reported significant by one test, the P-value for that
test is listed in the table, otherwise the corresponding element is

blank.

The majority of findings from using the mean or the median are

the same, except for four pathways that are found by the mean but

not by the median and 1 pathway found by the median but not by the

mean. For example, Supplementary Figure S1(b) shows the t-statis-
tics for genes in the mTOR signaling pathway. This pathway is

reported significant using the mean but not using the median.

The t-statistic for the gene PRKAA1 (shown as a black triangle)

is much higher than all the others, suggesting that the median test is

more reliable in this case.

Extensions to gene set enrichment

309



The results using the sign test as f are quite different from using

the mean or the median. We think this is because the mean and

median are using the actual values of t-statistics whereas the

sign test is using logical values, where all the genes with higher

t-statistics are treated the same whether they are higher by a small

amount or a large amount.

When the mean is used, our argument, Section 2.1.1, suggests a

qq-plot be used to graphically identify significant gene sets. We

generate the qq-plot for our data in Supplementary Figure S2(a).

The pathway statistics are quite close to the 45 degree line. We

identify 3 pathways that are further away from the 45 degree line

than others. They are Fatty acid metabolism (00071), Focal adhe-

sion (04510) and Cell adhesion molecules (CAMs) (04514) in

Table 1.

3.4 Linear modeling

For the ALL data, we fitted the model in Equation (2.6), with X2i

being the sex of the individual. We use the t-statistic b̂b1g/SEðb̂b1gÞ as
gene statistic in GSEA. Table 2 reports all pathways significant at

0.01 level. The column plm.t lists the P-value obtained through linear
modeling and the column pt is the same as the pMn column in

Table 1. The t-statistic adjusted for gender identified pathways,

besides the ones that are reported by the unadjusted t-statistic,
suggesting that there may be important gender differences.

The qq-plots for the unadjusted t-statistic and the t-statistic
adjusted for gender of the pathways (Supplementary Figure S2)

both identified the following pathways: CAMs pathway, the

Adherens junction pathway, and the Lysine degradation pathway.

3.5 Posterior probability as gene statistic

For each gene, we estimated the probability of being differentially

expressed using the EBarrays package (v1.3.0). Then we calculated

the expected number of DE genes and the observed number of DE

genes as in Equations (2.13) and (2.14). To get P-values for the

pathways, we used two different methods. We estimated p̂p by aver-

aging over all genes [Equation (2.10)] and alternatively by averag-

ing over all gene sets [Equation (2.11)]. Table 3 lists the results from

the two methods. The columns p1 and p2 are the P-values by using

the average over all genes or using the average over all gene set as

the null hypothesis parameter. The columns B# and B" show the

number of genes that have higher or lower expression in the BCR/

ABL phenotype, respectively, among the genes with posterior

probability at least 0.01 of that set. The cytokine–cytokine receptor

interaction pathway is found by both approaches and the Adherens

junction pathway is found only by the second approach.

We checked the direction of expression changes from BCR/ABL

to NEG for the genes with posterior probability >0.01 in these

pathways. In all cases more than two-thirds of the genes have higher

expression in BCR/ABL phenotype. The Adherens junction path-

way has about two-thirds of interesting genes showed higher expres-

sion in BCR/ABL phenotype. The cytokine–cytokine receptor

interaction pathway and the Axon guidance pathway have about

three quarters of interesting genes showing higher expression in

BCR/ABL phenotype.

