
Handwritten Hangul recognition using deep convolutional

neural networks

In-Jung Kim1 and Xiaohui Xie2

1School of CSEE, Handong Global University

791-708, Heunghae-eup, Bukgu, Pohang, Gyeongbuk, Republic of Korea

2Department of Computer Science, School of Information and Computer Science

University of California, 1 East Peltason Drive, Irvine, CA 92697, U.S.A.

Email: 1ijkim@handong.edu, 2xhx@ics.uci.edu

Tel: +82-54-260-1385, FAX: +82-54-260-1976

Abstract

In spite of the advances in recognition technology, handwritten Hangul recognition (HHR) remains

largely unsolved due to the presence of many confusing characters and excessive cursiveness in

Hangul handwritings. Even the best existing recognizers do not lead to satisfactory performance

for practical applications, and have much lower performance than those developed for Chinese or

alpha-numeric characters. To improve the performance of HHR, here we develop a new type of

recognizers based on deep neural networks, which have recently shown excellent performance in

many pattern recognition and machine learning problems, but have not been attempted for HHR.

We build our Hangul recognizers based on deep convolutional neural networks, and propose

several novel techniques to improve the performance and training speed of the networks. We

systematically evaluated the performance of our recognizers on two public Hangul image

databases, SERI95a and PE92. Using our framework, we were able to achieve a recognition rate of

95.96% on SERI95a, and 92.92% on PE92. Compared to the previous best records of 93.71% on

SERI95a and 87.70% on PE92, our results provided improvements of 2.25% and 5.22%, respectively.

These improvements lead to error reduction rates of 35.71% on SERI95a and 42.44% on PE92,

relative to the previous lowest error rates. Such improvement fills a significant gap between

practical requirement and the actual performance of Hangul recognizers.

Keywords: handwritten Hangul recognition, character recognition, deep convolutional neural

network, deep learning, gradient-based learning

mailto:ijkim@handong.edu
mailto:xhx@ics.uci.edu

1. Introduction

Character recognition technology has been developed for decades. For alpha-numeric and

Chinese characters, recognition technologies are mature enough to achieve high accuracy.

However, in handwritten Hangul recognition (HHR), even the best recognizers cannot yield

satisfactory performance for practical applications. The difficulty of handwritten Hangul

recognition is mainly caused by a multitude of confusing characters and excessive cursiveness in

Hangul handwritings. Figure 1 shows some examples of Hangul characters that are very similar

and are often confused by recognizers. Hangul contains numerous such confusing characters.

Moreover, shape variation in cursive handwritings makes it even harder to distinguish them. On

the SERI95a and the PE92 databases, two most popular public Hangul image databases, the state-

of-the-art performances in terms of recognition rate are merely 93.71% and 87.70%, respectively

[1][2]. Such poor performance has discouraged the utilization of HHR in practical systems.

Figure 1. Examples of Hangul characters

On the other hand, in recent years, deep neural networks (DNN) have been highlighted in

machine learning and pattern recognition fields. Composed of many layers, DNNs can model

much more complicated functions than shallow neural networks [3]. The availability of large scale

training data and advances in computing technologies have made the training of such deep

networks possible, leading to a widespread adoption of DNNs in many problem domains. For

example, deep convolutional neural networks (DCNNs) have shown outstanding performance in

many image recognition fields, beating benchmark performances by large margins [4][5][6][7].

However, although DNN has been employed for many pattern recognition systems, it has not

been attempted for HHR. We reasoned that DNN could be especially beneficial for HHR for a

number of reasons. First, DNN performs features learning and classification within a unified

framework. Since features are automatically learned directly from the data themselves, it might be

possible to extract subtle features to separate confusing characters in Hangul handwritings.

Second, DNN is very good at extracting high-level features. In particular, the convolution and

max-pooling layers used by DCNN have been shown to be very effective in handling shape

variations, which will likely be key in handling the excessive cursiveness in Hangul writings.

Therefore, DCNN seem to be well-posed to overcome the two main difficulties in HHR.

In this research, we build handwritten Hangul recognizers using DCNNs. Then, we improve the

performance and the training speed of the recognizers by applying a few improvement

techniques. Using the system we built, we are able to achieve a recognition rate of 95.26% on

SERI95a and 92.92% on PE92. Compared to the previous best records of 93.71% on SERI95a and

87.70% on PE92, our results provided improvements of 2.25% and 5.22%, respectively. These

improvements lead to error reduction rates of 35.71% on SERI95a and 42.44% on PE92, relative to

the previous lowest error rates. Such improvement fills a significant portion of the large gap

between practical requirement and the actual performance of Hangul recognizers.

The rest of this paper is organized as follows: In Section 2, we briefly review previous works on

HHR and deep learning. In Sections 3 and 4, we describe the DCNN-based Hangul recognizer and

the training algorithm. In Section 5, we propose several techniques to further improve

performance and training speed. In Section 6, we present experimental results on two popular

HHR datasets. Conclusions are provided in Section 7.

2. Related Works

2.1. Handwritten Hangul recognition

Character recognition methods can be generally grouped into two categories: structural and

statistical. The structural method describes the input character as strokes or contour segments,

and identifies the class by matching with the structural models of candidate classes. On the other

hand, the statistical method represents the character image as a feature vector, and classifies the

feature vector using statistical methodologies. Among them, statistical methods are more widely

used in practical systems because they are easy to build and are effective in recognizing many

character sets, including Chinese characters. However, unlike handwritten Chinese character

recognition (HCCR), structural methods outperformed statistical methods in HHR for a long time.

We believe the reason is that, in the early days, the statistical methods were insufficient to deal

with the multitude of confusing characters and the excessive cursiveness in Hangul handwritings.

