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Abstract Variable selection and dimension reduction are two commonly adopted approaches for high-dimensional

data analysis, but have traditionally been treated separately. Here we propose an integrated approach, called

sparse gradient learning (SGL), for variable selection and dimension reduction via learning the gradients of the

prediction function directly from samples. By imposing a sparsity constraint on the gradients, variable selection

is achieved by selecting variables corresponding to non-zero partial derivatives, and effective dimensions are ex-

tracted based on the eigenvectors of the derived sparse empirical gradient covariance matrix. An error analysis

is given for the convergence of the estimated gradients to the true ones in both the Euclidean and the manifold

setting. We also develop an efficient forward-backward splitting algorithm to solve the SGL problem, making

the framework practically scalable for medium or large datasets. The utility of SGL for variable selection and

feature extraction is explicitly given and illustrated on artificial data as well as real-world examples. The main

advantages of our method include variable selection for both linear and nonlinear predictions, effective dimension

reduction with sparse loadings, and an efficient algorithm for large p, small n problems.

Keywords Gradient learning · Variable selection · Effective dimension reduction · Forward-backward splitting

1 Introduction

Datasets with many variables have become increasingly common in biological and physical sciences. In biology, it is

nowadays a common practice to measure the expression values of tens of thousands of genes, genotypes of millions

of SNPs, or epigenetic modifications at tens of millions of DNA sites in one single experiment. Variable selection

and dimension reduction are increasingly viewed as a necessary step in dealing with these high-dimensional data.

Variable selection aims at selecting a subset of variables most relevant for predicting responses. Many algo-

rithms have been proposed for variable selection [21]. They typically fall into two categories: Feature Ranking and

Subset Selection. Feature Ranking scores each variable according to a metric, derived from various correlation

or information theoretic criteria [21, 47, 12], and eliminates variables below a threshold score. Because Feature

Ranking methods select variables based on individual prediction power, they are ineffective in selecting a subset

of variables that are marginally weak but in combination strong in prediction. Subset Selection aims to overcome

this drawback by considering and evaluating the prediction power of a subset of variables as a group. One popular

approach to subset selection is based on direct object optimization, which formalizes an objective function of

variable selection and selects variables by solving an optimization problem. The objective function often consists

of two terms: a data fitting term accounting for prediction accuracy, and a regularization term controlling the

number of selected variables. LASSO proposed by [44] and elastic net by [51] are two examples of this type of

approach. The two methods are widely used because of their implementation efficiency [17, 51] and the ability

of performing simultaneous variable selection and prediction, however, a linear prediction model is assumed by

both methods. The component smoothing and selection operator (COSSO) proposed in [30] try to overcome this
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shortcoming by using a functional LASSO penalty. However, COSSO is based on the framework of smoothing

spline ANOVA which makes it impossible to deal with high dimensional data.

Dimension reduction is another commonly adopted approach in dealing with high-dimensional data. Rooting

in dimension reduction is the common belief that many real-world high-dimensional data are concentrated on a

low-dimensional manifold embedded in the underlying Euclidean space. Therefore mapping the high-dimensional

data into the low-dimensional manifold should be able to improve prediction accuracy, to help visualize the

data, and to construct better statistical models. A number of dimension reduction methods have been proposed,

ranging from principle component analysis to manifold learning for non-linear settings [3, 52, 31, 39, 43, 14].

However, most of these dimension reduction methods are unsupervised, and therefore are likely suboptimal with

respect to predicting responses. In supervised settings, most recent work focuses on finding a subspace S such

that the projection of the high dimensional data x onto S captures the statistical dependency of the response y

on x. The space S is called effective dimension reduction (EDR) space [48].

Several methods have been proposed to identify EDR space. The research goes back to sliced inverse regres-

sion (SIR) proposed by Li [28], where the covariance matrix of the inverse regression is explored for dimension

reduction. The main idea is that if the conditional distribution ρ(y|x) concentrates on a subspace S , then the

inverse regression E(x|y) should lie in that same subspace. However, SIR imposes specific modeling assumptions

on the conditional distribution ρ(y|x) or the regression E(y|x). These assumptions hold in particular if the distri-

bution of x is elliptic. In practice, however, we do not necessarily expect that x will follow an elliptic distribution,

nor is it easy to assess departures from ellipticity in a high-dimensional setting. A further limitation of SIR is

that it yields only a one-dimensional subspace for binary classifications. Other reverse regression based methods,

including principal Hessian directions (pHd [29]), sliced average variance estimation (SAVE [9]) and contour re-

gression [27], have been proposed, but they have similar limitations. To address these limitations, Xia et al. [48]

proposed a method called the (conditional) minimum average variance estimation (MAVE) to estimate the EDR

directions. The assumption underlying MAVE is quite weak and only a semiparametric model is used. Under the

semiparametric model, conditional covariance is estimated by linear smoothing and EDR directions are then esti-

mated by minimizing the derived conditional covariance estimation. In addition, a simple outer product gradient

(OPG) estimator is proposed as an initial estimator. Other related approaches include methods that estimate the

derivative of the regression function [24, 41]. Recently, Fukumizu et al. [18] proposed a new methodology which

derives EDR directly from a formulation of EDR in terms of the conditional independence of x from the response

y, given the projection of x on the EDR space. The resulting estimator is shown to be consistent under weak

conditions. However, all these EDR methods can not be directly applied to the large p, small n case, where p is

the dimension of the underlying Euclidean space in which the data lies, and n is the number of samples. To deal

with the large p, small n case, Mukherjee and co-workers [37, 36] introduced a gradient learning method (which

will be referred to as GL) for estimating EDR by introducing a Tikhonov regularization term on the gradient

functions. The EDR directions were estimated using the eigenvectors of the empirical gradient covariance matrix.

Although both variable selection and dimension reduction offer valuable tools for statistical inference in high-

dimensional space and have been prominently researched, few methods are available for combining them into a

single framework where variable selection and dimensional reduction can be done. One notable exception is the

sparse principle component analysis (SPCA), which produces modified principle components with sparse loadings

[52]. However, SPCA is mainly used for unsupervised linear dimension reduction, our focus here is the variable

selection and dimension reduction in supervised and potentially nonlinear settings. To motivate the reason why

a combined approach might be interesting in a supervised setting, consider a microarray gene expression data

measured in both normal and tumor samples. Out of 20, 000 genes measured in microarray, only a small number

of genes (e.g. oncogenes) are likely responsible for gene expression changes in tumor cells. Variable selection

chooses more relevant genes and dimension reduction further extracts features based on the subset of selected

genes. Taking a combined approach could potentially improve prediction accuracy by removing irrelevant noisy

variables. Additionally, by focusing on a small number of most relevant genes and extracting features among

them, it could also provide a more interpretable and manageable model regarding genes and biological pathways

involved in the carcinogenesis.

In this article, we extend the gradient learning framework introduced by Mukherjee and co-workers [37, 36],

and propose a sparse gradient learning approach (SGL) for integrated variable selection and dimension reduction

in a supervised setting. The method adopts a direct object optimization approach to learn the gradient of

the underlying prediction function with respect to variables, and imposes a regularization term to control the

sparsity of the gradient. The gradient of the prediction function provides a natural interpretation of the geometric

structure of the data [22, 37, 36, 38]. If a variable is irrelevant to the prediction function, the partial derivative

with respect to that variable is zero. Moreover, for non-zeros partial derivatives, the larger the norm of the

partial derivative with respect to a variable is, the more important the corresponding variable is likely to be for

prediction. Thus the norms of partial derivatives give us a criterion for the importance of each variable and can
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be used for variable selection. Motivated by LASSO, we encourage the sparsity of the gradient by adding a ℓ1

norm based regularization term to the objective vector function. Variable selection is automatically achieved by

selecting variables with non-zero partial derivatives. The sparse empirical gradient covariance matrix (S-EGCM)

constructed based on the learned sparse gradient reflects the variance of the data conditioned on the response

variable. The eigenvectors of S-EGCM are then used to construct the EDR directions. A major innovation of

our approach is that the variable selection and dimension reduction are achieved within a single framework.

The features constructed by the eigenvectors of S-EGCM are sparse with non-zero entries corresponding only to

selected variables.

The rest of this paper is organized as follows. In section 2, we describe the sparse gradient learning algorithm

for regression, where an automatic variable selection scheme is integrated. The derived sparse gradient is an

approximation of the true gradient of regression function under certain conditions, which we give in subsection

2.3 and their proofs are delayed in Section 3. We describe variable selection and feature construction using the

learned sparse gradients in subsection 2.4. As our proposed algorithm is an infinite dimensional minimization

problem, it can not be solved directly. We provide an efficient implementation for solving it in section 4. In

subsection 4.1, we give a representer theorem, which transfer the infinite dimensional sparse gradient learning

problem to a finite dimensional one. In subsection 4.3, we solve the transferred finite dimensional minimization

problem by a forward-backward splitting algorithm. In section 5, we generalize the sparse gradient learning

algorithm to a classification setting. We illustrate the effectiveness of our gradient-based variable selection and

feature extraction approach in section 6 using both simulated and real-world examples.

2 Sparse gradient learning for regression

2.1 Basic definitions

Let y and x be respectively R-valued and R
p-valued random variables. The problem of regression is to estimate the

regression function fρ(x) = E(y|x) from a set of observations Z := {(xi, yi)}n
i=1, where xi := (x1

i , . . . , xp
i )T ∈ R

p

is an input, and yi ∈ R is the corresponding output.

We assume the data are drawn i.i.d. from a joint distribution ρ(x, y), and the response variable y depends

only on a few directions in R
p as follows

y = fρ(x) + ǫ = g(bT
1 x, . . . , bT

r x) + ǫ, (1)

where ǫ is the noise, B = (b1, . . . , br) is a p × r orthogonal matrix with r < p, and E(ǫ|x) = 0 almost surely.

We call the r dimensional subspace spanned by {bi}r
i=1 the effective dimension reduction (EDR) space [48]. For

high-dimensional data, we further assume that B is a sparse matrix with many rows being zero vectors, i.e. the

regression function depends only on a subset of variables in x.

Suppose the regression function fρ(x) is smooth. The gradient of fρ with respect to variables is

∇fρ :=

„
∂fρ

∂x1
, . . . ,

∂fρ

∂xp

«T

. (2)

A quantity of particular interest is the gradient outer product matrix G = (Gij), a p × p matrix with elements

Gij :=

fi
∂fρ

∂xi
,

∂fρ

∂xj

fl

L2
ρX

, (3)

where ρX is the marginal distribution of x. As pointed out by Li [28] and Xia et al. [48], under the assumption of

the model in Eq. (1), the gradient outer product matrix G is at most of rank r, and the EDR spaces are spanned

by the eigenvectors corresponding to non-zero eigenvalues of G. This observation has motivated the development

of gradient-based methods for inferring the EDR directions [48, 37, 36], and also forms the basis of our approach.

2.2 Regularization framework for sparse gradient learning

The optimization framework for sparse gradient learning includes a data fitting term and a regularization term.