Table 1. Significant pathways reported by different statistics

ID PW name pMn pMd pST Size

1 04514 Cell adhesio. . . 0.0000 0.0004 0.0011 39

2 04940 Type I diabe. . . 0.0040 0.0052 0.0015 21

3 04610 Complement a. . . 0.0000 0.0008 14

4 04512 ECM-receptor. . . 0.0000 0.0008 15

5 04530 Tight juncti. . . 0.0000 0.0040 40

6 04080 Neuroactive. . . 0.0000 0.0044 21

7 04520 Adherens jun. . . 0.0000 0.0068 34

8 04510 Focal adhesi. . . 0.0004 0.0024 68

9 04670 Leukocyte tr. . . 0.0020 0.0032 50

10 01430 Cell Communi. . . 0.0028 0.0008 12

11 04060 Cytokine-cyt. . . 0.0060 0.0002 54

12 04360 Axon guidanc. . . 0.0008 38

13 05130 Pathogenic E. . . 0.0080 27

14 05131 Pathogenic E. . . 0.0080 27

15 04640 Hematopoieti. . . 0.0000 39

16 03010 Ribosome 0.0000 22

17 00620 Pyruvate met. . . 0.0005 16

18 00190 Oxidative ph. . . 0.0006 59

19 00230 Purine metab. . . 0.0075 57

20 04110 Cell cycle 0.0092 66

The columns pMn, pMd, and pST show the P-values using the mean, the median or the

sign-test, respectively, to compute the gene set statistic from per gene associations with

phenotypic differences. The rows are divided into six sections. In each section are the

pathways reported byall, twoof the three, or only oneof the threemethods. If a pathway is

reported significant by a method, the P-value is listed in the table. Otherwise the corre-

sponding element is blank.

Table 2. Significant pathways and P-values reported using the adjusted

t-statistic, plm.t, and the un-adjusted t-statistic, pt

ID PW name Plm.t Pt Size

1 04510 Focal adhesi. . . 0.0000 0.0004 68

2 04512 ECM-receptor. . . 0.0000 0.0000 15

3 04514 Cell adhesio. . . 0.0000 0.0000 39

4 04670 Leukocyte tr. . . 0.0000 0.0020 50

5 04530 Tight juncti. . . 0.0000 0.0000 40

6 04360 Axon guidanc. . . 0.0000 0.0008 38

7 04610 Complement a. . . 0.0000 0.0000 14

8 04060 Cytokine-cyt. . . 0.0000 0.0060 54

9 04080 Neuroactive. . . 0.0000 0.0000 21

10 04520 Adherens jun. . . 0.0020 0.0000 34

11 01430 Cell Communi. . . 0.0040 0.0028 12

12 04940 Type I diabe. . . 0.0060 0.0040 21

The differences suggest that the gender has influence on the gene expression profile.

Table 3. Significant pathways reported using posterior probability of DE as

the per gene statistic

ID PW name p1 p2 Size B" B#

1 04060 Cytokine-cyt. . . 0.0091 0.0028 54 25 8

2 04520 Adherens jun. . . 0.0057 34 15 7

The columns p1 and p2 are theP-values by using the average over all gene probabilities or

using the average over all gene set probabilities as null hypothesis parameter. The

columns B# and B" show the number of genes that have higher or lower in BCR/

ABL, respectively, among the genes with posterior probability at least 0.01.
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3.6 Incidence matrix

We make use of the analysis reported in Yeoh et al. (2002).

Although their study was on pediatric patients, the type of cancer,

ALL, was the same. We obtained a gene list from Yeoh et al. (2002)
that was used to classify the BCR/ABL ALL subtype from

other ALL subtypes by t-statistic (Supplementary Table 13 of

Yeoh et al. (2002) at http://www.stjuderesearch.org/data/ALL1).
Yeoh et al. (2002) used the same gene chip as Chiaretti et al.

(2004). Among the 40 genes they reported, 30 are higher in BCR/

ABL and 10 are lower in BCR/ABL. After filtering genes for vari-

ance (Section 3.1), we were left with 10 genes from their list, 9 with

higher values in BCR/ABL and 1 with a lower value. We put these

genes in a gene set and used 1 for the up-regulated genes and�1 for

the down-regulated genes. The resulting P-value was <10�4, indi-

cating a very strong concordance between the data from Chiaretti

et al. (2004) and that of Yeoh et al. (2002).