Kim and Kim proposed a structural method based on hierarchical random graph representation

[8]. Given a character image, they extracted strokes and represented them onto an attributed

graph, which is matched with character models using a bottom-up matching algorithm. Kang and

Kim improved [8] by modeling between-stroke relationships [2]. They extended the hierarchical

random graph in [8] by adding another type of nodes to represent relationships between strokes.

Then, they matched those nodes with relationships among input strokes. Jang proposed a post-

processing method for the structural recognizers in [8] and [2] to improve discrimination ability [9].

The post-processor consists of a set of pair-wise discriminators, each of which is specialized for a

pair of graphemes with similar shapes. To build each pair-wise discriminator, they chose parts that

separate the character pair, and then, applied statistical methods focusing on those parts. These

systems were evaluated on two public handwritten Hangul image databases: SERI95a1 and PE92

1 SERI95a is also known as KU-1.

[10][11]. The best performances on SERI95a and PE92 achieved by the structural methods were

93.4% reported in [9] and 87.7% reported in [2], respectively.

In the early days of HHR, researchers attempted to use statistical methods to recognize

handwritten Hangul [12][13][14]. However, the performance of those methods was much poorer

than that of the structural methods, or it is hard to compare their performance to that of other

methods because it was measured on small-size private datasets. As a result, statistical methods

were not frequently used in HHR.

Meanwhile, statistical methods have become the mainstream approach in HCCR and have been

improved significantly. Recently, Park et al. applied state-of-the-art statistical methods to HHR and

evaluated their performance [1]. Combining non-linear shape normalization, the gradient feature

extraction, and the modified quadratic discriminant function (MQDF) classifier, they achieved

much better results than the early statistical recognizers. Their best performances were 93.71% on

SERI95a and 85.99% on PE92, which are comparable to the performances of the structural

recognizers. Specially, the recognition rate 93.71% on SERI95a is even higher than the best result

of the structural method, 93.4%. Moreover, it is likely that the performance of statistical methods

can be further improved when more training data are available [15]. However, at present neither

the structural method nor the statistical method can provide a performance level high enough for

practical applications. Consequently, handwritten Hangul recognition remains an unsolved

problem.

2.2. Deep neural networks

For the past few years, DNNs have produced outstanding results in machine learning and

pattern recognition fields. Composed of many layers, DNNs are much more efficient at

representing highly varying nonlinear functions than shallow neural networks [3]. An additional

reason for the good performance of DNNs is that DNNs enable integrated training of feature

extractors and classifiers. Unlike conventional classifiers, most DNNs accept raw images as input,

and do not require separate feature extraction or preprocessing, except for size normalization.

The low- and middle-level DNN layers extract and abstract the feature from the input image,

while high-level layers perform classification. In this sense, a DNN can be viewed as a unified

framework that integrates all modules within a single network that can be systematically

optimized with respect to a single objective function. Such integrated training can often lead to

better performance than those based on independent training of each module.

Despite their appealing properties in extracting and representing features, training DNNs is,

however, computationally rather challenging. Back-propagation is the dominant algorithm used in

training neural networks, where the error signals in the output layer of the network are

propagated backward layer-by-layer from the output to the input layers to guide the update of

connection weights. The back-propagation algorithm performs poorly when the number of hidden

layers is large due to the so called “diminishing gradient problem” - as the error signals

propagate backwards, they become smaller and smaller, and eventually become too small to

guide the update of weights in the first a few layers. The diminishing gradient problem is a major

obstacle in training DNNs.

However, in 2006, Hinton, et al. proposed a greedy layer-wise training algorithm to train the

deep belief network (DBN) [16]. They first pre-trained the weights through an unsupervised

training algorithm starting from the bottommost layer. Then, they fine-tuned the weights to

minimize the classification error using a supervised training algorithm [17]. Their work made a

breakthrough that vitalized deep learning research. Further, the idea of the unsupervised pre-

training was applied to other neural networks such as the stacked auto-encoder [18].

Exceptionally, DCNNs can be trained with gradient-based learning algorithm without pre-

training. The network structure was proposed by Fukushima in 1980 [19]. However, it has not

been widely used because the training algorithm was not easy to use. In 1990s, LeCun et al.

applied a gradient-based learning algorithm to DCNN and obtained successful results [20]. After

that, researchers further improved DCNN and reported good results in image recognition [21].

Recently, Cireşan et al. applied multi-column DCNNs to recognize digits, alpha-numerals, Chinese

characters, traffic signs, and object images [5][6]. They reported excellent results and surpassed

conventional best records on many public databases, including MNIST digit image database, NIST

SD19 alphanumeric character image database, and CASIA Chinese character image database.

In addition to the common advantages of deep neural networks, DCNN has some extra nice

properties: It was designed to imitate human visual processing, and it has highly optimized

structures to process 2D images. Further, DCNN can effectively learn the extraction and

abstraction of 2D features. Particularly, the max-pooling layer of DCNN is very effective in

absorbing shape variations. Moreover, composed of sparse connection with tied weights, DCNN

has significantly fewer parameters than a fully connected network of similar size. Most of all,

DCNN is trainable with the gradient-based learning algorithm, and suffers less from the

diminishing gradient problem. Given that the gradient-based algorithm trains the whole network

to minimize an error criterion directly, DCNN can produce highly optimized weights.

However, before now, DCNN has not been applied for recognizing handwritten Hangul

characters. Several difficulties discourage the swift application of DCNNs in practical situations.

Because of its complexity, implementing and debugging DCNN is time-consuming and difficult.

Moreover, training a large DCNN requires heavy computation. For example, Cireşan et al.

estimated that training a DCNN to recognize 3,755 Chinese characters on a single CPU would

take more than one year [5]. Fortunately, the problem of the heavy computation can be partially

alleviated by training with the GPU-based massive parallel processing [5][21].