We first describe the data fitting term. Given a set of observations Z, a commonly used data fitting term for

regression is the mean square error 1
n

Pn
i=1(yi − fρ(xi))

2. However, because our primary goal is to estimate

the gradient of fρ, we adopts the framework of local linear regression [40], which involves using a kernel to

weight the data points so that only the data points within the neighborhood of an evaluation point effectively
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contribute on function estimation. More specifically, we use the first order Taylor expansion to approximate fρ

by fρ(x) ≈ fρ(x0) + ∇fρ(x0) · (x − x0). When xj is close to xi, fρ(xj) ≈ yi + ∇fρ(xi) · (xj − xi). Define

f := (f1, . . . , fp), where fj = ∂fρ/∂xj for j = 1, . . . , p. The mean square error used in our algorithm is

EZ(f) =
1

n2

nX

i,j=1

ωs
i,j

`
yi − yj + f(xi) · (xj − xi)

´2
(4)

considering Taylor expansion between all pairs of observations. Here ωs
i,j is a weight kernel function that ensures

the locality of the approximation, i.e. ωs
i,j → 0 when |xi − xj | is large. We can use, for example, the Gaussian

with standard deviation s as a weight function. Let ωs(x) = exp{− |x|2

2s2 }. Then the weights are given by

ωs
i,j = ωs(xj − xi) = exp

(
−|xj − xi|2

2s2

)
, (5)

for all i, j = 1, · · · , n, with parameter s controlling the bandwidth of the weight function. In this paper, we view

s as a parameter and is fixed in implementing our algorithm, although it is possible to tune s using a greedy

algorithm as RODEO in [25].

At first glance, this data fitting term might not appear very meaningful for high-dimensional data as samples

are typically distributed sparsely on a high dimensional space. However, the term can also be explained in the

manifold setting [38], in which case the approximation is well defined as long as the data lying in the low

dimensional manifold are relative dense. More specifically, assume X is a d-dimensional connected compact C∞

submanifold of R
p which is isometrically embedded. In particular, we know that X is a metric space with the

metric dX and the inclusion map Φ : (X, dX) 7→ (Rp, ‖·‖2) is well defined and continuous (actually it is C∞). Note

that the empirical data {xi}n
i=1 are given in the Euclidean space R

p which are images of the points {qi}n
i=1 ⊂ X

under Φ : xi = Φ(qi). Then this data fitting term (4) can be explained in the manifold setting. From the first

order Taylor expansion, when qi and qj are close enough, we can expect that yj ≈ yi + 〈∇Xfρ(qi), vij〉qi , where

vij ∈ TqiX is the tangent vector such that qj = expqi
(vij). However, vij is not easy to compute, we would like

to represent the term 〈∇Xfρ(qi), vij〉qi in the Euclidean space R
p. Suppose x = Φ(q) and ξ = Φ(expq(v)) for

q ∈ X and v ∈ TqX. Since Φ is an isometric embedding, i.e. dΦq : TqX 7→ TxR
p ∼= R

p is an isometry for every

q ∈ X, the following holds

〈∇Xf(q), v〉q = 〈dΦq(∇Xf(q)), dΦq(v)〉Rp ,

where dΦq(v) ≈ φ(expq(v))−φ(q) = ξ−x for v ≈ 0. Applying these relations to the observations Z = {(xi, yi)}n
i=1

and denote f = dΦ(∇Xf) yields

EZ(f) =
1

n2

nX

i,j=1

ωs
i,j

`
yi − yj + f(xi) · (xj − xi)

´2
. (6)

This is exactly the same as the one in the Euclidean setting.

Now we turn to the regularization term on ∇fρ. As discussed above, we impose a sparsity constraint on the

gradient vector f . The motivation for the sparse constraint is based on the following two considerations: 1) Since

most variables are assumed to be irrelevant for prediction, we expect the partial derivatives of fρ with respect to

these variables to be zero; and 2) If variable xj is important for prediction, we expect the function fρ should show

significant variation along xj , and as such the norm of
∂fρ

∂xj should be large. Thus we will impose the sparsity

constraint on the vector (‖ ∂fρ

∂x1 ‖, . . . , ‖ ∂fρ

∂xp ‖)T ∈ R
p, where ‖ · ‖ is a function norm, to regularize the number of

non-zeros entries in the vector.

In this work, we specify the function norm ‖ · ‖ to be ‖ · ‖K, the norm in reproducing kernel Hilbert space

(RKHS) HK associated with a Mercer kernel K(·, ·) (see [1] and Section 4.1). The sparsity constraint on the

gradient norm vector implies that the ℓ0 norm of the vector (‖f1‖K, . . . , ‖fp‖K)T should be small. However,

because the ℓ0 norm is difficult to work with during optimization, we instead use the ℓ1 norm of the vector

[15, 11, 16, 34] as our regularization term

Ω(f) := λ

pX

j=1

‖fj‖K, (7)

where λ is a sparsity regularization parameter. This functional LASSO penalty has been used in [30] as COSSO

penalty. However, our component here is quite different from theirs, which makes our algorithm useful for high

dimensional problems.
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The norm ‖ · ‖K is widely used in statistical inference and machine learning (see [46]). It can ensure each

approximated partial derivative fj ∈ HK, which in turn imposes some regularity on each partial derivative. It is

possible to replace the hypothesis space H
p
K for the vector f in (7) by some other space of vector-valued functions

[33] in order to learn the gradients.

Combining the data fidelity term (4) and the regularization term (7), we propose the following optimization

framework, which will be referred as sparse gradient learning, to learn ∇fρ

fZ := arg min
f∈H

p
K

1

n2

nX

i,j=1

ωs
i,j

`
yi − yj + f(xi) · (xj − xi)

´2
+ λ

pX

j=1

‖fj‖K. (8)

A key difference between our framework and the one in [37] is that our regularization is based on ℓ1 norm,

while the one in [37] is based on ridge regularization. The difference may appear minor, but makes a significant

impact on the estimated ∇fρ. In particular, ∇fρ derived from Eq. (8) is sparse with many components potentially

being zero functions, in contrast to the one derived from [37], which is comprised of all non-zero functions. The

sparsity property is desirable for two primary reasons: 1) In most high-dimensional real-world data, the response

variable is known to depend only on a subset of the variables. Imposing sparsity constraints can help eliminate

noisy variables and thus improve the accuracy for inferring the EDR directions; 2) The resulting gradient vector

provides a way to automatically select and rank relevant variables.

Remark 1 The OPG method introduced by Xia et al. [48] to learn EDR directions can be viewed as a special

case of the sparse gradient learning, corresponding to the case of setting K(x, y) = δx,y and λ = 0 in Eq. (8).

Thus the sparse gradient learning can be viewed as an extension of learning gradient vectors only at observed

points by OPG to a vector function of gradient over the entire space. Note that OPG cannot be directly applied

to the data with p > n since the problem is then underdetermined. Imposing a regularization term as in Eq. (8)

removes such a limitation.

Remark 2 The sparse gradient learning reduces to a special case that is approximately LASSO [44] if we choose

K(x, y) = δx,y and additionally require f(xi) to be invariant for different i (i.e. linearity assumption). Note

that LASSO assumes the regression function is linear, which can be problematic for variable selection when the

prediction function is nonlinear [17]. The sparse gradient learning makes no linearity assumption, and can thus

be viewed as an extension of LASSO for variable selection with nonlinear prediction functions.

Remark 3 A related framework is to learn the regression function directly, but impose constraints on the sparsity

of the gradient as follows

min
f∈HK

1

n

nX

i=1

(f(xi) − yi)
2 + λ

pX

i=1

‖ ∂f

∂xi
‖K. (9)

This framework is however difficult to solve because the regularization term
Pp

i=1 ‖
∂f
∂xi ‖K is both nonsmooth and

inseparable, and the representer theorem introduced later to solve Eq. (8) cannot be applied here. Note that our

primary goal is to select variables and identify the EDR directions. Thus we focus on learning gradient functions

rather than the regression function itself.

Remark 4 If we use the regularization term
`Pp

j=1 ‖fj‖K
´2

, which is more widely used in literature [2]. Our

framework is equivalent to

fZ := arg min
f∈H

p
K

1

n(n − 1)

nX

i,j=1

ωs
i,j

`
yi − yj + f(xi) · (xj − xi)

´2
+ λ

` pX

j=1

‖fj‖K
´2

. (10)

2.3 Error analysis

Next we investigate the statistical performance of the sparse gradient learning with a Gaussian weight in Eq. (5).

Throughout the paper on error analysis, we only consider the case that p is fixed and not change with n. Assume

that the data Z = {(xi, yi)}n
i=1 are i.i.d drawn from a joint distribution ρ, which can be divided into a marginal

distribution ρX and a conditional distribution ρ(y|x). Denote fρ to be the regression function given by

fρ(x) =

Z

Y
ydρ(y|x).
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We show that under certain conditions, fZ → ∇fρ as n → ∞ for suitable choices of the parameters λ and s

that go to zero as n → ∞. In order to derive the learning rate for the algorithm, some regularity conditions on

both the marginal distribution and ∇fρ are required.

Denote ∂X be the boundary of X and d(x, ∂X)(x ∈ X) be the shortest Euclidean distance from x to ∂X,

i.e, d(x, ∂X) = infy∈∂X d(x,y).

Theorem 1 Suppose the data Z = {(xi, yi)}n
i=1 are i.i.d drawn from a joint distribution ρ and yi ≤ M for all i

for a positive constant M . Assume that for some constants cρ > 0 and 0 < θ ≤ 1, the marginal distribution ρX

satisfies

ρX({x ∈ X : d(x, ∂X) < t}) ≤ cρt (11)

and the density p(x) of ρX satisfies

sup
x∈X

p(x) ≤ cρ and |p(x) − p(u)| ≤ cρ|x − u|θ , ∀u,x ∈ X. (12)

Let fZ be the estimated gradient function given by Eq. (8) and ∇fρ be the true gradient of the regression function

fρ. Suppose that K ∈ C2 and ∇fρ ∈ H
p
K. Choose λ = λ(n) = n− θ

p+2+2θ and s = s(n) = n
− 1

2(p+2+2θ) . Then there

exists a constant C > 0 such that for any 0 < η ≤ 1 with confidence 1 − η

‖fZ −∇fρ‖L2
ρX

≤ C log
4

η

„
1

n

« θ
4(p+2+2θ)

. (13)

Condition (12) means the density of the marginal distribution is Hölder continuous with exponent θ. Condition

(14) specifies behavior of ρX near the boundary ∂X of X. Both are common assumptions for error analysis.

When the boundary ∂X is piecewise smooth, Eq. (12) implies Eq. (14). Here we want to emphasize that our

terminology sparse gradient for the derived fZ comes from this approximation property. Since we treat each

component of the gradient separately in our estimation algorithm, fZ does not necessarily satisfy the gradient

constraint ∂2f
∂xi∂xj = ∂2f

∂xj∂xi for all i and j. However, we note that it is possible to add these constraints explicitly

into the convex optimization framework that we will describe later.

