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Abstract 

In spite of the advances in recognition technology, handwritten Hangul recognition (HHR) remains 

largely unsolved due to the presence of many confusing characters and excessive cursiveness in 

Hangul handwritings. Even the best existing recognizers do not lead to satisfactory performance 

for practical applications, and have much lower performance than those developed for Chinese or 

alpha-numeric characters. To improve the performance of HHR, here we develop a new type of 

recognizers based on deep neural networks, which have recently shown excellent performance in 

many pattern recognition and machine learning problems, but have not been attempted for HHR. 

We build our Hangul recognizers based on deep convolutional neural networks, and propose 

several novel techniques to improve the performance and training speed of the networks. We 

systematically evaluated the performance of our recognizers on two public Hangul image 

databases, SERI95a and PE92. Using our framework, we were able to achieve a recognition rate of 

95.96% on SERI95a, and 92.92% on PE92. Compared to the previous best records of 93.71% on 

SERI95a and 87.70% on PE92, our results provided improvements of 2.25% and 5.22%, respectively. 

These improvements lead to error reduction rates of 35.71% on SERI95a and 42.44% on PE92, 

relative to the previous lowest error rates. Such improvement fills a significant gap between 

practical requirement and the actual performance of Hangul recognizers. 

Keywords: handwritten Hangul recognition, character recognition, deep convolutional neural 

network, deep learning, gradient-based learning 
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1. Introduction 

Character recognition technology has been developed for decades. For alpha-numeric and 

Chinese characters, recognition technologies are mature enough to achieve high accuracy. 

However, in handwritten Hangul recognition (HHR), even the best recognizers cannot yield 

satisfactory performance for practical applications. The difficulty of handwritten Hangul 

recognition is mainly caused by a multitude of confusing characters and excessive cursiveness in 

Hangul handwritings. Figure 1 shows some examples of Hangul characters that are very similar 

and are often confused by recognizers. Hangul contains numerous such confusing characters. 

Moreover, shape variation in cursive handwritings makes it even harder to distinguish them. On 

the SERI95a and the PE92 databases, two most popular public Hangul image databases, the state-

of-the-art performances in terms of recognition rate are merely 93.71% and 87.70%, respectively 

[1][2]. Such poor performance has discouraged the utilization of HHR in practical systems. 

 

 

Figure 1. Examples of Hangul characters 

On the other hand, in recent years, deep neural networks (DNN) have been highlighted in 

machine learning and pattern recognition fields. Composed of many layers, DNNs can model 

much more complicated functions than shallow neural networks [3]. The availability of large scale 

training data and advances in computing technologies have made the training of such deep 

networks possible, leading to a widespread adoption of DNNs in many problem domains. For 



example, deep convolutional neural networks (DCNNs) have shown outstanding performance in 

many image recognition fields, beating benchmark performances by large margins [4][5][6][7]. 

However, although DNN has been employed for many pattern recognition systems, it has not 

been attempted for HHR. We reasoned that DNN could be especially beneficial for HHR for a 

number of reasons. First, DNN performs features learning and classification within a unified 

framework. Since features are automatically learned directly from the data themselves, it might be 

possible to extract subtle features to separate confusing characters in Hangul handwritings. 

Second, DNN is very good at extracting high-level features. In particular, the convolution and 

max-pooling layers used by DCNN have been shown to be very effective in handling shape 

variations, which will likely be key in handling the excessive cursiveness in Hangul writings. 

Therefore, DCNN seem to be well-posed to overcome the two main difficulties in HHR.  

In this research, we build handwritten Hangul recognizers using DCNNs. Then, we improve the 

performance and the training speed of the recognizers by applying a few improvement 

techniques. Using the system we built, we are able to achieve a recognition rate of 95.26% on 

SERI95a and 92.92% on PE92. Compared to the previous best records of 93.71% on SERI95a and 

87.70% on PE92, our results provided improvements of 2.25% and 5.22%, respectively. These 

improvements lead to error reduction rates of 35.71% on SERI95a and 42.44% on PE92, relative to 

the previous lowest error rates. Such improvement fills a significant portion of the large gap 

between practical requirement and the actual performance of Hangul recognizers. 

The rest of this paper is organized as follows: In Section 2, we briefly review previous works on 

HHR and deep learning. In Sections 3 and 4, we describe the DCNN-based Hangul recognizer and 

the training algorithm. In Section 5, we propose several techniques to further improve 

performance and training speed. In Section 6, we present experimental results on two popular 

HHR datasets. Conclusions are provided in Section 7. 

 



2. Related Works 

2.1. Handwritten Hangul recognition 

Character recognition methods can be generally grouped into two categories: structural and 

statistical. The structural method describes the input character as strokes or contour segments, 

and identifies the class by matching with the structural models of candidate classes. On the other 

hand, the statistical method represents the character image as a feature vector, and classifies the 

feature vector using statistical methodologies. Among them, statistical methods are more widely 

used in practical systems because they are easy to build and are effective in recognizing many 

character sets, including Chinese characters. However, unlike handwritten Chinese character 

recognition (HCCR), structural methods outperformed statistical methods in HHR for a long time. 

We believe the reason is that, in the early days, the statistical methods were insufficient to deal 

with the multitude of confusing characters and the excessive cursiveness in Hangul handwritings. 