3. The DCNN-based Hangul Recognizer

3.1. Overall structure

Figure 2 shows the overall structure of the DCNN. Each layer receives the output of the

previous layer as its input, and passes the output to the next layer. We built the DCNN by

combining three types of layers: convolution, max-pooling, and classification. The low- and

middle- level layers are composed of convolution and max-pooling layers alternately. The odd

numbered layers, including the bottom layer, are composed of convolution layers, and the even

numbered layers are composed of max-pooling layers. The nodes on the convolution layers and

max-pooling layers are grouped into 2D planes, also called feature maps. Each plane is connected

to one or more planes of the previous layer. Each node on a plane is connected to a small region

of each connected plan in the previous layer. The node of the convolution layer extracts features

from the input image (or input 2D feature maps) through the convolution operation on the input

nodes, whereas the node of the max-pooling layer abstracts the features by propagating the

maximum value among the input nodes.

Figure 2. The overall architecture of the DCNN used by us, which includes an input layer, multiple

alternating convolution and max-pooling layers, and two fully connected classification layers. N

denotes the total number of layers in the network.

As the features are propagated to higher level layers, they are abstracted and combined to

produce higher-level features. Meanwhile, the size of the feature map is reduced. In other words,

the higher the level, the smaller the size of the feature map. When the resolution of the feature

map becomes 1x1 at a high-level layer, the features are passed onto the classification layers. The

classification layers are placed at the top of the DCNN. They decide the classification result by

analyzing the features extracted and abstracted by the preceding layers. For the classification layer,

we applied the fully connected network because it is popular and has provided good

performances in many recent works [5][21]. Each node of the top layer computes the score of a

class. When the propagation finishes, the recognizer outputs the class with the highest score as

the classification result.

3.2. Convolution layers

The convolution layer extracts features through the convolution operation on the input image

or the feature maps of the previous layer. Each output plane is connected to one or more input

planes. Each output node is connected to the input nodes in a small window. The horizontal and

vertical distance between two adjacent windows is called stride. Denoting the stride by S, a node

at (i, j) is connected to the input nodes in an MxM window whose upper left corner is at (iS, jS).

Each node has a set of weights to connect itself to the input nodes. All nodes on a plane share

the same weights.

Let
 denote the activation of a node at coordinate (i,j) on the pth plane of the nth layer

and
 denote the set of input planes connected to plane p at layer n. As all nodes on a plane

share the same set of weights, the weight of the connection from
 to

 is

simply denoted by
 , where , where Mn is the width and height of the

convolution mask that connects layer n-1 and layer n. The output of each node is computed as in

equation (1), where
 is a bias, and f is an activation function.

 = 𝑓(∑ ∑

0≤ ≤𝑀 ∈𝐶𝑝

+
) (1)

The first term in the argument of the activation function is a convolution operation with a mask

composed of the shared weights. From this point of view, the nodes on a plane compute the

same feature extracted from different locations. When the stride is set to one, the convolution

layer extracts features from all possible coordinates. In this case, the convolution layer does not

miss important features even if the positions of the features are shifted.

It is worth to note that equation (1) convolutes multiple input feature maps, thereby enabling

the convolution layers to extract higher-level features from multiple lower-level features. The size

of the output feature map after convolution is derived based on the size of the input feature map

as shown in equation (2):

 𝑖𝑑𝑡ℎ = ⌊ 𝑖𝑑𝑡ℎ + /𝑆 ⌋

ℎ𝑒𝑖𝑔ℎ𝑡 = ⌊ ℎ𝑒𝑖𝑔ℎ𝑡 + /𝑆 ⌋
(2)

3.3. Max-pooling layers

The max-pooling layer abstracts the feature by pooling the input features. The output feature

maps have one-to-one correspondence with the input feature maps. A node at (i, j) is connected

to the input nodes in an MxM window whose upper left corner is at (iS, jS). Each node selects the

maximum value among the input nodes as indicated by equation (3). Note that equation (3) does

not require any weight.

 = 𝑓 (max

0≤ ≤𝑀

)
(3)

The average-pooling, frequently used for down-sampling, is an alternative to the max-pooling.

However, a previous study reported that max-pooling produces better results than average-

pooling [22]. Similar to the case of the convolution layer, the resolution of the output feature map

is decided by equation (2). The stride of the max-pooling layer is often set to two. In this case,

the max-pooling layer reduces the size of the feature map approximately by a quarter. The max-

pooling layer plays an important role: It absorbs shape variation or distortion. In handwritten

characters, the positions of salient features often shift. The max-pooling node propagates only the

maximum value in a window, ignoring the offset. Therefore, the max-pooling node catches the

feature but ignores small displacements within the window. Given that a DCNN has a collection of

max-pooling layers, each of which absorbs small positional shifts, the DCNN does not require a

separate shape normalization step to regulate shape variation. Moreover, the max-pooling layers

in a DCNN absorb shape variation in phases, which is desirable to minimize information loss.

3.4. Classification layers

Classification layers are placed at the top of the DCNN. They compute the score of each class

from the features extracted and abstracted by the preceding layers. The size of the feature map is

reduced to 1x1 at the last feature extraction or abstraction layer. Then, the feature maps are

treated as scalar values and passed to the first fully connected layer. We used a fully connected

feedforward network for the classification. The output of each node is computed as shown by

equation (4), where the 2D coordinate (i,j) on each feature map is omitted because each feature

map is composed of only one node in the final classification layers.

 = 𝑓 (∑

+
) (4)

3.5. Activation functions

Various types of activation functions are used in neural networks. In this research, we

implemented sigmoid[23], hyperbolic tangent[24], softmax[25], rectified linear[26], and identity

functions. In our preliminary experiments, the combination listed in Table 1 produced best results.