The convergence rate in Eq. (16) can be greatly improved if we assume that the data are lying in or near a

low dimensional manifold [49, 38, 6]. In this case, the learning rate in the exponent of 1/n depends only on the

dimension of the manifold, not the actual dimension of the Euclidean space. The improved convergence rate for

local linear regression under manifold assumption was appeared in [6]. Here we would like to emphasize that our

result is different from theirs in two points of view. First, our algorithm is different from the one discussed in [6].

Second, we focused on the case where the distribution of the predictor variables is concentrated on a manifold and

our criterion of performance is the integral of pointwise mean error with respect to the underlying distribution

of the variables; by contrast, the discussion in [6] is more restrictive by applying only to predictors taking values

in a low dimensional manifold and discussing estimation of the regression function at a point.

Denote dX be the metric on X and dV be the Riemannian volume measure of X. Let ∂X be the boundary of

X and dX(x, ∂X)(x ∈ X) be the shortest distance from x to ∂X on the manifold X. Note that the inclusion map

Φ : (X, dX) 7→ (Rp, ‖ · ‖2) is an isometric embedding and the empirical data {xi}n
i=1 are given in the Euclidean

space Rp which are images of the points {qi}n
i=1 ⊂ X under Φ : xi = Φ(qi). Denote (dΦ)∗q is the dual of dΦq

and (dΦ)∗ maps a p-dimensional vector valued function f to a vector field with (dΦ)∗f(q) = (dΦ)∗q(f(q)) [13].

Theorem 2 Let X be a connected compact C∞ submanifold of R
p which is isometrically embedded and of

dimension d. Suppose the data Z = {(xi, yi)}n
i=1 are i.i.d drawn from a joint distribution ρ defined on X × Y

and there exists a positive constant M such that yi ≤ M for all i. Assume that for some constants cρ > 0 and

0 < θ ≤ 1, the marginal distribution ρX satisfies

ρX({x ∈ X : dX(x, ∂X) < t)} ≤ cρt (14)

and the density p(x) =
dρX (x)

dV exists and satisfies

sup
x∈X

p(x) ≤ cρ and |p(x) − p(u)| ≤ cρdX(x,u)θ, ∀u,x ∈ X. (15)

Let fZ be the estimated gradient function given by Eq. (8) and ∇Xfρ be the true gradient of the regression

function fρ. Suppose that K ∈ C2(X ×X), fρ ∈ C2(X) and dΦ(∇Xfρ) ∈ H
p
K. Choose λ = λ(n) = n− θ

d+2+2θ and

s = s(n) = n
− 1

2(d+2+2θ) . Then there exists a constant C > 0 such that for any 0 < η ≤ 1 with confidence 1 − η

‖(dΦ)∗fZ −∇Xfρ‖L2
ρX

≤ C log
4

η

„
1

n

« θ
4(d+2+2θ)

. (16)
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Note that the convergence rate in Theorem 2 is exactly the same as the one in Theorem 1 except that we

replaced the Euclidean dimension p by the intrinsic dimension d. The constraints ∇Xfρ ∈ Hp
K in Theorem 1

and dΦ(∇Xfρ) ∈ Hp
K are somewhat restrictive, and extension to mild conditions is possible [38]. Here we confine

ourself to these conditions in order to avoid introducing more notations and conceptions. The proof of Theorem

1 and Theorem 2 are somewhat complicated and will be given in the appendix. The main idea behind the proof

is to simultaneously control the sample error and the approximation error; see section 3 for details.

Note that the main purpose of our method is for variable selection. If fρ depends only on a few numbers of the

coordinates of X, we can adopt two procedures as done in [5] and estimate the gradient at the rate n
− θ

2(|J|+2+3θ) ,

where J = {j :
∂fρ

∂xj 6= 0} and |J| is the number in set J (i.e. exact number of variables whom fρ depends).

Let f = (f1, f2, . . . , fp)T and fJ be the concatenation of the loading function vectors indexed by J, that is,

fJ = (fj)j∈J. Similarly, we define xJ = (xj)j∈J and xi,J = (xj
i )j∈J.

As our framework is equivalent to (10), we first show that (10) selects, with high probability, those relevant

variables xj , j ∈ J. Then, using those selected variables bJ, we run the following algorithm

f
Z,bJ

:= arg min
f bJ

∈H
|bJ|
K

1

n(n − 1)

nX

i,j=1

ωs
i,j

`
yi − yj + fbJ

(x
i,bJ

) · (x
j,bJ

− xi,Ĵ)
´2

+ λ
X

j∈bJ

‖fj‖2
K, (17)

to get the improved convergence rate which only depends on |J|, the exact number of variables whom fρ depends

on. Assume that the regression function and the distributions enjoys some regularity properties slightly different

from the ones in Theorem 1:

Assumption 1 Assume |y| ≤ M almost surely. Suppose that for some 0 < θ ≤ 2/3 and Cρ > 0, the marginal

distribution ρX satisfies

ρX

„˘
x ∈ X : inf

u∈Rp\X
|u − x| ≤ s

¯«
≤ C2

ρs4θ, ∀s > 0. (18)

and the density p(x) of dρX(x) exists and satisfies

sup
x∈X

p(x) ≤ Cρ, |p(x) − p(v)| ≤ Cρ|u − x|θ, ∀ u,x ∈ X. (19)

Denote Vρ =
R
X(p(x))2dx > 0 and LKf =

R
X Kxf(x)

p(x)
Vρ

dρX(x). Suppose ∇fρ lies in the range of Lr
K, r > 1

2

(i.e. ‖L−r
K ∇fρ‖L2(ρX ) < ∞) and has a sparsity pattern J = J(∇fρ) = {j :

∂fρ

∂xj 6= 0}. For some C′
ρ > 0, fρ

satisfies

|fρ(u) − fρ(x) −∇fρ(x) · (u − x)| ≤ C′
ρ|u − x|2, ∀ u,x ∈ X.

Let B1 = {fJ : ‖fJ‖K ≤ 1} and JK be the inclusion map from B1 to C(X). Let 0 < η < 1
2 . We define the covering

number N (JK(B1), η) to be the minimal ℓ ∈ N such that there exists ℓ disks in JK(B1) with radius η covering S.

The following Theorem 3 tells us that, with probability tending to 1, (10) selects the true variables. Theorem 4

shows the improved convergence rate which only depends on |J| if we use two-step procedures to learn gradients.

The proofs of Theorem 3 and Theorem 4 are delayed in section 3.

Theorem 3 Suppose the data Z = {(xi, yi)}n
i=1 are i.i.d drawn from a joint distribution ρ defined on X × Y .

Let fZ be defined as (10) and bJ = {j : fj
Z 6= 0}. Choose λ = eCM,θsp+2+θ, where eCM,θ is a constant defined in

(35). Then under Assumption 1, there exists a constant 0 < s0 ≤ 1 such that, for all s, n satisfying 0 < s < s0

and nrs(2p+4+θ)(1/2−r)+1−θ ≥ max{CD,θ, eCD,θ}, where CD,θ, eCD,θ are two constants defined in Proposition 7

and Proposition 9 separately, we have bJ = J with probability larger than

1 − eC1N
 

JK(B1),
sp+2+θ

8(κDiam(X))2

!
exp{− eC2nsp+4},

where eC1 and eC2 are two constants independent of n or s.

The estimation of covering number N (JK(B1), η) is dependent of the smoothness of the Mercer Kernel K [10].

If K ∈ Cβ(X × X) for some β > 0 and X has piecewise smooth boundary, then there is C > 0 indepen-

dent of β such that N (JK(B1), η) ≤ C
“

1
η

”2p/β
. In this case, if we choose s >

`
1
n

´ β
(p+4)β+2p(p+2+θ) , then 1 −

N
“
JK(B1),

sp+2+θ

8(κDiam(X))2

”
exp{− eC2nsp+4} will goes to 1. In particular, if we choose s =

` 1
n

´ β
2(p+4)β+4p(p+2+θ) ,

then 1 − eC1N
“
JK(B1), sp+2+θ

8(κDiam(X))2

”
exp{− eC2nsp+4} ≥ 1 − eC′

1 exp{ eC′
2
√

n}, where eC′
1, eC′

2 are two constants

independent of n.

The following Theorem tells us that convergence rate would depend only on |J| instead of p if we use two

step procedures to learn the gradient.
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Theorem 4 Suppose the data Z = {(xi, yi)}n
i=1 are i.i.d drawn from a joint distribution ρ defined on X×Y . Let

f
Z,bJ

be defined as (17). Assume that there exists α > 0 and Cα > 0 such that lnN
“
JK(B1),

ǫ
8κ(Diam(X))2

”
≤

Cα
`

1
ǫ

´α
. Let ∇bJ

fρ =
“

∂fρ

∂xj

”
j∈bJ

. Under the same conditions as in Theorem 3, we have

Prob

‚‚‚fZ,bJ
−∇bJ

fρ

‚‚‚
L2(ρX )

≥ ǫ

ff
≤ eC3 exp

“
− eC4n

θ
2(|J|+2+3θ) ǫ

”
, ∀ǫ > 0,

where eC3 and eC4 are two constants independent of n or s.

2.4 Variable selection and effective dimension reduction

Next we describe how to do variable selection and extract EDR directions based on the learned gradient fZ =

(f1
Z , . . . , fp

Z )T .

As discussed above, because of the l1 norm used in the regularization term, we expect many of the entries in

the gradient vector fZ be zero functions. Thus, a natural way to select variables is to identify those entries with

non-zeros functions. More specifically, we select variables based on the following criterion.

Definition 1 Variable selection via sparse gradient learning is to select variables in the set

S := {j : ‖fj
Z‖K 6= 0, j = 1, . . . , p} (20)

where fZ = (f1
Z , . . . , fp

Z )T is the estimated gradient vector.

To select the EDR directions, we focus on the empirical gradient covariance matrix defined below

Ξ :=
h
〈f i

Z , fj
Z 〉K

ip
i,j=1

. (21)

The inner product 〈f i
Z , fj

Z 〉K can be interpreted as the covariance of the gradient functions between coordinate i

and j. The larger the inner product is, the more related the variables xi and xj are. Given a unit vector u ∈ R
p,

the RKHS norm of the directional derivative ‖u · fZ‖K can be viewed as a measure of the variation of the data

Z along the direction u. Thus the direction u1 representing the largest variation in the data is the vector that

maximizes ‖u · fZ‖2
K. Notice that

‖u · fZ‖2
K = ‖

X

i

uif
i
Z‖2

K =
X

i,j

uiuj〈f i
Z , fj

Z〉K = u
T Ξu.

So u1 is simply the eigenvector of Ξ corresponding to the largest eigenvalue. Similarly, to construct the second

most important direction u2, we maximize ‖u · fZ‖K in the orthogonal complementary space of span{u1}. By

Courant-Fischer Minimax Theorem [19], u2 is the eigenvector corresponding to the second largest eigenvalue

of Ξ. We repeat this procedure to construct other important directions. In summary, the effective dimension

reduction directions are defined according to the following criterion.