Kim and Kim proposed a structural method based on hierarchical random graph representation 

[8]. Given a character image, they extracted strokes and represented them onto an attributed 

graph, which is matched with character models using a bottom-up matching algorithm. Kang and 

Kim improved [8] by modeling between-stroke relationships [2]. They extended the hierarchical 

random graph in [8] by adding another type of nodes to represent relationships between strokes. 

Then, they matched those nodes with relationships among input strokes. Jang proposed a post-

processing method for the structural recognizers in [8] and [2] to improve discrimination ability [9]. 

The post-processor consists of a set of pair-wise discriminators, each of which is specialized for a 

pair of graphemes with similar shapes. To build each pair-wise discriminator, they chose parts that 

separate the character pair, and then, applied statistical methods focusing on those parts. These 

systems were evaluated on two public handwritten Hangul image databases: SERI95a1 and PE92 

                                           

1 SERI95a is also known as KU-1. 



[10][11]. The best performances on SERI95a and PE92 achieved by the structural methods were 

93.4% reported in [9] and 87.7% reported in [2], respectively. 

In the early days of HHR, researchers attempted to use statistical methods to recognize 

handwritten Hangul [12][13][14]. However, the performance of those methods was much poorer 

than that of the structural methods, or it is hard to compare their performance to that of other 

methods because it was measured on small-size private datasets. As a result, statistical methods 

were not frequently used in HHR. 

Meanwhile, statistical methods have become the mainstream approach in HCCR and have been 

improved significantly. Recently, Park et al. applied state-of-the-art statistical methods to HHR and 

evaluated their performance [1]. Combining non-linear shape normalization, the gradient feature 

extraction, and the modified quadratic discriminant function (MQDF) classifier, they achieved 

much better results than the early statistical recognizers. Their best performances were 93.71% on 

SERI95a and 85.99% on PE92, which are comparable to the performances of the structural 

recognizers. Specially, the recognition rate 93.71% on SERI95a is even higher than the best result 

of the structural method, 93.4%. Moreover, it is likely that the performance of statistical methods 

can be further improved when more training data are available [15]. However, at present neither 

the structural method nor the statistical method can provide a performance level high enough for 

practical applications. Consequently, handwritten Hangul recognition remains an unsolved 

problem. 

 

2.2. Deep neural networks 

For the past few years, DNNs have produced outstanding results in machine learning and 

pattern recognition fields. Composed of many layers, DNNs are much more efficient at 

representing highly varying nonlinear functions than shallow neural networks [3]. An additional 

reason for the good performance of DNNs is that DNNs enable integrated training of feature 

extractors and classifiers. Unlike conventional classifiers, most DNNs accept raw images as input, 



and do not require separate feature extraction or preprocessing, except for size normalization. 

The low- and middle-level DNN layers extract and abstract the feature from the input image, 

while high-level layers perform classification. In this sense, a DNN can be viewed as a unified 

framework that integrates all modules within a single network that can be systematically 

optimized with respect to a single objective function. Such integrated training can often lead to 

better performance than those based on independent training of each module. 

Despite their appealing properties in extracting and representing features, training DNNs is, 

however, computationally rather challenging. Back-propagation is the dominant algorithm used in 

training neural networks, where the error signals in the output layer of the network are 

propagated backward layer-by-layer from the output to the input layers to guide the update of 

connection weights. The back-propagation algorithm performs poorly when the number of hidden 

layers is large due to the so called “diminishing gradient problem” - as the error signals 

propagate backwards, they become smaller and smaller, and eventually become too small to 

guide the update of weights in the first a few layers. The diminishing gradient problem is a major 

obstacle in training DNNs. 

However, in 2006, Hinton, et al. proposed a greedy layer-wise training algorithm to train the 

deep belief network (DBN) [16]. They first pre-trained the weights through an unsupervised 

training algorithm starting from the bottommost layer. Then, they fine-tuned the weights to 

minimize the classification error using a supervised training algorithm [17]. Their work made a 

breakthrough that vitalized deep learning research. Further, the idea of the unsupervised pre-

training was applied to other neural networks such as the stacked auto-encoder [18]. 

Exceptionally, DCNNs can be trained with gradient-based learning algorithm without pre-

training. The network structure was proposed by Fukushima in 1980 [19]. However, it has not 

been widely used because the training algorithm was not easy to use. In 1990s, LeCun et al. 

applied a gradient-based learning algorithm to DCNN and obtained successful results [20]. After 

that, researchers further improved DCNN and reported good results in image recognition [21]. 



Recently, Cireşan et al. applied multi-column DCNNs to recognize digits, alpha-numerals, Chinese 

characters, traffic signs, and object images [5][6]. They reported excellent results and surpassed 

conventional best records on many public databases, including MNIST digit image database, NIST 

SD19 alphanumeric character image database, and CASIA Chinese character image database. 