Therefore we used this particular combination in our experiments.

Layer types Activation functions

Convolution layers identity

Max-pooling layers rectified linear

Classification layers (hidden layer) rectified linear

Classification layers (output layer) tanh (for MSE criterion) or

softmax (for cross entropy criterion)

Table 1. Activation functions for each layer type

4. Training DCNN

4.1. Gradient-based learning

The gradient-based learning algorithm in [20] is a generalization of the back-propagation

algorithm, which iterates to adjust the weights to minimize an error function E. Starting from an

initial weight vector W, it updates the weights as indicated by equation (5) at each iteration,

where  is a learning rate.

 (5)

Denoting the output and the weight vectors of the nth layer as X
n and W

n, respectively, and

applying the chain rule, the gradient at the nth layer

 is expanded as demonstrated by

equation (6).

=

=

 (6)

It is noteworthy that the product of the first two factors

 makes the error signal

used in the conventional back-propagation algorithm. In equation (6),

 is the derivative of

the activation function, and

 is obtained from the input vector as listed in Table 2.

Layer types Derivatives (
𝝏𝑵𝑬𝑻𝒏

𝝏𝑾𝒏

Convolution

 𝑞 𝑝
𝑛 = ∑ 𝑞 𝑖𝑆𝑛+ 𝑗𝑆𝑛+

𝑛

Max-pooling N/A

Fully

connected

 𝑛𝑒𝑡

 𝑞 𝑝
𝑛 = 𝑞

𝑛

Table 2. Derivatives of NET
N w.r.t. weights

The factor

 at the top layer is computed through the derivative of the error with respect to

the output, as presented in the next section. However, those of other layers should be back-

propagated from the upper layer. Therefore, each layer should compute

 as described

equation (7) to provide to the lower layer.

=

=

 (7)

Note that X
n-1 is the output of the (n-1)th layer as well as the input of the nth layer. In equation

(7),

 is derived from the structure of the layer and the weight vector Wn, as listed in Table 3.

Layer types Derivatives (
𝝏𝑵𝑬𝑻𝒏

𝝏𝑿𝒏 𝟏

Convolution
 𝑛𝑒𝑡 𝑝 𝑖 𝑗

𝑛

 𝑞 𝑖𝑆𝑛+ 𝑗𝑆𝑛+
𝑛

= 𝑞 𝑝
𝑛 , for all valid indices (i, j)s on output plane

Max-pooling

 𝑛𝑒𝑡

 =

, if

 = argmax ̃ ̃ 𝑛 𝑝 𝑖𝑆𝑛+ ̃ 𝑗𝑆𝑛+ ̃
𝑛

for the output node (i, j)

 𝑛𝑒𝑡

 = , otherwise

Fully

connected

 𝑛𝑒𝑡𝑝
𝑛

 𝑞
𝑛

= 𝑞 𝑝
𝑛

Table 3. Derivatives of NET
N w.r.t. the input vector

As is the case with the conventional back-propagation algorithm, the gradient-based learning

algorithm trains from the top layer to the bottom layer. At each layer, it computes equation (6) to

update the weights as equation (5); then, it computes

 using equation (7) to back-propagate

to the lower layer.

The gradient-based learning algorithm is applicable to a neural network that is composed of

any types of layers for which

 and

 can be computed as given in equations (6) and (7),

regardless of whether the layers are homogeneous or heterogeneous. The entire network function

is not differentiable because of the max-pooling layer. However, the network function is still

piece-wise differentiable, which is sufficient to apply the gradient-based learning.

There are several modes to train a neural network based on equation (5). The online mode

training updates the weights with the gradient computed from each training sample. In contrast,

the batch mode training first accumulates the gradients from all training samples, and then

updates the weights with the accumulated gradient. The former is faster than the latter, but is less

stable. On the other hand, the latter requires too much time to train a large DCNN with a large

set of training samples. An intermediate, the mini-batch training, has a good balance between

speed and stability. It partitions the training samples into groups, and updates the weights with

the accumulated gradient obtained from each group.

4.2. Error criteria

Different error criteria lead to different objective functions for guiding the training process.

Among them, the mean square error (MSE) is a popular error criterion. With a desired output D =

(d1, d2, … , dC) for the training sample, MSE is defined as in equation (8), where
 is the output

of the top level layer for the cth class and C is the number of classes.

 𝑀 =

∑
 𝑑

 (8)

The desired output is represented as follows: If c is the true class, dc is one, otherwise, dc is zero,

for the unipolar activation function, or -1, for the bipolar activation function. The gradient of MSE

with respect to the output is derived as in equation (9).

 𝑀

=

 𝑑

 (9)

An alternative to MSE is the cross entropy (CE) error function. When used in conjunction with

the softmax activation function, the CE has the form shown in equation (10).

 𝐶 = ∑𝑑 g

(10)

While MSE minimizes the absolute error at each output node, CE maximizes the relative size of

the true class output with respect to the outputs of other class nodes. CE is usually combined

with the softmax activation function. Given that the softmax is a unipolar function, the desired

output D consists of a single one for the true class, and zeroes for all other classes. The gradient

of CE with respect to the output is computed as shown in equation (11).

 𝐶

= ∑𝑑

(11)

4.3. Weight normalization

In order to avoid overfitting and to improve the generalization ability, we normalized the

weights after each update. Weight normalization converts the incoming weights of each node into

a unit vector [28]. Weight normalization of the convolution layer and the classification layer are as

shown by equations (12) and (13), respectively. Given that the max-pooling layer does not have

any weight, it does not require weight normalization.

√∑

(12)

√∑

 (13)

There is an additional reason to normalize the weights. Unlike the sigmoid and the hyperbolic

tangent functions, the outputs of the rectified linear and the identity activation functions are not

bounded. Given that the network outputs affect the weight update, extreme output values can

result in extreme weights. For this reason, the training of a DCNN with the rectified linear or the

identity activation can be unstable. Weight normalization keeps the weights from diverging to

extreme values.