Definition 2 The d EDR directions identified by the sparse gradient learning are the eigenvectors {u1, . . . ,ud}
of Ξ corresponding to the d largest eigenvalues.

As we mentioned in section 2.1, the EDR space is spanned by the eigenvectors of the gradient outer product

matrix G defined in Eq. (3). However, because the distribution of the data is unknown, G cannot be calculated

explicitly. The above definition provides a way to approximate the EDR directions based on the empirical gradient

covariance matrix.

Because of the sparsity of the estimated gradient functions, matrix Ξ will appear to be block sparse. Conse-

quently, the identified EDR directions will be sparse as well with non-zeros entries only at coordinates belonging

to the set S. To emphasize the sparse property of both Ξ and the identified EDR directions, we will refer to Ξ

as the sparse empirical gradient covariance matrix (S-EGCM), and the identified EDR directions as the sparse

effective dimension reduction directions (S-EDRs).

3 Convergence Analysis

In this section, we will give the proof of Theorem 1, Theorem 2, Theorem 3 and Theorem 4.
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3.1 Convergence Analysis in the Euclidean Setting

Note that our energy functional in (8) involves an nonsmooth regularization term
P

i ‖f i‖K. The method for the

convergence analysis used in [37] can no longer be applied any more since it need explicit form of the solution

which is only possible for the ℓ2 regularization. However, we can still simultaneously control a sample or estimation

error term and a regularization or approximation error term which is widely used in statistical learning theory

[46, 36, 50].

3.1.1 Comparative Analysis

Recall the empirical error for a vector function f := (f1, . . . , fp),

EZ(f) =
1

n2

nX

i,j=1

ωs
i,j

`
yi − yj + f(xi) · (xj − xi)

´2
.

One can similarly define the expected error

E(f) =

Z

Z

Z

Z
ωs(x− u)(y − v + f(x)(u− x))2dρ(x, y)dρ(u, v).

Denote

σ2
s =

Z

X

Z

Z
ωs(x − u)(y − fρ(x))2dρ(x, y)dρX(u).

Then E(f) = 2σ2
s +

R
X

R
X ω(x− u)[fρ(x) − fρ(u) + f(x)(u − x)]2dρX(x)dρX(u).

Note that our goal is to bound the L2
ρX

differences of f and ∇fρ. We have the following comparative theorem

to bound the L2
ρX

differences of f and ∇fρ in terms of the excess error, E(f)−2σ2
s using the following comparative

theorem.

For r > 0, denote

Fr = {f ∈ Hp
K :

pX

i=1

‖f i‖K ≤ r}.

Theorem 5 Assume ρX satisfies the condition (11) and (12) and ∇fρ ∈ Hp
K. For f ∈ Fr with some r ≥ 1,

there exist a constant C0 > 0 such that

‖f −∇fρ‖L2
ρX

≤ C0(r
2sθ + s2−θ +

1

sp+2+θ
(E(f) − 2σ2

s)).

The proof of Theorem 5 is given in the appendix.

3.1.2 Error Decomposition

Now we turn to bound the quantity E(fZ ) − 2σ2
s . Note that unlike the standard setting of regression and

classification, EZ(f) and E(f) are not respectively the expected and empirical mean of a random variable. This

is due to the extra dρ(u, v) in the expected error term. However, since

EZEZ (f) =
n − 1

n
E(f),

EZ(f) and E(f) should be close to each other if the empirical error concentrates with n increasing. Thus, we can

still decompose E(fZ) − 2σ2
s into a sample error term and an approximation error term.

Note that Ω(f) = λ
P

i ‖f i‖K with f = (f1, . . . , fp), so the minimizer of E(f) + Ω(f) in H
p
K depends on λ.

Let

fλ = arg min
f∈H

p
K

{E(f) + Ω(f)}. (22)

By a standard decomposition procedure, we have the following result.

Proposition 1 Let

ϕ(Z) = (E(fZ ) − EZ (fZ )) + (EZ(fλ)) − E(fλ))

and

A(λ) = inf
f∈H

p
K

{E(f) − 2σ2
s + Ω(f)}.

Then, we have

E(fZ ) − 2σ2
s ≤ E(fZ ) − 2σ2

s + Ω(fZ) ≤ ϕ(Z) + A(λ)

The quantity ϕ(Z) is called the sample error and A(λ) is the approximation error.
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3.1.3 Sample Error Estimation

Note that the sample error ϕ(Z) can be bounded by controlling

S(Z, r) := sup
f∈Fr

|EZ(f) − E(f)|.

In fact, if both fZ and fλ are in Fr for some r > 0, then

ϕ(Z) ≤ 2S(Z, r). (23)

We use McDiarmid’s inequality in [32] to bound S(Z, r). Denote κ = supx∈X

p
K(x, x), Diam(X) = maxx,u∈X |x−

u|.

Lemma 1 For every r > 0,

Prob{|S(Z, r) − ES(Z, r)| ≥ ǫ} ≤ 2 exp

„
− nǫ2

32(M + κDiam(X)r)4

«
.

Proof Let (x′, y′) be a sample i.i.d drawn from the distribution ρ(x, y). Denote by Z′
i the sample which coincides

with Z except that the i-th entry (xi, yi) is replaced by (x′, y′). It is easy to verify that

S(Z, r) − S(Z′
i, r) = sup

f∈Fr

|EZ (f) − E(f)| − sup
f∈Fr

|EZ′
i
(f) − E(f)|

≤ sup
f∈Fr

|EZ (f) − EZ′
i
(f)| ≤ 4(2n − 1)(M + κDiam(X)r)2

n2
. (24)

Interchange the roles of Z and Z′
i gives

|S(Z, r) − S(Z′
i , r)| ≤

8(M + κDiam(X)r)2

n
.

By McDiarmid’s inequality, we obtain the desired estimate.

In order to bound S(Z, r) using Lemma 1, we need a bound of ES(Z, r).

Lemma 2 For every r > 0,

ES(Z, r) ≤ 11(κDiam(X)r + M)2√
n

.

The proof of Lemma 2 is given in the Appendix.

Now we can derive the following proposition by using inequality (23), lemma 1 and lemma 2.

Proposition 2 Assume r > 1. There exists a constant C3 > 0 such that with confidence at least 1 − δ,

ϕ(Z) ≤ C3
(κDiam(X)r + M)2 log 2

δ√
n

.

Note that in order to use this Proposition, we still need a bound on Ω(fZ) = λ
P

i ‖f i
Z‖K. We first state a

rough bound.

Lemma 3 For every s > 0 and λ > 0, Ω(fZ ) ≤ M2.

Proof The conclusion follows from the fact

Ω(fZ) ≤ EZ(fZ ) + Ω(fZ ) ≤ EZ(0) ≤ M2.

However, using this quantity the bound in Theorem 5 is at least of order O( 1
λ2s2p+4−θ ) which tends to ∞ as

s → 0 and λ → 0. So a sharper bound is needed. It will be given in Section 3.1.5.
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3.1.4 Approximation Error Estimation

We now bound the approximation error A(λ).

Proposition 3 If ∇fρ ∈ H
p
K, then A(λ) ≤ C4(λ + s4+p) for some C4 > 0.

Proof By the definition of A(λ) and the fact that ∇fρ ∈ H
p
K,

A(λ) ≤ E(∇fρ) − 2σ2
s + Ω(∇fρ).

Since

E(∇fρ) − 2σ2
s =

Z

X

Z

X
ωs(x− u)(fρ(x) − fρ(u) + ∇fρ(x)(u − x))2dρX(x)dρX(u)

≤ (CK)2cρ

Z

X

Z

X
ωs(x − u)|u − x|4dudρX(x)

≤ (CK)2cρM4s4+p.

Taking C4 = max{(CK)2cρM4,
Pp

i=1 ‖(∇fρ)i‖K}, we get the desired result.

3.1.5 Convergence rate

Following directly from Proposition 1, Proposition 2 and Proposition 3, we get

Theorem 6 If ∇fρ ∈ H
p
K, fZ and fλ are in Fr for some r ≥ 1, then with confidence 1 − δ

E(fZ ) − 2σ2
s ≤ C2

 
(M + κDiam(X)r)2 log 2

δ√
n

+ s4+p + λ

!
,

where C2 is a constant independent of r, s or λ.

In order to apply Theorem 5, we need a sharp bound on Ω(fZ ) := λ
P

i ‖f i
Z‖K.

Lemma 4 Under the assumptions of Theorem 1, with confidence at least 1 − δ

Ω(fZ ) ≤ C5

 
λ + s4+p +

„
1 +

κDiam(X)M

λ

«2 M2 log 2
δ√

n

!

for some C5 > 0 independent of s or λ.

Proof By the fact E(fZ)− 2σ2
s > 0 and Proposition 1, we have Ω(fZ ) ≤ 1

λ (ϕ(Z) +A(λ)). Since both fZ and fλ

are in FM2

λ

, using Proposition 2, we have with probability at least 1 − δ,

ϕ(Z) ≤ C3

„
1 +

κDiam(X)M

λ

«2 M2 log 2
δ√

n
.

Together with Proposition 3, we obtain the desired estimate with C5 = max{C3, C4}.

Lemma 5 Under the assumptions of Theorem 1,

Ω(fλ) ≤ C4(λ + s4+p),

where C4 is a constant independent of λ or s.

Proof Since E(fλ) − 2σ2
s is non-negative for all f , we have

Ω(fλ) ≤ E(fλ) − 2σ2
s + λΩ(fλ) = A(λ).

This in conjunction with proposition 3 implies the conclusion.
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Now we will use Theorem 5 and Theorem 6 to prove Theorem 1.

Proof of Theorem 1: By Theorem 5 and Theorem 6, we have with at least probability 1 − δ
2 ,

‖fZ −∇fρ‖2
L2

ρX
≤ C0

(
r2sθ + s2−θ +

C2

sp+2+θ

 
(M + κDiam(X)r)2 log 4

δ√
n

+ s4+p + λ

!)
,

if both fZ and fλ are in Fr for some r > 1. By lemma 5 and lemma 4, we can state that both fZ and fλ are in

Fr with probability 1 − δ
2 if

r = max

(
1 +

s4+p

λ
,

„
1 +

κDiam(X)M

λ

«2 M2 log 4
δ

λ
√

n

)
.

Choose s =
`

1
n

´ 1
2(p+2+2θ) , λ =

`
1
n

´ θ
p+2+2θ , we obtain with confidence 1 − δ,

‖fZ −∇fρ‖L2
ρX

≤ C

„
1

n

« θ
4(p+2+2θ)

.

3.2 Convergence Analysis in the Manifold Setting

The convergence analysis in the Manifold setting can be derived in a similar way as the one in the Euclidean

setting. The idea behind the proof for the convergence of the gradient consists of simultaneously controlling a

sample or estimation error term and a regularization or approximation error term.