In addition to the common advantages of deep neural networks, DCNN has some extra nice 

properties: It was designed to imitate human visual processing, and it has highly optimized 

structures to process 2D images. Further, DCNN can effectively learn the extraction and 

abstraction of 2D features. Particularly, the max-pooling layer of DCNN is very effective in 

absorbing shape variations. Moreover, composed of sparse connection with tied weights, DCNN 

has significantly fewer parameters than a fully connected network of similar size. Most of all, 

DCNN is trainable with the gradient-based learning algorithm, and suffers less from the 

diminishing gradient problem. Given that the gradient-based algorithm trains the whole network 

to minimize an error criterion directly, DCNN can produce highly optimized weights. 

However, before now, DCNN has not been applied for recognizing handwritten Hangul 

characters. Several difficulties discourage the swift application of DCNNs in practical situations. 

Because of its complexity, implementing and debugging DCNN is time-consuming and difficult. 

Moreover, training a large DCNN requires heavy computation. For example, Cireşan et al. 

estimated that training a DCNN to recognize 3,755 Chinese characters on a single CPU would 

take more than one year [5]. Fortunately, the problem of the heavy computation can be partially 

alleviated by training with the GPU-based massive parallel processing [5][21]. 

 

3. The DCNN-based Hangul Recognizer 

3.1. Overall structure 

Figure 2 shows the overall structure of the DCNN. Each layer receives the output of the 

previous layer as its input, and passes the output to the next layer. We built the DCNN by 

combining three types of layers: convolution, max-pooling, and classification. The low- and 



middle- level layers are composed of convolution and max-pooling layers alternately. The odd 

numbered layers, including the bottom layer, are composed of convolution layers, and the even 

numbered layers are composed of max-pooling layers. The nodes on the convolution layers and 

max-pooling layers are grouped into 2D planes, also called feature maps. Each plane is connected 

to one or more planes of the previous layer. Each node on a plane is connected to a small region 

of each connected plan in the previous layer. The node of the convolution layer extracts features 

from the input image (or input 2D feature maps) through the convolution operation on the input 

nodes, whereas the node of the max-pooling layer abstracts the features by propagating the 

maximum value among the input nodes. 

 

  

Figure 2. The overall architecture of the DCNN used by us, which includes an input layer, multiple 

alternating convolution and max-pooling layers, and two fully connected classification layers. N 

denotes the total number of layers in the network.    

 

As the features are propagated to higher level layers, they are abstracted and combined to 

produce higher-level features. Meanwhile, the size of the feature map is reduced. In other words, 



the higher the level, the smaller the size of the feature map. When the resolution of the feature 

map becomes 1x1 at a high-level layer, the features are passed onto the classification layers. The 

classification layers are placed at the top of the DCNN. They decide the classification result by 

analyzing the features extracted and abstracted by the preceding layers. For the classification layer, 

we applied the fully connected network because it is popular and has provided good 

performances in many recent works [5][21]. Each node of the top layer computes the score of a 

class. When the propagation finishes, the recognizer outputs the class with the highest score as 

the classification result. 

 

3.2. Convolution layers 

The convolution layer extracts features through the convolution operation on the input image 

or the feature maps of the previous layer. Each output plane is connected to one or more input 

planes. Each output node is connected to the input nodes in a small window. The horizontal and 

vertical distance between two adjacent windows is called stride. Denoting the stride by S, a node 

at (i, j) is connected to the input nodes in an MxM window whose upper left corner is at (iS, jS). 

Each node has a set of weights to connect itself to the input nodes. All nodes on a plane share 

the same weights. 

Let         
  denote the activation of a node at coordinate (i,j) on the pth plane of the nth layer 

and   
  denote the set of input planes connected to plane p at layer n. As all nodes on a plane 

share the same set of weights, the weight of the connection from                 
    to         

  is 

simply denoted by           
 , where           , where Mn is the width and height of the 

convolution mask that connects layer n-1 and layer n. The output of each node is computed as in 

equation (1), where   
  is a bias, and f is an activation function. 

 

        
 = 𝑓( ∑ ∑           

                 
   

0≤   ≤𝑀    ∈𝐶𝑝
 

+   
 ) (1)  



 

The first term in the argument of the activation function is a convolution operation with a mask 

composed of the shared weights. From this point of view, the nodes on a plane compute the 

same feature extracted from different locations. When the stride is set to one, the convolution 

layer extracts features from all possible coordinates. In this case, the convolution layer does not 

miss important features even if the positions of the features are shifted. 

It is worth to note that equation (1) convolutes multiple input feature maps, thereby enabling 

the convolution layers to extract higher-level features from multiple lower-level features. The size 

of the output feature map after convolution is derived based on the size of the input feature map 

as shown in equation (2): 

 𝑖𝑑𝑡ℎ = ⌊  𝑖𝑑𝑡ℎ      +   /𝑆 ⌋ 

ℎ𝑒𝑖𝑔ℎ𝑡 = ⌊ ℎ𝑒𝑖𝑔ℎ𝑡      +   /𝑆 ⌋ 
(2)  

 

3.3. Max-pooling layers 

The max-pooling layer abstracts the feature by pooling the input features. The output feature 

maps have one-to-one correspondence with the input feature maps. A node at (i, j) is connected 

to the input nodes in an MxM window whose upper left corner is at (iS, jS). Each node selects the 

maximum value among the input nodes as indicated by equation (3). Note that equation (3) does 

not require any weight. 

 

        
 = 𝑓 ( max

0≤   ≤𝑀   
                

   ) 
(3)  

 

The average-pooling, frequently used for down-sampling, is an alternative to the max-pooling. 