5. Further Improvement Techniques

In order to further improve the performance and the training speed of DCNN, we applied a few

additional techniques. Two of them are proposed in this research for the first time, whereas other

two have been introduced in the literature.

5.1. Modified MSE criteria

A neural network-based recognizer with a large number of output classes is not easy to train

with MSE. We attempted to train the DCNN recognizer with 520 output nodes, but our attempt

was unsuccessful. Table 4 shows the improvement in MSE and recognition rate during the first 12

training epochs. Although we trained in the mini-batch mode, which is much faster than the batch

mode, the decrease of MSE as well as the growth of the recognition rate were extremely slow.

After 12 epochs, the recognition rate was 0.22%, which is only slightly better than random

classification rate 1/520 = 0.19%.

The reason for the slow improvement can be found from the definition of MSE represented in

equation (8). The desired output of the top-level layer is composed of many -1s but only a single

one. The nodes of the hidden layers receive the signals back-propagated from all output nodes.

The true class node sends a positive signal to cause the hidden nodes to encourage the activation

of itself. However, the other C-1 output nodes send negative signals to cause the hidden nodes

to discourage the activations of the other output nodes. The positive signal from the only true

class node is not sufficiently strong to guide the training compared to the negative signals from

the other 519 nodes. This problem is especially serious at the beginning of the training when the

weights are not mature enough to compensate the unbalance in the strength of signals.

Epochs MSE (eq.(8)) Recognition rate

1 0.004030 0.16%

2 0.002455 0.16%

3 0.002107 0.17%

4 0.002007 0.18%

5 0.001975 0.20%

6 0.001962 0.21%

7 0.001955 0.21%

8 0.001950 0.22%

9 0.001946 0.21%

10 0.001943 0.22%

11 0.001941 0.22%

12 0.001939 0.22%

Table 4. Result of Training DCNN-based Hangul recognizer using MSE criterion

To overcome this problem, we slightly modified the MSE criterion as shown by equation (14).

 𝑀 =

∑
 𝑑

 , where {

 = r a
 = r

(14)

Equation (14) is a generalization of equation (8) that assigns coefficient ac to each class.  is an

amplifying factor multiplied to the signal from the true class node. We can compensate the

unbalance between the positive and the negative signals by setting  greater than one. Figure 3

shows the growth of the recognition rates when the DCNN was trained with various amplifying

factors. The horizontal axis represents training epochs and the vertical axis represents the

recognition rate on the training samples. With  = 1, which makes equation (14) equivalent to

equation (8), the increase of the recognition rate for 20 epochs was almost negligible. Training

with large amplifying factors increased the recognition rate much faster. Large amplifying factors

were especially helpful in the early stages of the training.

Figure 3. Training DCNN on SERI95a by modified MSE criterion

(The vertical axis represents recognition rate on training samples.)

However, the modified MSE with a large amplifying factor changes the objective function

presented in equation (8). It can guide the training inappropriately. Fortunately, the signal

unbalance problem becomes less serious as the weights mature. Therefore, we assigned a large

number to  that could sufficiently compensate the signal unbalance at the beginning of the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 1011121314151617181920

1 (MSE)

100

200

300

training, and then, decreased it gradually as the training proceeds. When the training ends,  was

reduced to one, which makes equation (14) no different from equation (8).

5.2. Initializing convolution masks by edge operators

In a deep neural network, the bottom layer is the most difficult to train with the top-down

gradient-based algorithm because of the diminishing gradient problem described in section 2.2.

Although the gradient-based learning algorithm on DCNN is less susceptible to the diminishing

gradient problem than other DNNs, training bottom layer from random weights is not always the

best way. As explained in section 3, the bottom level convolution layer extracts features from the

input image. The gradient-based algorithm can train good feature extractors even from random

initial weights. However, starting with good initial masks can help guide better feature extraction.

In the classical statistical recognition, researchers have achieved good performances by

combining the contour directional feature extraction and QDF-based classification algorithms [1].

The set of eight directional gradient features is known as one of the best contour directional

feature sets, and can be extracted by edge operators [29]. Inspired by the gradient feature

extraction algorithm, we initialized the first eight convolution masks of the bottom layer with the

8-directional edge operators shown in Figure 4. As shown in the section 6, these initial masks

were effective in improving the overall performance.

Figure 4. Edge operators to initialize convolution masks of the bottom layer

5.3. Elastic distortion

Many previous works reported that expanding training data set with artificially synthesized

samples improved the performance [5][6][21]. The elastic distortion is an effective way to produce

artificial samples from the training samples [21][30]. The distortion algorithm distorts the image

by shifting each pixel’s coordinate according to a distortion map. We applied the algorithm in [21]

to build the distortion map. First, it generates pairs of random numbers between -1 and 1 for the

horizontal and vertical displacements of all pixels. Then, it convolves the displacement field with a

Gaussian of standard deviation  to avoid drastic deformation, and normalize the displacement

field to a norm of one. Finally, it multiplies the displacement field by a scaling factor s. In the

experiments, we set  by four and s by one. For details, see [21].

In the training, we generated a distortion map whenever a new mini-batch group began and

applied it to all the samples in the group. In preliminary experiments, this method showed better

results than generating a new distortion map for each sample. We believe the reason is that

generating one distortion map for each sample causes the DCNN to confuse the shape variation

with salient information for the recognition.