3.7 Aliasing

Pathways have a substantial overlap (Supplementary Table S1). In

this section, we describe an approach for dealing with aliasing and

partially overlapping gene sets to interpret identified gene sets.

We consider the two pathways, the Leukocyte transendothelial

migration pathway and the Focal adhesion pathway. Both pathways

were found significant by t-statistic (Table 1). This pair of pathways
has 23 genes in common.

In Figure 1, we present a graphical display of the two pathways.

Each point in the graph represents a gene and its x- and y-values are
the mean expression for that gene over all samples in the BCR/ABL

and the NEG groups, respectively. The light colored dots are the

genes in both pathways and the dark colored triangles are the genes

unique in each pathway. Points that are above the 45-degree line

have higher expression values in the NEG group while those that are

below the 45-degree line have larger values in the BCR/ABL group.

We would like to make a few observations based on the content of

these figures before proceeding with the discussion. First, those

genes that are found in both pathways (colored orange) tend to

have larger values in the BCR/ABL group and hence are mainly

found below the 45-degree line. Those genes found only in the Focal

adhesion pathway also tend to be below the 45-degree line, while

those genes found only in the Leukocyte transendothelial migration

pathway tend to be scattered above and below the line, with no

apparent preference. Since GSEA detects the accumulated effect of

genes within a gene set we suspect that the sub-group of genes

unique to Leukocyte transendothelial migration will not be signifi-

cant since the observed effects seem to cancel each other out.

We divided the genes in these two pathways into three parts, one

for the genes unique to each pathway and one for the shared genes

and then carried out GSEA on the three parts. The analysis was

based on the permutation of sample labels, and the test results

are summarized in Table 4. Genes unique to the Leukocyte

transendothelial migration pathway exhibit a significant effect, as

do those that are shared and most importantly the direction of the

effect in both groups is the same. But for genes unique to the Focal

adhesion pathway there seems to be no effect. This observation

strongly suggests that the effect observed is due to the Focal adhe-

sion pathway activation and not to the Leukocyte transendothelial

migration pathway activation.

Next, we compare the CAMs pathway and the Type I diabetes

mellitus pathway with 39 and 21 genes, respectively. There are

14 genes common to both pathways. We follow the same procedure

described above and split the genes into three gene sets.

We generated the mean plots of the genes in these two pathways

in the Supplementary Figure S2. Unlike our previous sample, we do

not see any obvious patterns in these two plots. The permutation test

results in Table 5 indicate that those genes that are common to the

two pathways are not significant at the 0.01 level. The gene sets

based on genes unique to each of the two pathway remain

significant.

There is some rationale for believing this to be a more common

situation. Genes which are shared among different pathways are

likely to be regulated differently than those that are unique to a

pathway. Genes that play a number of different roles will need to be

expressed and translated when any of their associated functions are

required, and hence are likely to be regulated by other mechanisms.

As illustrated in these two examples, modeling the genes shared

between two pathways can improve our understanding and inter-

pretation of the test results. In our first example we believe that the

data are consistent with an activation or up-regulation of the Focal

adhesion pathway in patients with BCR/ABL and that there is little

evidence of the Leukocyte transendothelial migration pathway

Fig. 1. Mean plots for (a) the Leukocyte transendothelial migration pathway.

(b) the Focal adhesion pathway.

Table 5. Results for the subsets in pathway pair of the CAMs pathway and

the type I diabetes mellitus pathway

Name Size Test statistic P-value

1 Common 14 19.602 0.0126

2 Cell adhesio. . . 25 30.520 0.0000

3 Type I diabe. . . 7 9.280 0.0048

Table 4. Results for the subsets in pathway pair of leukocyte transendothelial

migration and focal adhesion

Name Size Test statistic P-value

1 Common 23 22.306 0.0030

2 Leukocyte tr. . . 27 20.593 0.0128

3 Focal adhesi. . . 45 33.422 0.0016
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involvement. In the second example, the genes in both pathways are

likely to have higher expresion in patients with BCR/ABL.