However, a previous study reported that max-pooling produces better results than average-

pooling [22]. Similar to the case of the convolution layer, the resolution of the output feature map 

is decided by equation (2). The stride of the max-pooling layer is often set to two. In this case, 



the max-pooling layer reduces the size of the feature map approximately by a quarter. The max-

pooling layer plays an important role: It absorbs shape variation or distortion. In handwritten 

characters, the positions of salient features often shift. The max-pooling node propagates only the 

maximum value in a window, ignoring the offset. Therefore, the max-pooling node catches the 

feature but ignores small displacements within the window. Given that a DCNN has a collection of 

max-pooling layers, each of which absorbs small positional shifts, the DCNN does not require a 

separate shape normalization step to regulate shape variation. Moreover, the max-pooling layers 

in a DCNN absorb shape variation in phases, which is desirable to minimize information loss. 

 

3.4. Classification layers 

Classification layers are placed at the top of the DCNN. They compute the score of each class 

from the features extracted and abstracted by the preceding layers. The size of the feature map is 

reduced to 1x1 at the last feature extraction or abstraction layer. Then, the feature maps are 

treated as scalar values and passed to the first fully connected layer. We used a fully connected 

feedforward network for the classification. The output of each node is computed as shown by 

equation (4), where the 2D coordinate (i,j) on each feature map is omitted because each feature 

map is composed of only one node in the final classification layers. 

  
 = 𝑓 (∑      

   
   

 

+   
 ) (4)  

 

3.5. Activation functions 

Various types of activation functions are used in neural networks. In this research, we 

implemented sigmoid[23], hyperbolic tangent[24], softmax[25], rectified linear[26], and identity 

functions. In our preliminary experiments, the combination listed in Table 1 produced best results. 

Therefore we used this particular combination in our experiments. 

 



Layer types Activation functions 

Convolution layers identity 

Max-pooling layers rectified linear 

Classification layers (hidden layer) rectified linear 

Classification layers (output layer) tanh (for MSE criterion) or 

softmax (for cross entropy criterion) 

Table 1. Activation functions for each layer type 

 

4. Training DCNN 

4.1. Gradient-based learning  

The gradient-based learning algorithm in [20] is a generalization of the back-propagation 

algorithm, which iterates to adjust the weights to minimize an error function E. Starting from an 

initial weight vector W, it updates the weights as indicated by equation (5) at each iteration, 

where  is a learning rate. 

 

       
  

  
 (5)  

 

Denoting the output and the weight vectors of the nth layer as X
n and W

n, respectively, and 

applying the chain rule, the gradient at the nth layer 
  

    is expanded as demonstrated by 

equation (6). 
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=

  

   

   

     

     

   
 (6)  

 

It is noteworthy that the product of the first two factors 
  

   

   

      makes the error signal 
  

      

used in the conventional back-propagation algorithm. In equation (6), 
   

      is the derivative of 

the activation function, and 
     

    is obtained from the input vector as listed in Table 2. 

 



Layer types Derivatives (
𝝏𝑵𝑬𝑻𝒏

𝝏𝑾𝒏   

Convolution 
     

   𝑞 𝑝     
𝑛 = ∑  𝑞 𝑖𝑆𝑛+  𝑗𝑆𝑛+  

𝑛  

   

 

Max-pooling N/A 

Fully 

connected 

 𝑛𝑒𝑡 
 

   𝑞 𝑝 
𝑛 =  𝑞

𝑛  
 

Table 2. Derivatives of NET
N w.r.t. weights 

 

The factor 
  

    at the top layer is computed through the derivative of the error with respect to 

the output, as presented in the next section. However, those of other layers should be back-

propagated from the upper layer. Therefore, each layer should compute  
  

      as described 

equation (7) to provide to the lower layer. 

 

  

     
=

  

   

   

     
=

  

   

   

     

     

     
 (7)  

 

Note that X
n-1 is the output of the (n-1)th layer as well as the input of the nth layer. In equation 

(7), 
     

      is derived from the structure of the layer and the weight vector Wn, as listed in Table 3. 

 

Layer types Derivatives (
𝝏𝑵𝑬𝑻𝒏

𝝏𝑿𝒏 𝟏  

Convolution 
 𝑛𝑒𝑡 𝑝 𝑖 𝑗 

𝑛

   𝑞 𝑖𝑆𝑛+  𝑗𝑆𝑛+  
𝑛  

=   𝑞 𝑝     
𝑛  , for all valid indices (i, j)s on output plane 

Max-pooling 

 𝑛𝑒𝑡       
 

                 
   =   

, if 

     = argmax   ̃  ̃  𝑛    𝑝 𝑖𝑆𝑛+ ̃ 𝑗𝑆𝑛+ ̃ 
𝑛    

for the output node (i, j) 

 𝑛𝑒𝑡       
 

                 
   =   , otherwise 

Fully 

connected 

 𝑛𝑒𝑡𝑝
𝑛

  𝑞
𝑛  

=   𝑞 𝑝 
𝑛  

Table 3. Derivatives of NET
N w.r.t. the input vector 

 



As is the case with the conventional back-propagation algorithm, the gradient-based learning 

algorithm trains from the top layer to the bottom layer. At each layer, it computes equation (6) to 

update the weights as equation (5); then, it computes 
  

      using equation (7) to back-propagate 

to the lower layer. 