5.4. GPU-based parallel processing

Accelerating training speed by GPU-based parallel processing is essential to train a DCNN-

based recognizer for a large character set [5]. The full set of Hangul contains 11,172 characters

and 2,350 characters among them are used daily. The PE92 database contains 2,350 classes and

the SERI95a database contains 520 classes. It takes days to train the DCNN-based Hangul

recognizer for a single epoch on a CPU. Training for hundreds epochs on a CPU would take years.

Recent high-end GPUs contain thousands of computing units. Composed of many nodes,

neural networks are appropriate to exploit the benefits of massive parallel processing. We applied

NVDIA CUDA to run the training algorithm on GPU. The improvement of the training speed

heavily depends on the parallelism of the network structure. On a narrow network composed of a

small number of hidden nodes, the GPU-based parallel processing demonstrates little

improvement. However, on a broad neural network containing a large number of hidden nodes, it

makes the training much faster. In Hangul recognition, training an epoch takes about 1.25 hours

on GTX Titan, which is about 20 times faster than the serial algorithm written in highly optimized

C++ codes. With GPU-based parallel processing, training a Hangul recognizer for 500 epochs

consumes 625 hours, which is about 26 days.

6. Experiments

6.1. Experimental environment

We evaluated the DCNN-based recognizers on the PE92 and the SERI95a databases. PE92

contains 2,350 character classes each of which has about 100 samples. SERI95a has 520 most

frequently used character classes and each class contains about 1000 samples. Some examples are

presented in Figure 5. For fair evaluation, we chose the training and the test sets in the same way

as [1]. We used every 10th sample of each class for the test and all other samples for the training.

Thus, the training and the test sets contain 90% and 10% of total samples, respectively.

(a) SERI95a
(b) PE92

Figure 5. Example images in SERI95a and PE92 databases

We described two training criteria and various improvement methods in the previous sections.

These training criteria and improvement methods can be combined in several ways. Considering

the amount of time required to train a Hangul recognizer, testing all possible cases on the Hangul

databases is significantly time-consuming even on a GPU. Therefore, we first tested all

combinations on the MNIST handwritten digit database [31], which is much less time-consuming.

Then, we tested only meaningful combinations on the two Hangul databases.

We experimented on six computers with CPUs that varied from Q6600 2.4 GHz to ZEON E3-

1230V3 3.3 GHz. The GPUs are also varied from GTX 660Ti (1,344 CUDA cores, 2GB RAM) to GTX

Titan (2,688 CUDA cores, 6GB RAM). For the GPU-based implementation, we used CUDA SDK v.5.5.

In all experiments, we trained in the mini-batch mode.

6.2. Numeral digit recognition (MNIST)

The input of the digit recognizer is a 32x32 image that contains a 28x28 digit image at the

center and four padding rows and columns at the boundary. The resolutions of the feature maps

were decided by equation (2). The digit recognizer is composed of seven layers. The feature maps

of each convolution layer are fully connected to all feature maps of the previous layer. The detail

of the network structures is presented in Table 5. The DCNN has 299,882 parameters, totally.

layer type
of feature

maps
feature map

size
window

size
stride

of
parameters

C1 convolution 32 28x28 5x5 1 832

P2 max-pooling 32 14x14 2x2 2 0

C3 Convolution 32 10x10 5x5 1 25,632

P4 max-pooling 32 5x5 2x2 2 0

C5 Convolution 256 1x1 5x5 1 205,056

F6 fully connected 256 1x1 N/A N/A 65,792

F7 fully connected 10 1x1 N/A N/A 2,570

Table 5. Structure of digit recognizer (MNIST)

We tested the two error criteria as well as the two improvement techniques described in

sections 4.2, 5.2, and 5.3. In this experiment, we evaluated all possible eight cases. For each case,

we trained for 1,000 epochs, which took several days on a GPU. The experiment results are

presented in Table 6. Regarding the error criteria, MSE was slightly better than CE when we

trained without distortion. However, using elastic distortion, CE showed better results. Overall, CE

was slightly better than MSE in the best performance values. The elastic distortion significantly

reduced error rates in all cases. Setting initial convolution masks by the edge operators further

improved the recognition performance. The best performance we achieved was 99.67%, obtained

by training with the CE criterion and elastic distortion starting from the convolution masks

initialized by the edge operators.

MSE CE

recog. rate error rate recog. rate error rate

baseline 99.29% 0.71% 99.22% 0.78%

edge operators 99.31% 0.69% 99.28% 0.72%

elastic distortion 99.51% 0.49% 99.63% 0.37%

edge operators +
elastic distortion

99.65% 0.35% 99.67% 0.33%

Table 6. Digit recognition results

After we obtained the results listed in Table 6, we continued to train the best combination. The

recognition rate increased even after the 1,000th epoch. However, the increment was not

significant. After training for 3,000 epochs, we achieved 99.71% of recognition rate (0.29% of error

rate). The homepage of the MNIST database lists the best performances on their database

achieved by various methods [31]. The lowest error rate in the list is 0.23%, not far from our result

of 0.29%. Only two systems in the list reported better results than ours. The best two results were

achieved by committees of many DCNNs, not by single classifiers.