As done in the convergence analysis in the Euclidean setting, we first use the excess error, E(f) − 2σ2
s , to

bound the L2
ρX

differences of ∇Xfρ and (dΦ)∗(f).

Recall

Fr = {f ∈ Hp
K :

pX

i=1

‖f i‖K ≤ r}, r > 0.

Theorem 7 Assume ρX satisfies the condition (14) and (15) and ∇Xfρ ∈ C2(X). For f ∈ Fr with some r ≥ 1,

there exist a constant C0 > 0 such that

‖(dΦ)∗(f) −∇Xfρ‖2
L2

ρX
≤ C0(r2sθ +

1

sd+2+θ
(E(f) − 2σ2

s)).

Proof It can be directly derived from lemma B.1 in [38] by using the inequality
Pn

i=1 |vi|2 ≤ (
Pn

i=1 |vi|)2.

3.2.1 Excess Error Estimation

In this subsection, we will bound E(fZ) − 2σ2
s . First, we decompose the excess error into sample error and

approximation error.

Proposition 4 Let fλ be defined as (22),

ϕ(Z) = (E(fZ ) − EZ (fZ )) + (EZ(fλ) − E(fλ))

and

A(λ) = inf
f∈H

p
K

n
E(f) − 2σ2

s + Ω(f)
o

.

Then, we have

E(fZ) − 2σ2
s + Ω(fZ ) ≤ ϕ(Z) + A(λ).

Since the proof of Proposition 2 doesn’t need any structure information of X, it is still true in the manifold

setting. Thus we have the same sample error bound as the one in the Euclidean setting. What left is to give an

estimate for the approximation error A(λ) in the manifold setting.

Proposition 5 Let X be a connected compact C∞ submanifold of R
p which is isometrically embedded and of

dimension d. If fρ ∈ C2(X) and dΦ(∇Xfρ) ∈ Hp
K, then

A(λ) ≤ C6(λ + s4+d)

for some C6 > 0.
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Proof By the definition of A(λ) and the fact that dΦ(∇Xfρ) ∈ Hp
K,

A(λ) ≤ E(dΦ(∇Xfρ)) − 2σ2
s + Ω(dΦ(∇Xfρ)).

Note that fρ ∈ C2(X) and dΦ(∇Xfρ) ∈ Hp
K. By Lemma B.2 in [38], we have

E(dΦ(∇Xfρ)) − 2σ2
s ≤ C7s4+d,

where C7 is a constant independent of s. Taking C6 = max{C7,
Pp

i=1 ‖(dΦ(∇Xfρ))i‖K}, we get the desired

result.

Combining Proposition 4, Proposition 2 and Proposition 5, we get the estimate for the excess error.

Theorem 8 If dΦ(∇fρ) ∈ H
p
K, fZ and fλ are in Fr for some r ≥ 1, then with confidence 1 − δ,

E(fZ) − 2σ2
s ≤ C8

 
(M + κDiam(X)r)2 log 2

δ√
n

+ sd+4 + λ

!
,

where C8 is a constant independent of s, λ, δ or r.

3.2.2 Convergence Rate

In order to use Theorem 7 and Theorem 8, we need sharp estimations for
Pp

i=1 ‖(dΦ(∇Xfρ))i‖K and
Pp

i=1 ‖f i
λ‖K.

This can be done using the same argument as the one in the Euclidean setting, we omit the proof here.

Lemma 6 Under the assumptions of Theorem 2, with confidence at least 1 − δ,

Ω(fZ ) ≤ C9

 
λ + s4+d +

„
1 +

κDiam(X)M

λ

«2 M2 log 2
δ√

n

!

and

Ω(fλ) ≤ C9(λ + s4+d),

where C9 is a constant independent of λ or s.

Now we prove Theorem 2.

Proof of Theorem 2: By the same argument as the one in proving Theorem 1, we can derive the convergence

rate using Theorem 7, Theorem 8 and Lemma 6.

3.3 Proof of Theorem 3 and Theorem 4

In order to prove Theorem 3, we need to characterize the solution of (10).

Proposition 6 A vector function f ∈ H
p
Z with sparsity pattern J = J(f) = {j : fj 6= 0} is optimal for problem

(10) if and only if

1

n(n − 1)

nX

i,j=1

ωs
i,j

`
yi − yj + f(xi) · (xj − xi)

´
(xk

j − x
k
i )Kxi + λ

0
@

pX

j=1

‖fj‖K

1
A fk

‖fk‖K
= 0, k ∈ J, (25)

‚‚‚‚
1

n(n − 1)

nX

i,j=1

ωs
i,j

`
yi − yj + f(xi) · (xj − xi)

´
(xk

j − x
k
i )Kxi

‚‚‚‚
K

≤ λ

pX

j=1

‖fj‖K, k ∈ J
c. (26)

The proof of the Proposition can be derived as the same way as Proposition 10 in [2], we omit the details here.

It is easy to see that the problem (10) has a unique solution. If we can construct a solution efZ satisfies the

two conditions in Proposition 6 with high probability, then Theorem 3 holds.

Let J = J(∇fρ) = {j :
∂fρ

∂xj 6= 0} and efZ,J be any minimizer of

min
fJ∈H

|J|
K

1

n(n − 1)

nX

i=1

`
yi − yj + fJ(xi) · (xj,J − xi,J)

´2
+ λ

`X

j∈J

‖fj‖K
´2

. (27)
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We extend it by zeros on Jc and denote it by efZ . Then efZ satisfies (25) by the first optimality condition for efZ,J.

So we only need to prove that efZ satisfies (26) with probability tending to 1. For this, we construct the following

events.

Ω0 =

‚‚‚ efZ,J −∇Jfρ

‚‚‚
K

≥ 1

2
min
j∈J

‚‚‚‚
∂fρ

∂xj

‚‚‚‚
K

ff
,

Ω1 =


‖eSZ,J(SZ,J + λDn)−1

Dn∇fρ‖K ≤ 1

6
‖∇fρ‖K

ff
,

Ω2 =


1

λ
‖eSZ,J∇fρ − eYJ‖K ≤ 1

6
‖∇fρ‖K

ff
,

Ω3 =


1

λ
‖eSZ,J(SZ,J + λDn)−1(YJ − SZ,J∇fρ) ≤ 1

6
‖∇fρ‖K

ff
,

Ω4 =
n
‖eSZ,J‖K <

“
κ2CρM|J|,1M|Jc|,1 + 1

”
sp+2+θ

o
,

where

SZ,J(fJ) =
1

n(n − 1)

nX

i,j=1

ωs
i,j

`
fJ(xi) · (xj,J − xi,J)

´
(xj,J − xi,J)Kxi , ∀ fJ ∈ H

|J|
K , (28)

eSZ,J(fJ) =
1

n(n − 1)

nX

i,j=1

ωs
i,j

`
fJ(xi) · (xj,J − xi,J)

´
(xj,Jc − xi,Jc)Kxi , ∀ fJ ∈ H

|J|
K , (29)

YJ =
1

n(n − 1)

nX

i,j=1

ωs
i,j(yi − yj)(xi,J − xj,J)Kxi , (30)

eYJ =
1

n(n − 1)

nX

i,j=1

ωs
i,j(yi − yj)(xi,Jc − xj,Jc)Kxi , (31)

and Dn =
Pp

i=1 ‖ef i
Z‖Kdiag

`
1/‖efj

Z‖K
´
j∈J

. The main idea of the proof of Theorem 3 is how to bound the

probability of those four sets since the probability of (26) holds can be lowerbounded by the probability of events

Ω1, Ω2, Ω3 and Ω4.

Note that, on event Ω0,

‖∂fρ/∂xj‖K − 1

2
min
j∈J

‖∂fρ/∂xj‖K ≤ ‖efj
Z‖K ≤ 1

2
min
j∈J

‖∂fρ/∂xj‖K + ‖∂fρ/∂xj‖K, ∀j ∈ J

holds. Then on the event Ω0, Dn is well-defined and satisfies 2
3DminI � Dn � 2DmaxI, where Dmin =

minj∈J 1/‖∂fρ/∂xj‖K. In addition, 1
2‖∇fρ‖K ≤Pp

j=1 ‖ef
j
Z‖K ≤ 3

√
|J|

2 ‖∇fρ‖K.

Using those notations, we only need to prove that efZ,J satisfies

SZ,J
efZ,J − YJ + λDnefZ,J = 0, (32)

‖eSZ,J
efZ,J − eYJ‖K ≤ λ

pX

j=1

‖fj
Z‖K. (33)

according to Proposition 6 and the uniqueness of the solution. By the first optimality condition for efZ,J, the

condition (32) holds. We can now put that back into eSZ,J
efZ,J − eYJ and get

eSZ,J
efZ,J − eYJ = eSZ,J(SZ,J + λDn)−1YJ − eYJ

= −λeSZ,J(SZ,J + λDn)−1
Dn∇fρ + eSZ,J∇fρ − eYJ + eSZ,J(SZ,J + λDn)−1(YJ − SZ,J∇fρ).

Together with the fact that on the event Ω0,
1
2‖∇fρ‖K ≤Pp

j=1 ‖ef
j
Z‖K ≤ 3

√
|J|

2 ‖∇fρ‖K,

Ω1 ∩ Ω2 ∩ Ω3|Z ∈ Ω0 ⊆

8
<
:‖eSZ,J

efZ,J − eYJ‖K ≤ λ

pX

j=1

‖fj
Z‖K|Z ∈ Ω0

9
=
;
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holds. Therefore,

Prob

8
<
:‖eSZ,J

efZ,J − eYJ‖K > λ

pX

j=1

‖fj
Z‖K

9
=
;

= Prob

8
<
:‖eSZ,J

efZ,J − eYJ‖K > λ

pX

j=1

‖fj
Z‖K|Z ∈ Ω0

9
=
;Prob{Ω0}

≤ Prob{Ωc
1|Ω0 ∩ Ω4}Prob(Ω0 ∩ Ω4) + Prob{Ωc

2}Prob{Ω0} + Prob{Ωc
3|Ω0 ∩ Ω4}Prob(Ω0 ∩ Ω4). (34)

The following Propositions provide the estimates for probability of those events.

Proposition 7 Let J = J(∇fρ) and efZ,J be any minimizer of (27). Assume Assumption 1 holds. Let λ =
eCM,θsp+2+θ, where

eCM,θ = max


2κC′

ρCρM|J|,3M|Jc|,2 + 2, 12κC′
ρCρM|J|,2M|Jc|,3/∇fρ,

s
(κC′

ρCρM|J,3|M|Jc|,2 + 1)(6κ2CρM|J|,1M|Jc|,1 + 1)

Dmin‖∇fρ‖K

ff
. (35)

Then there exists a constant 0 < s0 ≤ 1 such that, for all s, n satisfying 0 < s < s0 and nrs(2p+4+θ)(1/2−r)+1−θ ≥
CD,θ := 4Dmax(Dmin)r−

3
2 ( eCM,θ)r−

1
2 Cρ,r, we have

Prob(Ω0) ≤ 4 exp
n
−CJnsp+4

o
, (36)

where CJ is a constant independent of n or s.