The gradient-based learning algorithm is applicable to a neural network that is composed of 

any types of layers for which 
  

     and 
  

      can be computed as given in equations (6) and (7), 

regardless of whether the layers are homogeneous or heterogeneous. The entire network function 

is not differentiable because of the max-pooling layer. However, the network function is still 

piece-wise differentiable, which is sufficient to apply the gradient-based learning. 

There are several modes to train a neural network based on equation (5). The online mode 

training updates the weights with the gradient computed from each training sample. In contrast, 

the batch mode training first accumulates the gradients from all training samples, and then 

updates the weights with the accumulated gradient. The former is faster than the latter, but is less 

stable. On the other hand, the latter requires too much time to train a large DCNN with a large 

set of training samples. An intermediate, the mini-batch training, has a good balance between 

speed and stability. It partitions the training samples into groups, and updates the weights with 

the accumulated gradient obtained from each group. 

 

4.2. Error criteria 

Different error criteria lead to different objective functions for guiding the training process. 

Among them, the mean square error (MSE) is a popular error criterion. With a desired output D = 

(d1, d2, … , dC) for the training sample, MSE is defined as in equation (8), where   
  is the output 

of the top level layer for the cth class and C is the number of classes. 

 

 𝑀  =
 

 

∑    
  𝑑  

 
 

 
 (8)  

 



The desired output is represented as follows: If c is the true class, dc is one, otherwise, dc is zero, 

for the unipolar activation function, or -1, for the bipolar activation function. The gradient of MSE 

with respect to the output is derived as in equation (9). 

 

  𝑀  

   
 

=
   

  𝑑  

 
 (9)  

 

An alternative to MSE is the cross entropy (CE) error function. When used in conjunction with 

the softmax activation function, the CE has the form shown in equation (10). 

 

 𝐶 =  ∑𝑑   g   
  

 

 
(10)  

 

While MSE minimizes the absolute error at each output node, CE maximizes the relative size of 

the true class output with respect to the outputs of other class nodes. CE is usually combined 

with the softmax activation function. Given that the softmax is a unipolar function, the desired 

output D consists of a single one for the true class, and zeroes for all other classes. The gradient 

of CE with respect to the output is computed as shown in equation (11). 

 

  𝐶 

   
 

=  ∑𝑑 

 

  
 

 

 
(11)  

 

4.3. Weight normalization 

In order to avoid overfitting and to improve the generalization ability, we normalized the 

weights after each update. Weight normalization converts the incoming weights of each node into 

a unit vector [28]. Weight normalization of the convolution layer and the classification layer are as 

shown by equations (12) and (13), respectively. Given that the max-pooling layer does not have 

any weight, it does not require weight normalization. 



 

          
   

          
 

√∑           
  

     

 
(12)  

      
   

      
 

√∑       
  

 

 (13)  

 

There is an additional reason to normalize the weights. Unlike the sigmoid and the hyperbolic 

tangent functions, the outputs of the rectified linear and the identity activation functions are not 

bounded. Given that the network outputs affect the weight update, extreme output values can 

result in extreme weights. For this reason, the training of a DCNN with the rectified linear or the 

identity activation can be unstable. Weight normalization keeps the weights from diverging to 

extreme values. 

 

5. Further Improvement Techniques 

In order to further improve the performance and the training speed of DCNN, we applied a few 

additional techniques. Two of them are proposed in this research for the first time, whereas other 

two have been introduced in the literature. 

 

5.1. Modified MSE criteria 

A neural network-based recognizer with a large number of output classes is not easy to train 

with MSE. We attempted to train the DCNN recognizer with 520 output nodes, but our attempt 

was unsuccessful. Table 4 shows the improvement in MSE and recognition rate during the first 12 

training epochs. Although we trained in the mini-batch mode, which is much faster than the batch 

mode, the decrease of MSE as well as the growth of the recognition rate were extremely slow. 

After 12 epochs, the recognition rate was 0.22%, which is only slightly better than random 

classification rate 1/520 = 0.19%.  



The reason for the slow improvement can be found from the definition of MSE represented in 

equation (8). The desired output of the top-level layer is composed of many -1s but only a single 

one. The nodes of the hidden layers receive the signals back-propagated from all output nodes. 

The true class node sends a positive signal to cause the hidden nodes to encourage the activation 

of itself. However, the other C-1 output nodes send negative signals to cause the hidden nodes 

to discourage the activations of the other output nodes. The positive signal from the only true 

class node is not sufficiently strong to guide the training compared to the negative signals from 

the other 519 nodes. This problem is especially serious at the beginning of the training when the 

weights are not mature enough to compensate the unbalance in the strength of signals. 