6.3. Hangul recognition (SERI95a and PE92)

The input of the Hangul recognizers is a 64x64 image that consists of a 60x60 Hangul image

and four padding rows/columns. The Hangul recognizers are composed of ten layers. Similar to

the digit recognizer, the feature maps of each convolution layer are fully connected to all feature

maps of the previous layer. The DCNNs for the two Hangul databases are different in the number

of nodes at the highest two layers. The details of the network structures are described in Table 7

and Table 8. The DCNNs have a total of 1,006,728, and 1,106,184 parameters, respectively.

layers type
of feature

maps
feature map

size
window

size
stride

of
parameters

C1 convolution 32 60x60 5x5 1 832

P2 max-pooling 32 30x30 2x2 2 0

C3 convolution 64 26x26 5x5 1 51,264

P4 max-pooling 64 13x13 2x2 2 0

C5 convolution 128 10x10 4x4 1 131,200

P6 max-pooling 128 5x5 2x2 2 0

C7 convolution 256 2x2 4x4 1 524,544

P8 max-pooling 256 1x1 2x2 1 0

F9 fully connected 384 1x1 N/A N/A 98,688

F10 fully connected 520 1x1 N/A N/A 200,200

Table 7. Structure of Hangul recognizer (SERI95a)

layers type
of feature

maps
feature map

size
window

size
stride

of
parameters

C1 convolution 32 60x60 5x5 1 832

P2 max-pooling 32 30x30 2x2 2 0

C3 convolution 64 26x26 5x5 1 51,264

P4 max-pooling 64 13x13 2x2 2 0

C5 convolution 128 10x10 4x4 1 131,200

P6 max-pooling 128 5x5 2x2 2 0

C7 convolution 256 2x2 4x4 1 524,544

P8 max-pooling 256 1x1 2x2 1 0

F9 fully connected 512 1x1 N/A N/A 131,584

F10 fully connected 2,350 1x1 N/A N/A 266,760

Table 8. Structure of Hangul recognizer (PE92)

Given that training Hangul recognizers requires a significant amount of time, and we know that

the methods described in sections 5.2 and 5.3 are helpful in improving performance, we did not

test all possible combinations of experiment options. Instead, we tested the improvement

methods incrementally. For each case, we trained for 500 epochs. We applied the method

introduced in section 5.1 to train DCNNs with the MSE criterion. The amplifying factor  was set

to 300 when the training started, and linearly decreased to one.

SERI95a (520 classes) PE92 (2,350 classes)

recog. rate error rate recog. rate error rate

A. baseline (MSE) 88.96% 11.04% 74.93% 28.72%

B. baseline (CE) 95.55% 4.45% 91.44% 8.56%

C. edge operators (CE) 95.78% 4.22% 91.78% 8.22%

D. edge operators +

elastic distortion (CE)
95.96% 4.04% 92.92% 7.08%

Table 9. Hangul recognition results

Table 9 presents the results. Unlike the digit recognition results, the results of the MSE criterion

are significantly inferior when compared to those of the CE criterion. We believe the reason is that

minimizing the absolute error of each output node is inefficient in training a recognizer for

hundreds or thousands of classes. Similar to the previous experiment, initializing convolution

masks by the edge operators and applying elastic distortion improved the performance. In order

to know whether the improvements are statistically significant, we carried out McNemar’s test and

Chi-square test on the results on SERI95a database. In McNemar’s test, the pvalues of the

improvements by cross entropy criterion (A->B), edge operator (B->C), and elastic distortion (C-

>D) were 0.00E+00, 2.45E-03, and 2.42E-06, respectively. In Chi-square test, pvalues were

0.00E+00, 3.48E-02, and 3.48E-02. These pvalues show that the improvements are statistically

significant. Particularly, the effect of the elastic distortion on the PE92 database was more

remarkable than that on the SERI95a database. This is because PE92 contains more classes but

less samples per class; therefore, the recognizer considerably suffers from a lack of training

samples.

Researchers Recognition methods SERI95a PE92

Kim&Kim2001 [8] Structural matching 86.30% 82.20%

Kang&Kim2004 [2] Structural matching 90.30% 87.70%

Jang&Kim2002 [9] Structural matching + Post-processing 93.40% N/A

Park, et. al. 2013 [1] MQDF 93.71% 85.99%

Proposed DCNN 95.96% 92.92%

Table 10. Recognition rates achieved on SERI95a and PE92 databases

Table 10 compares our results with previous best works on SERI95a and PE92. The elastic

distortion was not used listed in the previous works in Table 10. As underlined in Table 10, the

conventional best performances on SERI95a and PE92 databases were 93.71% and 87.70%,

respectively. Surprisingly, most of the results in Table 9 are better than the conventional best

performances. Specifically, our best performances are noticeably higher than the two conventional

best results. Compared to the previous best records of 93.71% on SERI95a and 87.70% on PE92,

our results provided improvements of 2.25% and 5.22%, respectively. These improvements lead to

error reduction rates of 35.71% on SERI95a and 42.44% on PE92, relative to the previous lowest

error rates.

7. Conclusion

In spite of the advances in recognition technology, handwritten Hangul recognition (HHR) has

remained largely unsolved due to the presence of many confusing characters and excessive

cursiveness in Hangul handwritings. On the other hand, the DCNN has provided outstanding

performances in many recognition fields. However, before now, the DCNN has not been applied

to recognize handwritten Hangul. In this research, we built handwritten Hangul recognizers using

DCNNs and evaluated their performances on the SERI95a and the PE92 databases. Then, we

improved the training speed and the recognition performance through GPU-based parallel

processing and elastic distortion.

We also proposed two new improvement techniques. The modified MSE error criterion

significantly improved the training efficiency of the Hangul recognizer by compensating the

unbalance between positive and negative signals from the output nodes. Additionally, we

achieved further improvement by initializing bottom level convolution masks by edge operators.

Training convolution masks starting from good initial weights was helpful in obtaining good

feature extractors.

In the experiments, we achieved recognition rates 95.96% on SERI95a and 92.92% on PE92,

which are significantly higher than conventional best records. In handwritten digit recognition, and

we achieved 99.71% recognition rate on the MNIST database.

References

[1] G.-R. Park, I.-J. Kim, C.-L. Liu, An evaluation of statistical methods in handwritten Hangul

recognition, Int. J. Document Analysis and Recognition, vol. 16, no. 3, pp. 273-283, 2013.

[2] K.-W. Kang and J.H. Kim, Utilization of hierarchical, stochastic relationship modeling for

Hangul character recognition, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26,

no.9, pp.1185-1196, 2004.