Proposition 8 Let Z = {zi}n
i=1 be i.i.d. draws from a probability distribution ρ on Z. Under Assumption 1,

Prob{Ω4} ≥ 1 −N
 

JK(B1),
sp+2+θ

8(κDiam(X))2

!
exp

n
−Cesnsp+2+θ

o
(37)

Proposition 9 Let Z = {zi}n
i=1 be i.i.d. draws from a probability distribution ρ on Z. Under Assumption 1, if

nrs(2p+4+θ)( 1
2−r) ≥ eCD,θ := 24Dmax(κ2CρM|J|,1M|Jc|,1 + 1)Cρ,r( 2

3Dmin
eCM,θ)r−

3
2 /‖∇fρ‖K, then there exists

a constant CΩ1
such that

Prob(Ωc
1|Z ∈ Ω0 ∩ Ω4) ≤ 2 exp

n
−CΩ1

nsp+2+θ
o

.

Proposition 10 Let Z = {zi}n
i=1 be i.i.d. draws from a probability distribution ρ on Z. Choose λ = eCM,θsp+2+θ

with eCM,θ defined in (35). Then under Assumption 1, there exists a constant CΩ2
> 0 such that

Prob(Ω2) ≥ 1 − 2 exp
n
−CΩ2

nsp+2+2θ
o

.

Proposition 11 Let Z = {zi}n
i=1 be i.i.d. draws from a probability distribution ρ on Z. Choose λ = eCM,θsp+2+θ

with eCM,θ defined in (35). Then under Assumption 1, there exists a constant CΩ3
> 0 such that

Prob(Ωc
3|Z ∈ Ω0 ∩ Ω4) ≤ 4 exp

n
−CΩ3

nsp+2+θ
o

.

Proof of Theorem 3: The result of Theorem 3 follows directly from inequality (34), Proposition 7, Propo-

sition 8, Proposition 9, Proposition 10 and Proposition 11.

Proof of Theorem 4: For any ǫ > 0, we have

Prob

‚‚‚fZ,bJ
−∇bJ

fρ

‚‚‚
L2(ρX )

≥ ǫ

ff

= Prob

‚‚‚fZ,bJ
−∇bJ

fρ

‚‚‚
L2(ρX )

≥ ǫ|bJ = J

ff
Prob(bJ = J) + Prob

‚‚‚fZ,bJ
−∇bJ

fρ

‚‚‚
L2(ρX )

≥ ǫ|bJ 6= J

ff
Prob(bJ 6= J)

≤ Prob
n‚‚fZ,J −∇Jfρ

‚‚
L2(ρX )

≥ ǫ
o

+ Prob(bJ 6= J).
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Using propostion 9 in [37], we have

Prob
n‚‚fZ,J −∇Jfρ

‚‚
L2(ρX )

≥ ǫ
o
≤ exp

“
−Cρ,Kn

θ
2(|J|+2+3θ) ǫ

”
,

where Cρ,K is a constant independent of n or s. Theorem 3 together with the assumption lnN
“
JK(B1),

ǫ
8κ(Diam(X))2

”
≤

Cα
`

1
ǫ

´α
implies

Prob(bJ 6= J) ≤ C1 exp

(„
8(κDiam(X))2

sp+2+θ

«α

− C2nsp+4

)
.

Choosing s =
` 1

n

´ 1
2((p+2+θ)α+p+4) , the desired result follows.

4 Algorithm for solving sparse gradient learning

In this section, we describe how to solve the optimization problem in Eq. (8). Our overall strategy is to first transfer

the convex functional from the infinite dimensional to a finite dimensional space by using the reproducing property

of RHKS, and then develop a forward-backward splitting algorithm to solve the reduced finite dimensional

problem.

4.1 From infinite dimensional to finite dimensional optimization

Let K : R
p ×R

p → R be continuous, symmetric and positive semidefinite, i.e., for any finite set of distinct points

{x1, · · · ,xn} ⊂ R
p, the matrix

ˆ
K(xi,xj)

˜n
i,j=1

is positive semidefinite [1]. Such a function is called a Mercer

kernel. The RKHS HK associated with the Mercer kernel K is defined to be the completion of the linear span of

the set of functions {Kx := K(x, ·) : x ∈ R
n} with the inner product 〈·, ·〉K satisfying 〈Kx,Ku〉K = K(x,u). The

reproducing property of HK states that

〈Kx, h〉K = h(x) ∀x ∈ R
p, h ∈ HK. (38)

By the reproducing property (38), we have the following representer theorem, which states that the solution

of (8) exists and lies in the finite dimensional space spanned by {Kxi}n
i=1. Hence the sparse gradient learning in

Eq. (8) can be converted into a finite dimensional optimization problem. The proof of the theorem is standard

and follows the same line as done in [42, 37].

Theorem 9 Given a data set Z, the solution of Eq. (8) exists and takes the following form

fj
Z (x) =

nX

i=1

cj
i,ZK(x,xi), (39)

where cj
i,Z ∈ R for j = 1, . . . , p and i = 1, . . . , n.

Proof The existence follows from the convexity of functionals EZ (f) and Ω(f). Suppose fZ is a minimizer. We

can write functions fZ ∈ Hp
K as

fZ = f‖ + f⊥,

where each element of f‖ is in the span of {Kx1 , · · · , Kxn} and f⊥ are functions in the orthogonal complement.

The reproducing property yields f(xi) = f‖(xi) for all xi. So the functions f⊥ do not have an effect on EZ(f).

But ‖fZ‖K = ‖f‖ + f⊥‖K > ‖f‖‖K unless f⊥ = 0. This implies that fZ = f‖, which leads to the representation

of fZ in Eq. (39).

Using Theorem 9, we can transfer the infinite dimensional minimization problem (8) to an finite dimensional

one. Define the matrix CZ := [cj
i,Z ]p,n

j=1,i=1 ∈ R
p×n. Therefore, the optimization problem in (8) has only p × n

degrees of freedom, and is actually an optimization problem in terms of a coefficient matrix C := [cj
i ]

p,n
j=1,i=1 ∈

R
p×n. Write C into column vectors as C := (c1, . . . , cn) with ci ∈ R

p for i = 1, · · · , n, and into row vectors as

C := (c1, . . . , cp)T with cj ∈ R
n for j = 1, · · · , p. Let the kernel matrix be K := [K(xi, xj)]

n,n
i=1,j=1 ∈ R

n×n.

After expanding each component fj of f in (8) as fj(x) =
Pn

i=1 cj
iK(x,xi), the objective function in Eq. (8)

becomes a function of C as

Φ(C) = EZ(f) + Ω(f)
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=
1

n2

nX

i,j=1

ωs
i,j

`
yi − yj +

pX

k=1

nX

ℓ=1

ck
ℓK(xi,xℓ)(x

k
j − xk

i )
´2

+ λ

pX

j=1

vuut
nX

i,k=1

cj
iK(xi,xk)cj

k

=
1

n2

nX

i,j=1

ωs
i,j

`
yi − yj +

nX

ℓ=1

K(xℓ, xi)(xj − xi)
T
cℓ

´2
+ λ

pX

j=1

q
(cj)T Kcj

=
1

n2

nX

i,j=1

ωs
i,j

`
yi − yj + (xj − xi)

T Cki

´2
+ λ

pX

j=1

q
(cj)T Kcj , (40)

where ki ∈ R
n is the i-th column of K, i.e., K = (k1, . . . ,kn). Then, by Theorem 9,

CZ = arg min
C∈Rp×n

Φ(C). (41)

4.2 Change of optimization variables

The objective function Φ(C) in the reduced finite dimensional problem convex is a non-smooth function. As such,

most of the standard convex optimization techniques, such as gradient descent, Newton’s method, etc, cannot be

directly applied. We will instead develop a forward-backward splitting algorithm to solve the problem. For this

purpose, we fist convert the problem into a simpler form by changing the optimization variables.

Note that K is symmetric and positive semidefinite, so its square root K1/2 is also symmetric and positive

semidefinite, and can be easily calculated. Denote the i-th column of K1/2 by k
1/2
i , i.e., K1/2 = (k

1/2
1 , . . . ,k

1/2
n ).

Let eC = CK1/2 and write eC = (ec1, . . . ,ecn) = (ec1, . . . ,ecp)T , where eci and ecj are the i-th column vector and j-th

row vector respectively. Then Φ(C) in Eq. (40) can be rewritten as a function of eC

Ψ( eC) =
1

n2

nX

i,j=1

ωs
i,j

`
yi − yj + (xj − xi)

T eCk
1/2
i

´2
+ λ

pX

j=1

‖ecj‖2, (42)

where ‖ · ‖2 is the Euclidean norm of R
p. Thus finding a solution CZ of (41) is equivalent to identifying

eCZ = arg min
eC∈Rp×n

Ψ( eC), (43)

followed by setting CZ = eCZK−1/2, where K−1/2 is the (pseudo) inverse of K1/2 when K is (not) invertible.

Note that the problem we are focusing on is of large p small n, so the computation of K
1
2 is trivial as it

is a n × n matrix. However, if we meet with the case that n is large, we can still solve (41) by adopting other

algorithms such as the one used in [35].

Given matrix eCZ , the variables selected by the sparse gradient learning as defined in Eq. (20) is simply

S = {j : ‖ecj‖2 6= 0, j = 1, · · · , n}. (44)

And similarly, the S-EDR directions can also be directly derived from eCZ by noting that the sparse gradient

covariance matrix is equal to

Ξ = CT
ZKCZ = eCT

Z
eCZ . (45)

4.3 Forward-backward splitting algorithm

Next we propose a forward-backward splitting to solve Eq. (43). The forward-backward splitting is commonly

used to solve the ℓ1 related optimization problems in machine learning [26] and image processing [11, 7]. Our

algorithm is derived from the general formulation described in [8].

We first split the objective function Ψ into a smooth term and a non-smooth term. Let Ψ = Ψ1 + Ψ2, where

Ψ1( eC) = λ

pX

i=1

‖eci‖2 and Ψ2( eC) =
1

n2

nX

i,j=1

ωs
i,j

`
yi − yj + (xj − xi)

T eCk
1/2
i

´2
.

The forward-backward splitting algorithm works by iteratively updating eC. Given a current estimate eC(k), the

next one is updated according to

eC(k+1) = proxδΨ1
( eC(k) − δ∇Ψ2( eC(k))), (46)

17



where δ > 0 is the step size, and proxδΨ1
is a proximity operator defined by

proxδΨ1
(D) = arg min

eC∈Rp×n

1

2
‖D − eC‖2

F + δΨ1( eC), (47)

where ‖ · ‖F is the Frobenius norm of R
p×n.