 

Epochs MSE (eq.(8)) Recognition rate 

1 0.004030 0.16% 

2 0.002455 0.16% 

3 0.002107 0.17% 

4 0.002007 0.18% 

5 0.001975 0.20% 

6 0.001962 0.21% 

7 0.001955 0.21% 

8 0.001950 0.22% 

9 0.001946 0.21% 

10 0.001943 0.22% 

11 0.001941 0.22% 

12 0.001939 0.22% 

Table 4. Result of Training DCNN-based Hangul recognizer using MSE criterion 

 

To overcome this problem, we slightly modified the MSE criterion as shown by equation (14). 
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  𝑑  

 
 

 
 , where {

  =                r     a    
  =       r                        

 
(14)  

 



Equation (14) is a generalization of equation (8) that assigns coefficient ac to each class.  is an 

amplifying factor multiplied to the signal from the true class node. We can compensate the 

unbalance between the positive and the negative signals by setting  greater than one. Figure 3 

shows the growth of the recognition rates when the DCNN was trained with various amplifying 

factors. The horizontal axis represents training epochs and the vertical axis represents the 

recognition rate on the training samples. With  = 1, which makes equation (14) equivalent to 

equation (8), the increase of the recognition rate for 20 epochs was almost negligible. Training 

with large amplifying factors increased the recognition rate much faster. Large amplifying factors 

were especially helpful in the early stages of the training. 

 

 

Figure 3. Training DCNN on SERI95a by modified MSE criterion 

(The vertical axis represents recognition rate on training samples.) 

 

However, the modified MSE with a large amplifying factor changes the objective function 

presented in equation (8). It can guide the training inappropriately. Fortunately, the signal 

unbalance problem becomes less serious as the weights mature. Therefore, we assigned a large 

number to  that could sufficiently compensate the signal unbalance at the beginning of the 
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training, and then, decreased it gradually as the training proceeds. When the training ends,  was 

reduced to one, which makes equation (14) no different from equation (8). 

 

5.2. Initializing convolution masks by edge operators 

In a deep neural network, the bottom layer is the most difficult to train with the top-down 

gradient-based algorithm because of the diminishing gradient problem described in section 2.2. 

Although the gradient-based learning algorithm on DCNN is less susceptible to the diminishing 

gradient problem than other DNNs, training bottom layer from random weights is not always the 

best way. As explained in section 3, the bottom level convolution layer extracts features from the 

input image. The gradient-based algorithm can train good feature extractors even from random 

initial weights. However, starting with good initial masks can help guide better feature extraction. 

In the classical statistical recognition, researchers have achieved good performances by 

combining the contour directional feature extraction and QDF-based classification algorithms [1]. 

The set of eight directional gradient features is known as one of the best contour directional 

feature sets, and can be extracted by edge operators [29]. Inspired by the gradient feature 

extraction algorithm, we initialized the first eight convolution masks of the bottom layer with the 

8-directional edge operators shown in Figure 4. As shown in the section 6, these initial masks 

were effective in improving the overall performance. 

 

 

Figure 4. Edge operators to initialize convolution masks of the bottom layer 

 

5.3. Elastic distortion 

Many previous works reported that expanding training data set with artificially synthesized 

samples improved the performance [5][6][21]. The elastic distortion is an effective way to produce 



artificial samples from the training samples [21][30]. The distortion algorithm distorts the image 

by shifting each pixel’s coordinate according to a distortion map. We applied the algorithm in [21] 

to build the distortion map. First, it generates pairs of random numbers between -1 and 1 for the 

horizontal and vertical displacements of all pixels. Then, it convolves the displacement field with a 

Gaussian of standard deviation  to avoid drastic deformation, and normalize the displacement 

field to a norm of one. Finally, it multiplies the displacement field by a scaling factor s. In the 

experiments, we set  by four and s by one. For details, see [21]. 

In the training, we generated a distortion map whenever a new mini-batch group began and 

applied it to all the samples in the group. In preliminary experiments, this method showed better 

results than generating a new distortion map for each sample. We believe the reason is that 

generating one distortion map for each sample causes the DCNN to confuse the shape variation 

with salient information for the recognition. 

 

5.4. GPU-based parallel processing 

Accelerating training speed by GPU-based parallel processing is essential to train a DCNN-

based recognizer for a large character set [5]. The full set of Hangul contains 11,172 characters 

and 2,350 characters among them are used daily. The PE92 database contains 2,350 classes and 

the SERI95a database contains 520 classes. It takes days to train the DCNN-based Hangul 

recognizer for a single epoch on a CPU. Training for hundreds epochs on a CPU would take years. 

Recent high-end GPUs contain thousands of computing units. Composed of many nodes, 

neural networks are appropriate to exploit the benefits of massive parallel processing. We applied 

NVDIA CUDA to run the training algorithm on GPU. The improvement of the training speed 

heavily depends on the parallelism of the network structure. On a narrow network composed of a 

small number of hidden nodes, the GPU-based parallel processing demonstrates little 

improvement. However, on a broad neural network containing a large number of hidden nodes, it 

makes the training much faster. In Hangul recognition, training an epoch takes about 1.25 hours 



on GTX Titan, which is about 20 times faster than the serial algorithm written in highly optimized 

C++ codes. With GPU-based parallel processing, training a Hangul recognizer for 500 epochs 

consumes 625 hours, which is about 26 days. 

 

6. Experiments 

6.1. Experimental environment 

We evaluated the DCNN-based recognizers on the PE92 and the SERI95a databases. PE92 

contains 2,350 character classes each of which has about 100 samples. SERI95a has 520 most 

frequently used character classes and each class contains about 1000 samples. Some examples are 

presented in Figure 5. For fair evaluation, we chose the training and the test sets in the same way 

as [1]. We used every 10th sample of each class for the test and all other samples for the training. 