3.8 PCA per gene set

We applied PCA to the gene expression values for each pathway

seperately. The expression values were standardized by subtracting

the median and dividing by the MAD.

Following the approach mentioned in Section 2.3.2, we obtained

the number of PCs, k, needed to explain 70% of the variation and

separately, the number of PCs that identified by the isotropic test.

Table 6 reports the gene sets with k � 4. The column ‘Ratio’ gives

the ratio of number k and the gene set size. The column ‘PC1’, ‘PC2’

and ‘PC3’ contain the proportion of variation for the first three PCs.

The number of PCs identified by the isotropic test tended to be

quite large for all pathways. The reason could be that isotropic test is

testing whether the last n� k PCs are of the same importance, where

n is the number of samples, and k is the number of PCs that were

kept. In our data, it seems that although the last n� k PCs are not

important, they still cannot be considered equally important. For

example, in Supplementary Figure S4 we plot the variation of the

PCs for the Ribosome pathway. Except the first component, all the

other components are not very important. But the isotropic test

suggested keeping 13 PCs.

The Ribosome pathway appears to be very interesting. The first

two components explain almost 80% of total variation of the gene

set. The other components explain much lower percentage of the

variation and the ratio is also very low. We know that some genes in

the Ribosome pathway are sex related (e.g. SLC25A6 is on the Y

chromosome). Figure 2a is the boxplot of the loadings for the first

three PCs. The first PC is dominated by one gene. The biplot of the

first two PCs (Fig. 2b) show that the first PC mostly explains the

gender differences among the subjects. Also from this plot, we find

four subjects with gender annotation mistakes. Two of them are

recorded as females but the data indicates are male and two are

recorded as males while the data indicates they are females. We

made corresponding corrections.

In the effort to eliminate the gender effects on the gene expres-

sion, we removed all the genes on the Y chromosome and repeated

the PCA analysis on the remaining genes. The results are summa-

rized in Table 6. Most results are the same except for the Ribosome

pathway. The plots of the new PCs for the Ribosome pathway are

shown in the Supplementary Figure S3. The first PC is no longer

dominated by one gene. It is quite closely related to the second PC

obtained before removing the Y genes. The difference is a small

gender effect. Removing the genes on the Y chromosome is not

enough to eliminate the gender difference in data, but it now is not

the most important source of variation in the data.

Another way to reduce the variation from gender differences is to

adopt the ideas in Section 3.2 and fit a linear model of gene expres-

sion on gender. The residuals from this model should be free of

gender differences and the PCA techniques can be applied to the

residuals.

A permutation test could also be applied. In this case, we permute

the labels of the genes in the data. We realize that this is contrary to

our advice in Section 2.1.1, but for this analysis permutation of the

sample labels has no effect, and the only way in which to generate a

permutational distribution is to permute the labels on the genes. For

each permutation we performed PCA on the new gene sets to esti-

mate the null distribution of k, the number of PCs needed to explain

Table 6. Pathways for which four or fewer PC’s explain at least 70% of the variability