To implement the algorithm (46), we need to know both ∇Ψ2 and proxδΨ1
(·). The term ∇Ψ2 is relatively

easy to obtain,

∇Ψ2( eC) =
2

n2

nX

i,j=1

ωs
i,j

`
yi − yj + (xj − xi)

T eCk
1/2
i

´
(xj − xi)(k

1/2
i )T . (48)

The proximity operator proxδΨ1
is given in the following lemma.

Lemma 7 Let Tλδ(D) = proxδΨ1
(D), where D = (d1, . . . ,dp)T with dj being the j-th row vector of D. Then

Tλδ(D) =
`
tλδ(d1), . . . , tλδ(dp)

´T
, (49)

where

tλδ(d
j) =

8
<
:

0, if ‖dj‖2 ≤ λδ,
‖dj‖2−λδ

‖dj‖2
dj , if ‖dj‖2 > λδ.

(50)

Proof From (47), one can easily see that the row vectors ecj , j = 1, . . . , n, of eC are independent of each others.

Therefore, we have

tλδ(dj) = arg min
c∈Rn

1

2
‖dj − c‖2

2 + λδ‖c‖2. (51)

The energy function in the above minimization problem is strongly convex, hence has a unique minimizer.

Therefore, by the subdifferential calculus (c.f. [23]), tλδ(dj) is the unique solution of the following equation with

unknown c

0 ∈ c − d
j + λδ∂(‖c‖2), (52)

where

∂(‖c‖2) = {p : p ∈ R
n; ‖u‖2 − ‖c‖2 − (u − c)T p ≥ 0, ∀u ∈ R

n}
is the subdifferential of the function ‖c‖2. If ‖c‖2 > 0, the function ‖c‖2 is differentiable, and its subdifferential

contains only its gradient, i.e., ∂(‖c‖2) = { c
‖c‖2

}. If ‖c‖2 = 0, then ∂(‖c‖2) = {p : p ∈ R
n; ‖u‖2 − uT p ≥

0, ∀u ∈ R
n}. One can check that ∂(‖c‖2) = {p : p ∈ R

n; ‖p‖2 ≤ 1} for this case. Indeed, for any vector p ∈ R
n

with ‖p‖2 ≤ 1, ‖u‖2 − uT p ≥ 0 by the Cauchy-Schwartz inequality. On the other hand, if there is an element

p of ∂(‖c‖2) such that ‖p‖2 > 1, then, by setting u = p, we get ‖p‖2 − pT p = ‖p‖2(1 − ‖p‖2) < 0, which

contradicts the definition of ∂(‖c‖2). In summary,

∂(‖c‖2) =

(
{ c
‖c‖2

}, if ‖c‖2 > 0,

{p : p ∈ R
n; ‖p‖2 ≤ 1}, if ‖c‖2 = 0.

(53)

With (53), we see that tλδ(d
j) in (50) is a solution of (52) hence (49) is verified.

Now, we obtain the following forward-backward splitting algorithm to find the optimal eC in Eq. (41). After

choosing a random initialization, we update eC iteratively until convergence according to

(
D(k+1) = eC(k) − 2δ

n2

Pn
i,j=1 ωs

i,j

`
yi − yj + (xj − xi)

T eC(k)k
1/2
i

´
(xj − xi)(k

1/2
i )T ,

eC(k+1) = Tλδ(D(k+1)).
(54)

The iteration alternates between two steps: 1) an empirical error minimization step, which minimizes the

empirical error EZ (f) along gradient descent directions; and 2) a variable selection step, implemented by the

proximity operator Tλδ defined in (49). If the norm of the j-th row of D(k), or correspondingly the norm ‖fj‖K
of the j-th partial derivative, is smaller than a threshold λδ, the j-th row of D(k) will be set to 0, i.e., the j-th

variable is not selected. Otherwise, the j-th row of D(k) will be kept unchanged except to reduce its norm by the

threshold λδ.

Since Ψ2( eC) is a quadratic function of the entries of eC, the operator norm of its Hessian ‖∇2Ψ2‖ is a constant.

Furthermore, since the function Ψ2 is coercive, i.e., ‖ eC‖F → ∞ implies that Ψ( eC) → ∞, there exists at least

one solution of (43). By applying the convergence theory for the forward-backward splitting algorithm in [8], we

obtain the following theorem.
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Theorem 10 If 0 < δ < 2
‖∇2Ψ2‖

, then the iteration (54) is guaranteed to converge to a solution of Eq. (43) for

any initialization eC(0).

The regularization parameter λ controls the sparsity of the optimal solution. When λ = 0, no sparsity

constraint is imposed, and all variables will be selected. On the other extreme, when λ is sufficiently large, the

optimal solution will be C̃ = 0, and correspondingly none of the variables will be selected. The following theorem

provides an upper bound of λ above which no variables will be selected. In practice, we choose λ to be a number

between 0 and the upper bound usually through cross-validation.

Theorem 11 Consider the sparse gradient learning in Eq. (43). Let

λmax = max
1≤k≤p

2

n2

‚‚‚‚‚‚

nX

i,j=1

ωs
i,j(yi − yj)(x

k
i − xk

j )k
1/2
i

‚‚‚‚‚‚
2

(55)

Then the optimal solution is C̃ = 0 for all λ ≥ λmax, that is, none of the variables will be selected.

Proof Obviously, if λ = ∞, the minimizer of Eq. (42) is a p × n zero matrix.

When λ < ∞, the minimizer of Eq. (42) could also be a p × n zero matrix as long as λ is large enough.

Actually, from iteration (54), if we choose C(0) = 0, then

D(1) = − 2δ

n2

nX

i,j=1

ωs
i,j(yi − yj)(xj − xi)(k

1
2
i )T

and eC(1) = Tλδ(D(1)).

Let

λmax = max
1≤k≤p

2

n2

‚‚‚‚‚‚

nX

i,j=1

ωs
i,j(yi − yj)(x

k
j − x

k
i )(k

1
2
i )T

‚‚‚‚‚‚
2

.

Then for any λ ≥ λmax, we have eC(1) = 0p×n by the definition of Tλδ . By induction, eC(k) = 0p×n and the

algorithm converge to eC(∞) = 0p×n which is a minimizer of Eq. (42) when 0 < δ < 2
‖∇2Ψ2‖

. We get the desired

result.

Remark 5 In the proof of Theorem 11, we choose C(0) = 0p×n as the initial value of iteration (54) for simplicity.

Actually, our argument is true for any initial value as long as 0 < δ < 2
‖∇2Ψ2‖

since the algorithm converges to

the minimizer of Eq. (42) when 0 < δ < 2
‖∇2Ψ2‖

. Note that the convergence is independent of the choice of the

initial value.

It is not the first time to combine an iterative algorithm with a thresholding step to derive solutions with

sparsity (see, e.g., [11]). However, different from the previous work, the sparsity we focus here is a block sparsity,

that is, the row vectors of C (corresponding to partial derivatives fj) are zero or nonzero vector-wise. As such, the

thresholding step in (49) is performed row-vector-wise, not entry-wise as in the usual soft-thresholding operator

[15].

4.4 Matrix size reduction

The iteration in Eq. (54) involves a weighted summation of n2 number of p × n matrices as defined by (xj −
xi)(k

1/2
i )T . When the dimension of the data is large, these matrices are big, and could greatly influence the

efficiency of the algorithm. However, if the number of samples is small, that is, when n << p, we can improve

the efficiency of the algorithm by introducing a transformation to reduce the size of these matrices.

The main motivation is to note that the matrix

Mx := (x1 − xn,x2 − xn, . . . ,xn−1 − xn,xn − xn) ∈ R
p×n

is of low rank when n is small. Suppose the rank of Mx is t, which is no higher than min(n − 1, p).

We use singular value decomposition to matrix Mx with economy size. That is, Mx = UΣV T , where U is a

p× n unitary matrix, V is n× n unitary matrix, and Σ = diag(σ1, . . . , σt, 0, . . . , 0) ∈ R
n×n. Let β = ΣV T , then

Mx = Uβ. (56)
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Denote β = (β1, . . . , βn). Then xj − xi = U(βj − βi). Using these notations, the equation (54) is equivalent

to
(

D(k+1) = eC(k) − 2δU
n2

Pn
i,j=1 ωs

i,j

`
yi − yj + (xj − xi)

T eC(k)k
1/2
i

´
(βj − βi)(k

1/2
i )T ,

eC(k+1) = Tλδ(D(k+1)).
(57)

Note that now the second term in the right hand side of the first equation in (57) involves the summation of n2

number of n×n matrix rather than p×n matrices. More specifically, ws
i,j(yi −yj +(xj −xi)

T eC(k)k
1
2
i ) is a scalar

in both (39) and (42). So the first equation in (39) involves the summation of n2 matrix (xj − xi)(k
1
2
i )T which

is p×n, while the ones in (42) are (βj − βi)(k
1
2
i )T which is n×n. Furthermore, we calculate the first iteration of

Eq. (57) using two steps: 1) we calculate yi − yj + (xj − xi)
T eC(k)k

1/2
i and store it in an n × n matrix r; 2) we

calculate the first iteration of Eq. (57) using the value r(i, j). These two strategies greatly improve the efficiency

of the algorithm when p >> n. More specifically, we reduce the update for D(k) in Eq. (54) of complexity O(n3p)

into a problem of complexity O(n2p + n4). A detailed implementation of the algorithm is shown in Algorithm 1.

Remark 6 Each update in Eq. (54) involves the summation of n2 terms, which could be inefficient for datasets

with large number of samples. A strategy to reduce the number of computations is to use a truncated weight

function, e.g.,

ωs
ij =

(
exp(− 2‖xi−xj‖

2

s2 ), xj ∈ N k
i ,

0, otherwise,
(58)

where N k
i = {xj : xj is in the k nearest neighborhood of xi}. This can reduce the number of summations from

n2 to kn.

Algorithm 1: Forward-backward splitting algorithm to solve sparse gradient learning for regression.

Input: data {xi, yi}n
i=1, kernel K(x, y), weight function ωs(x, y), parameters δ, λ and matrix eC(0).

Output: the selected variables S and S-EDRs.

1. Compute K, K1/2. Do the singular value decomposition with economy size for the matrix Mx = (x1 −
xn, . . . ,xn − xn) and get Mx = UΣV T . Denote β = (β1, . . . , βn) = ΣV T . Compute Gij = ωs

i,j(βj −
βi)(k

1/2
i )T , i = 1, . . . , n, j = 1, . . . , n and let k = 0.

2. While the convergence condition is not true do

(a) Compute the residual r(k) = (r
(k)
ij ) ∈ Rn×n, where r

(k)
ij = yi − yj + (xj − xi)T eC(k)k

1/2
i .

(b) Compute g(k) = 2
n2

Pn
i,j=1 r

(k)
ij Gij .

(c) Set D(k) = eC(k) − δUg(k). For the row vectors (di)(k), i = 1, . . . , p, of D(k), perform the variable

selection procedure according to (50) to get row vectors (eci)(k+1) of eC(k+1).

i. If ‖(di)(k)‖2 ≤ λδ, the variable is not selected, and we set (eci)(k+1) = 0.

ii. If ‖(di)(k)‖2 > λδ, the variable is selected, and we set

(edi)(k+1) =
‖(di)(k)‖2 − λδ

‖(di)(k)‖2
(di)(k).