Thus, the training and the test sets contain 90% and 10% of total samples, respectively. 

 

 

(a) SERI95a 
(b) PE92 

Figure 5. Example images in SERI95a and PE92 databases 

 

We described two training criteria and various improvement methods in the previous sections. 

These training criteria and improvement methods can be combined in several ways. Considering 

the amount of time required to train a Hangul recognizer, testing all possible cases on the Hangul 



databases is significantly time-consuming even on a GPU. Therefore, we first tested all 

combinations on the MNIST handwritten digit database [31], which is much less time-consuming. 

Then, we tested only meaningful combinations on the two Hangul databases. 

We experimented on six computers with CPUs that varied from Q6600 2.4 GHz to ZEON E3-

1230V3 3.3 GHz. The GPUs are also varied from GTX 660Ti (1,344 CUDA cores, 2GB RAM) to GTX 

Titan (2,688 CUDA cores, 6GB RAM). For the GPU-based implementation, we used CUDA SDK v.5.5. 

In all experiments, we trained in the mini-batch mode. 

 

6.2. Numeral digit recognition (MNIST) 

The input of the digit recognizer is a 32x32 image that contains a 28x28 digit image at the 

center and four padding rows and columns at the boundary. The resolutions of the feature maps 

were decided by equation (2). The digit recognizer is composed of seven layers. The feature maps 

of each convolution layer are fully connected to all feature maps of the previous layer. The detail 

of the network structures is presented in Table 5. The DCNN has 299,882 parameters, totally. 

 

layer type 
# of feature 

maps 
feature map 

size 
window 

size 
stride 

# of 
parameters 

C1 convolution 32 28x28 5x5 1 832 

P2 max-pooling 32 14x14 2x2 2 0 

C3 Convolution 32 10x10 5x5 1 25,632 

P4 max-pooling 32 5x5 2x2 2 0 

C5 Convolution 256 1x1 5x5 1 205,056 

F6 fully connected 256 1x1 N/A N/A 65,792 

F7 fully connected 10 1x1 N/A N/A 2,570 

Table 5. Structure of digit recognizer (MNIST) 

 

We tested the two error criteria as well as the two improvement techniques described in 

sections 4.2, 5.2, and 5.3. In this experiment, we evaluated all possible eight cases. For each case, 

we trained for 1,000 epochs, which took several days on a GPU. The experiment results are 



presented in Table 6. Regarding the error criteria, MSE was slightly better than CE when we 

trained without distortion. However, using elastic distortion, CE showed better results. Overall, CE 

was slightly better than MSE in the best performance values. The elastic distortion significantly 

reduced error rates in all cases. Setting initial convolution masks by the edge operators further 

improved the recognition performance. The best performance we achieved was 99.67%, obtained 

by training with the CE criterion and elastic distortion starting from the convolution masks 

initialized by the edge operators. 

 

MSE CE 

recog. rate error rate recog. rate error rate 

baseline 99.29% 0.71% 99.22% 0.78% 

edge operators 99.31% 0.69% 99.28% 0.72% 

elastic distortion 99.51% 0.49% 99.63% 0.37% 

edge operators +  
elastic distortion 

99.65% 0.35% 99.67% 0.33% 

Table 6. Digit recognition results 

 

After we obtained the results listed in Table 6, we continued to train the best combination. The 

recognition rate increased even after the 1,000th epoch. However, the increment was not 

significant. After training for 3,000 epochs, we achieved 99.71% of recognition rate (0.29% of error 

rate). The homepage of the MNIST database lists the best performances on their database 

achieved by various methods [31]. The lowest error rate in the list is 0.23%, not far from our result 

of 0.29%. Only two systems in the list reported better results than ours. The best two results were 

achieved by committees of many DCNNs, not by single classifiers. 

 

6.3. Hangul recognition (SERI95a and PE92) 

The input of the Hangul recognizers is a 64x64 image that consists of a 60x60 Hangul image 

and four padding rows/columns. The Hangul recognizers are composed of ten layers. Similar to 

the digit recognizer, the feature maps of each convolution layer are fully connected to all feature 

maps of the previous layer. The DCNNs for the two Hangul databases are different in the number 



of nodes at the highest two layers. The details of the network structures are described in Table 7 

and Table 8. The DCNNs have a total of 1,006,728, and 1,106,184 parameters, respectively. 