ID PW name Size k Ratio PC1 PC2 PC3 kY RatioY PC1Y PC2Y PC3Y

03010 Ribosome 22 2 0.091 0.479 0.316 0.040 3 0.136 0.604 0.077 0.060

00251 Glutamate me. . . 11 4 0.364 0.367 0.200 0.123 4 0.364 0.367 0.200 0.123

00790 Folate biosy. . . 11 4 0.364 0.292 0.232 0.124 4 0.364 0.292 0.232 0.124

00071 Fatty acid m. . . 14 4 0.286 0.458 0.138 0.103 4 0.286 0.458 0.138 0.103

05040 Huntington’s. . . 16 4 0.250 0.436 0.155 0.089 4 0.250 0.436 0.155 0.089

03320 PPAR signali. . . 11 4 0.364 0.464 0.143 0.092 4 0.364 0.464 0.143 0.092

00710 Carbon fixat. . .� 11 4 0.364 0.315 0.211 0.122 4 0.364 0.315 0.211 0.122

01031 Glycan struc. . .� 11 4 0.364 0.267 0.183 0.158 4 0.364 0.267 0.183 0.158

00350 Tyrosine met. . .� 14 4 0.286 0.326 0.197 0.115 4 0.286 0.326 0.197 0.115

00564 Glycerophosp. . .� 14 4 0.286 0.327 0.176 0.121 4 0.286 0.327 0.176 0.121

00051 Fructose and. . .� 15 4 0.267 0.309 0.172 0.137 4 0.267 0.309 0.172 0.137

Pathways are sorted by the number of principle components (k). Ratio is k/size, andPCi is the proportionof the variance explainedby the i-th PC.The columnswith superscript ‘Y’ are the

PCA analysis results after removing th genes on the Y chromosome. Those labeled with a � are significant by permutation test.

Fig. 2. The PCA results for the Ribosome pathway. (a) Boxplots of the

loadings for the first three components of Ribosome pathway. The first

component is dominatd by one gene, ribosomal protein S4, Y-linked 1, which

is a Y chromosome gene. (b) Biplot of the first two PCs of the Ribosome

pathway.The points in orange andblue represent sampleswithBCR/ABLand

NEG phenotypes, respectively. The star and bullet symbols represents male

and female, respectively. There is one sample with missing sex annotation,

represented by a triangle. (We predict it to be a sample from a male subject.)
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70% of the variation in the gene set. We used 1000 permutations and

obtained 54 pathways with P-values <0.01, including 5 out of the

11 pathways in Table 6 (marked with star).

4 DISCUSSION

GSEA, as presented in Subramanian et al. (2005) and Tian et al.
(2005), provides a valuable and useful tool for the analysis of

genomic data. In this report we have discussed a number of

extensions of the original proposal.

The extensions include the use of linear modeling and posterior

probabilities. The t-statistic and posterior probability both measure

the strength of the association between gene expression and

phenotype. The advantages of the t-statistic are that it contains

the information of the direction in which the gene expression has

changed, and since the approximate distribution is known, QQ-plots

can be used to visually inspect the distribution, which seems rea-

sonably reliable. The posterior probability approach has a nice

interpretation but it ignores the direction in which the gene expres-

sion altered. The choice between t-statistic and Baysian posterior

probability depends on researcher’s belief about the underlying

biology. If the researcher does not care about the direction of

change, the Bayesian approach can be a very good choice. But if

the direction is important, the t-statistic is a better choice.

The extensions of gene set aggregation functions include the use

of the median and the sign-test. Compared to the mean, the median

is a more robust measure of the center. The sign-test is rather

different than the other two and favors direction over magnitude.

In addition we have shown how to address issues of aliasing,

where two or more gene sets overlap. In our experience this is not

merely an academic exercise, almost all experiments we have ana-

lyzed suffer from some form of aliasing. We have specifically

addressed pair-wise overlap, mainly because it is directly interpret-

able, higher order interactions and overlap are both harder to model,

and to interpret. Investigators should always be aware of this prob-

lem. After having the list of interesting gene sets, investigators

should always check for overlap. If there are sets with significant

amounts of overlap, the investigators should follow the procedure

provided here to better interpret their data.

Finally, we have considered a simple method of examining

the amount of collinearity among the gene sets using PCA.

Again, in our examples, the application of these methods was

very fruitful. It helped to identify some potential underlying

problems and to identify gene sets where there appears to be

coordinated behavior of the constituent genes.

We also remark that while GSEA approach has largely been

applied to microarrays, there is nothing special about microarray

data and could just as easily be applied to any other high-throughput

data streams where the variables can be grouped in relevant ways a

priori.
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