[3] Y. Bengio, Learning deep architectures for AI, Foundations and Trends in Machine Learning,

vol. 2, iss. 1, pp. 1-127, 2009.

[4] Cheng-Lin Liu, Fei Yin, Qiu-Feng Wang, Da-Han Wang, ICDAR 2011 Chinese Handwriting

Recognition Competition, 2011. (http://www.nlpr.ia.ac.cn/events/HRcompetition/Report.html)

[5] D. C. Cireşan, U. Meier, J. Schmidhuber. Multi-column Deep Neural Networks for Image

Classification. IEEE Conf. on Computer Vision and Pattern Recognition 2012.

[6] D. C. Cireşan and J. Schmidhuber. Multi-column Deep Neural Networks for Offline Handwritten

Chinese Character Classification, IDSIA Technical Report No. IDSIA-05-13, 2013.

[7] ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC2013) Result

(http://www.image-net.org/challenges/LSVRC/2013/results.php)

[8] H. Y. Kim and J. H. Kim, Hierarchical random graph representation of handwritten characters

and its application to Hangul recognition, Pattern Recognition, vol. 34, no. 2, pp.187-201,

http://www.nlpr.ia.ac.cn/events/HRcompetition/Report.html

2001.

[9] S. I. Jang, Post-processing of handwritten Hangul recognition using pair-wise grapheme

discrimination, Master Thesis, KAIST, 2002.

[10] D. -I. Kim and S. -W. Lee, Automatic Evaluation of Handwriting Qualities of Handwritten

Hangul Image Database, KU-1, Proc. 6th IWFHR, Taejon, Korea, pp. 455-464, Aug. 1998.

[11] D. H. Kim, Y. S. Hwang, S. T. Park, E. J. Kim, S. H. Paek, and S. Y. Bang, Handwritten Korean

character image database PE92, Proc. 2nd ICDAR, pp. 470-473, Oct. 1993.

[12] H. J. Bae, J. M. Yun, and E. Y. Cha, Neural network for hand-written character recognition using

dynamic bar method, Proc. Korea Information Science Autumn Conference, vol.17, no.2,

pp.251-254, 1990.

[13] M. W. Kim, J. S. Jang, C. D. Lim, Y. S. Song, and J. H. Kim, Improvements to a hierarchical

interaction neural network for context-dependent pattern recognition and its experimentation

with handwritten Korean character recognition, Technical Report, Electronics and

Telecommunication Research Institute, Taejon, Korea, 1992.

[14] S. H. Jeong, Handwritten Hangul recognition based on character cluster segmentation,

Technical Memo, Electronics and Telecommunication Research Institute, Taejon, Korea, 2002.

[15] A. Torralba, R. Fergus, and W. Freeman, 80 million tiny images: a large dataset for non-

parametric object and scene recognition, IEEE Trans. Pattern Analysis and Machine Intelligence

vol. 30, no. 11, pp. 1958-1970, 2008..

[16] G. E. Hinton, S. Osindero, Y. Teh, A fast learning algorithm for deep belief nets. Neural

Computation vol. 18, no. 7, pp. 1527-1554, 2006.

[17] G. E. Hinton, P. Dayan, B. J. Frey, and R. Neal, The wake-sleep algorithm for self-organizing

neural networks. Science, 268, pp. 1158-1161, 1995.

[18] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, Extracting and composing robust

features with denoising autoencoders, in Proceedings of the Twenty-fifth International

Conference on Machine Learning (ICML’08), (W. W. Cohen, A. McCallum, and S. T. Roweis,

eds.), pp. 1096–1103, ACM, 2008.

[19] K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biological Cybernetics, vol. 36, no. 4, pp.

193–202, 1980.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document

recognition, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[21] D. Simard, P. Y. Steinkraus, and J. C. Platt, Best practices for convolutional neural networks,

Proc. International Conference on Document Analysis and Recognition (ICDAR’03), p. 958,

Washington, DC, USA: IEEE Computer Society, 2003.

[22] Y. Boureau, J. Ponce, and Y. LeCun, A theoretical analysis of feature pooling in vision

algorithms, Proc. International Conference on Machine learning (ICML'10), 2010.

[23] http://en.wikipedia.org/wiki/Sigmoid_function

[24] C. Ozkan, and F. Erbek. A Comparison of activation functions for multispectral Landsat TM

image classification. Photogrammetric engineering and remote sensing 69.11 (2003): 1225-

1234.

[25] http://en.wikipedia.org/wiki/Softmax_activation_function

[26] V. Nair and G. Hinton, Rectified linear units improve restricted boltzmann

machines. Proceedings of the 27th International Conference on Machine Learning (ICML-10).

2010.

[27] X. Glorot, B. Antoine, and Y. Bengio, Deep Sparse Rectifier Networks. Proceedings of the 14th

International Conference on Artificial Intelligence and Statistics. JMLR W&CP Volume. Vol. 15.

2011.

[28] G. Goodhill and H. Barrow, The role of weight normalization in competitive learning. Neural

Computation vol. 6, no. 2, pp. 255-269, 1994.

[29] H. Liu and X. Ding, Handwritten character recognition using gradient feature and quadratic

classifier with multiple discrimination schemes, Proceedings. 8th International Conference on

Document Analysis and Recognition, IEEE, 2005.

[30] D. Cireşan, et al., Deep Big Multilayer Perceptrons for Digit Recognition, Neural Networks:

Tricks of the Trade. Springer Berlin Heidelberg, pp. 581-598, 2012.

[31] http://yann.lecun.com/exdb/mnist

http://en.wikipedia.org/wiki/Sigmoid_function
http://en.wikipedia.org/wiki/Softmax_activation_function
http://yann.lecun.com/exdb/mnist