 

layers type 
# of feature 

maps 
feature map 

size 
window  

size 
stride 

# of 
parameters 

C1 convolution 32 60x60 5x5 1 832 

P2 max-pooling 32 30x30 2x2 2 0 

C3 convolution 64 26x26 5x5 1 51,264 

P4 max-pooling 64 13x13 2x2 2 0 

C5 convolution 128 10x10 4x4 1 131,200 

P6 max-pooling 128 5x5 2x2 2 0 

C7 convolution 256 2x2 4x4 1 524,544 

P8 max-pooling 256 1x1 2x2 1 0 

F9 fully connected 384 1x1 N/A N/A 98,688 

F10 fully connected 520 1x1 N/A N/A 200,200 

Table 7. Structure of Hangul recognizer (SERI95a) 

 

layers type 
# of feature 

maps 
feature map 

size 
window  

size 
stride 

# of 
parameters 

C1 convolution 32 60x60 5x5 1 832 

P2 max-pooling 32 30x30 2x2 2 0 

C3 convolution 64 26x26 5x5 1 51,264 

P4 max-pooling 64 13x13 2x2 2 0 

C5 convolution 128 10x10 4x4 1 131,200 

P6 max-pooling 128 5x5 2x2 2 0 

C7 convolution 256 2x2 4x4 1 524,544 

P8 max-pooling 256 1x1 2x2 1 0 

F9 fully connected 512 1x1 N/A N/A 131,584 

F10 fully connected 2,350 1x1 N/A N/A 266,760 

Table 8. Structure of Hangul recognizer (PE92) 

 

Given that training Hangul recognizers requires a significant amount of time, and we know that 

the methods described in sections 5.2 and 5.3 are helpful in improving performance, we did not 

test all possible combinations of experiment options. Instead, we tested the improvement 

methods incrementally. For each case, we trained for 500 epochs. We applied the method 



introduced in section 5.1 to train DCNNs with the MSE criterion. The amplifying factor  was set 

to 300 when the training started, and linearly decreased to one. 

 

 

SERI95a (520 classes) PE92 (2,350 classes) 

recog. rate error rate recog. rate error rate 

A. baseline (MSE) 88.96% 11.04% 74.93% 28.72% 

B. baseline (CE) 95.55% 4.45% 91.44% 8.56% 

C. edge operators (CE) 95.78% 4.22% 91.78% 8.22% 

D. edge operators + 

elastic distortion (CE) 
95.96%  4.04% 92.92% 7.08% 

Table 9. Hangul recognition results 

 

Table 9 presents the results. Unlike the digit recognition results, the results of the MSE criterion 

are significantly inferior when compared to those of the CE criterion. We believe the reason is that 

minimizing the absolute error of each output node is inefficient in training a recognizer for 

hundreds or thousands of classes. Similar to the previous experiment, initializing convolution 

masks by the edge operators and applying elastic distortion improved the performance. In order 

to know whether the improvements are statistically significant, we carried out McNemar’s test and 

Chi-square test on the results on SERI95a database. In McNemar’s test, the pvalues of the 

improvements by cross entropy criterion (A->B), edge operator (B->C), and elastic distortion (C-

>D) were 0.00E+00, 2.45E-03, and 2.42E-06, respectively. In Chi-square test, pvalues were 

0.00E+00, 3.48E-02, and 3.48E-02. These pvalues show that the improvements are statistically 

significant. Particularly, the effect of the elastic distortion on the PE92 database was more 

remarkable than that on the SERI95a database. This is because PE92 contains more classes but 

less samples per class; therefore, the recognizer considerably suffers from a lack of training 

samples. 

 

 



Researchers Recognition methods SERI95a PE92 

Kim&Kim2001 [8] Structural matching 86.30% 82.20% 

Kang&Kim2004 [2] Structural matching 90.30% 87.70% 

Jang&Kim2002 [9] Structural matching + Post-processing 93.40% N/A 

Park, et. al. 2013 [1] MQDF 93.71% 85.99% 

Proposed DCNN 95.96% 92.92% 

Table 10. Recognition rates achieved on SERI95a and PE92 databases 

 

Table 10 compares our results with previous best works on SERI95a and PE92. The elastic 

distortion was not used listed in the previous works in Table 10. As underlined in Table 10, the 

conventional best performances on SERI95a and PE92 databases were 93.71% and 87.70%, 

respectively. Surprisingly, most of the results in Table 9 are better than the conventional best 

performances. Specifically, our best performances are noticeably higher than the two conventional 

best results. Compared to the previous best records of 93.71% on SERI95a and 87.70% on PE92, 

our results provided improvements of 2.25% and 5.22%, respectively. These improvements lead to 

error reduction rates of 35.71% on SERI95a and 42.44% on PE92, relative to the previous lowest 

error rates. 

 

7. Conclusion 

In spite of the advances in recognition technology, handwritten Hangul recognition (HHR) has 

remained largely unsolved due to the presence of many confusing characters and excessive 

cursiveness in Hangul handwritings. On the other hand, the DCNN has provided outstanding 

performances in many recognition fields. However, before now, the DCNN has not been applied 

to recognize handwritten Hangul. In this research, we built handwritten Hangul recognizers using 

DCNNs and evaluated their performances on the SERI95a and the PE92 databases. Then, we 

improved the training speed and the recognition performance through GPU-based parallel 

processing and elastic distortion. 



We also proposed two new improvement techniques. The modified MSE error criterion 

significantly improved the training efficiency of the Hangul recognizer by compensating the 

unbalance between positive and negative signals from the output nodes. Additionally, we 

achieved further improvement by initializing bottom level convolution masks by edge operators. 

Training convolution masks starting from good initial weights was helpful in obtaining good 

feature extractors. 

In the experiments, we achieved recognition rates 95.96% on SERI95a and 92.92% on PE92, 

which are significantly higher than conventional best records. In handwritten digit recognition, and 

we achieved 99.71% recognition rate on the MNIST database. 
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