(d) Update eC(k+1) =
`
(ec1)(k+1), . . . , (ecn)(k+1)

´T
, and set k = k + 1.

end while

3. Variable selection: S = {i : (eci)(k+1) 6= 0}.
4. Feature extraction: let S-EGCM Ξ = eC(k+1) · ( eC(k+1))T and compute its eigenvectors via singular value

decomposition of eC(k+1), we get the desired S-EDRs.

5 Sparse gradient learning for classification

In this section, we extend the sparse gradient learning algorithm from regression to classification problems. We

will also briefly introduce an implementation.
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5.1 Defining objective function

Let x and y ∈ {−1, 1} be respectively R
p-valued and binary random variables. The problem of classification is to

estimate a classification function fC(x) from a set of observations Z := {(xi, yi)}n
i=1, where xi := (x1

i , . . . , xp
i )T ∈

R
p is an input, and yi ∈ {−1, 1} is the corresponding output. A real valued function fφ

ρ : X 7→ R can be used to

generate a classifier fC(x) = sgn(fφ
ρ (x)), where

sgn(fφ
ρ (x)) =

(
1, if fφ

ρ (x) > 0,

0, otherwise.

Similar to regression, we also define an objective function, including a data fitting term and a regularization

term, to learn the gradient of fφ
ρ . For classical binary classification, we commonly use a convex loss function

φ(t) = log(1 + e−t) to learn fφ
ρ and define the data fitting term to be 1

n

Pn
i=1 φ(yif

φ
ρ (xi)). The usage of loss

function φ(t) is mainly motivated by the fact that the optimal fφ
ρ (x) = log[P (y = 1|x)/P (y = −1|x)], representing

the log odds ratio between the two posterior probabilities. Note that the gradient of fφ
ρ exists under very mild

conditions.

As in the case of regression, we use the first order Taylor expansion to approximate the classification function

fφ
ρ by fφ

ρ (x) ≈ fφ
ρ (x0) + ∇fφ

ρ (x0) · (x− x0). When xj is close to xi, fφ
ρ (xj) ≈ f0(xi) + f(xi) · (xj − xi), where

f := (f1, · · · , fp) with fj = ∂fφ
ρ /∂xj for j = 1, · · · , p, and f0 is a new function introduced to approximate

fφ
ρ (xj). The introduction of f0 is unavoidable since yj is valued −1 or 1 and not a good approximation of fφ

ρ at

all. After considering Taylor expansion between all pairs of samples, we define the following empirical error term

for classification

Eφ
Z(f0, f) :=

1

n2

nX

i,j=1

ωs
i,jφ(yj(f

0(xi) + f(xi) · (xj − xi))), (59)

where ωs
i,j is the weight function as in (5).

For the regularization term, we introduce

Ω(f0, f) = λ1‖f0‖2
K + λ2

pX

i=1

‖f i‖K. (60)

Comparing with the regularization term for regression, we have included an extra term λ1‖f0‖2
K to control the

smoothness of the f0 function. We use two regularization parameters λ1 and λ2 for the trade-off between ‖f0‖2
K

and
Pp

i=1 ‖f i‖K.

Combining the data fidelity term and regularization term, we formulate the sparse gradient learning for

classification as follows

(f
φ
Z , f

φ
Z) = arg min

(f0,f)∈H
p+1
K

Eφ
Z(f0, f) + Ω(f0, f). (61)

5.2 Forward-backward splitting for classification

Using representer theorem, the minimizer of the infinite dimensional optimization problem in Eq. (61) has the

following finite dimensional representation

fφ
Z =

nX

i=1

αi,ZK(x,xi), (fφ
Z )j =

nX

i=1

cj
i,ZK(x,xi)

where αi,Z , cj
i,Z ∈ R for i = 1, . . . , n and j = 1, . . . , p.

Then using the same technique as in the regression setting, the objective functional in minimization problem

(61) can be reformulated as a finite dimensional convex function of vector α = (α1, . . . , αn)T and matrix eC =

(ecj
i )

n,p
i=1,j=1. That is,

Ψ(α, eC) =
1

n2

nX

i,j=1

ωs
i,jφ(yj(α

T
ki + (xj − xi)

T eCk
1
2
i )) + λ1αT Kα + λ2

pX

j=1

‖ecj‖2.

Then the corresponding finite dimensional convex

(eαφ
Z , eCφ

Z ) = arg min
α∈Rn, eC∈Rp×n

Ψ( eC) (62)

21



can be solved by the forward-backward splitting algorithm.

We split Ψ(α, eC) = Ψ1+Ψ2 with Ψ1 = λ2
Pp

j=1 ‖ecj‖2 and Ψ2 = 1
n2

Pn
i,j=1 ωs

i,jφ(yj(α
T ki+(xj−xi)

T eCk
1
2
i ))+

λ1αT Kα. Then the forward-backward splitting algorithm for solving (62) becomes

8
>>>>>><
>>>>>>:

α(k+1) = α(k) − δ

 
1

n2

Pn
i,j=1

−ωijyjki

1+exp(yj((α(k))T ki+(xj−xi)T eC(k)k
1
2
i ))

+ 2λ1Kα(k)

!
,

D(k+1) = eC(k) − δU
n2

Pn
i,j=1

−ωs
i,jyj(βj−βi)(k

1/2
i )T

1+exp(yj((α(k))T ki+(xj−xi)T eC(k)k
1
2
i ))

,

eC(k+1) = Tλ2δ(D
(k+1)),

(63)

where U, β satisfy equation (56) with U being a p × n unitary matrix.

With the derived eCφ
Z , we can do variable selection and dimension reduction as done for the regression setting.

We omit the details here.

6 Examples

Next we illustrate the effectiveness of variable selection and dimension reduction by sparse gradient learning

algorithm (SGL) on both artificial datasets and a gene expression dataset. As our method is a kernel-based

method, known to be effective for nonlinear problems, we focus our experiments on nonlinear settings for the

artificial datasets, although the method can be equally well applied to linear problems.

Before we report the detailed results, we would like to mention that our forward-backward splitting algorithm

is very efficient for solving the sparse gradient learning problem. For the simulation studies, it takes only a few

minutes to obtain the results to be described next. For the gene expression data involving 7129 variables, it takes

less than two minutes to learn the optimal gradient functions on an Intel Core 2 Duo desktop PC (E7500, 2.93

GHz).

6.1 Simulated data for regression

In this example, we illustrate the utility of sparse gradient learning for variable selection by comparing it to the

popular variable selection method LASSO. We pointed out in section 2 that LASSO, assuming the prediction

function is linear, can be viewed as a special case of sparse gradient learning. Because sparse gradient learning

makes no assumption on the linearity of the prediction function, we expect it to be better equipped than LASSO

for selecting variables with nonlinear responses.

We simulate 100 observations from the model

y = (2x1 − 1)2 + x2 + x3 + x4 + x5 + ǫ,

where xi, i = 1, . . . , 5 are i.i.d. drawn from uniform distribution on [0, 1] and ǫ is drawn form standard normal

distribution with variance 0.05. Let xi, i = 6, . . . , 10 be additional five noisy variables, which are also i.i.d. drawn

from uniform distribution on [0, 1]. We assume the observation dataset is given in the form of Z := {xi, yi}100
i=1,

where xi = (x1
i , x2

i , . . . , x10
i ) and yi = (2x1

i − 1)2 + x2
i + x3

i + x4
i + x5

i + ǫ. It is easy to see that only the first 5

variables contribute the value of y.

This is a well-known example as pointed out by B. Turlach in [17] to show the deficiency of LASSO. As the

ten variables are uncorrelated, LASSO will select variables based on their correlation with the response variable

y. However, because (2x1 − 1)2 is a symmetric function with respect to symmetric axis x1 = 1
2 and the variable

x1 is drawn from a uniform distribution on [0, 1], the correlation between x1 and y is 0. Consequently, x1 will

not be selected by LASSO. Because SGL selects variables based on the norm of the gradient functions, it has no

such a limitation.

To run the SGL algorithm in this example, we use the truncated Gaussian in Eq. (58) with 10 neighbors as

our weight function. The bandwidth parameter s is chosen to be half of the median of the pairwise distances of

the sampling points. As the gradients of the regression function with respect to different variables are all linear,

we choose K(x,y) = 1 + xy.

Figure 1 shows the variables selected by SGL and LASSO for the same dataset when the regularization

parameter varies. Both methods are able to successfully select the four linear variables (i.e. x2, · · · , x4). However,

LASSO failed to select x1 and treated x1 as if it were one of five noisy term x6, · · · , x10 (Fig. 1b). In contrast,

SGL is clearly able to differentiate x1 from the group of five noisy variables (Fig. 1a).
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Table 1:

Frequencies of variables x1, x2, . . . , x10 selected by SGL and LASSO in 100 repeats

variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

SGL 78 100 100 100 100 7 4 6 5 2
LASSO 16 100 100 100 100 25 14 13 13 19
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Fig. 1: Regularization path for SGL and LASSO. Red line represents the variable x1, blue lines represent the variables
x2, x3, x4, x5 and green lines represent noisy variables x6, x7, x8, x9, x10. (a)HK norm of each partial derivatives derived
by SGL with respect to regularization parameter, where regularization parameter is scaled to be − log λ with base 10.
(b)LASSO shrinkage of coefficients with respect to LASSO parameter t.

To summarize how often each variable will be selected, we repeat the simulation 100 times. For each simulation,

we choose a regularization parameter so that each algorithm returns exactly five variables. Table 1 shows the

frequencies of variables x1, x2, . . . , x10 selected by SGL and LASSO in 100 repeats. Both methods are able to

select the four linear variables, x2, x3, x4, x5, correctly. But, LASSO fails to select x1 and treats it as the same as

the noisy variables x6, x7, x8, x9, x10. This is in contrast to SGL, which is able to correctly select x1 in 78% of the

times, much greater than the frequencies (median 5%) of selecting the noisy variables. This example illustrates

the advantage of SGL for variable selection in nonlinear settings.

6.2 Simulated data for classification

Next we apply SGL to an artificial dataset that has been commonly used to test the efficiency of dimension

reduction methods in the literature. We consider a binary classification problem in which the sample data are

lying in a 200 dimensional space with only the first 2 dimensions being relevant for classification and the remaining

variables being noises. More specifically, we generate 40 samples with half from +1 class and the other half from

−1 class. For the samples from +1 class, the first 2-dimensions of the sample data correspond to points drawn

uniformly from a 2-dimensional spherical surface with radius 3. The remaining 198 dimensions are noisy variables

with each variable being i.i.d drawn from Gaussian distribution N(0, σ). That is,

xj ∼ N(0, σ), for j = 3, 4, . . . , 200. (64)

For the samples from −1 class, the first 2-dimensions of the sample data correspond to points drawn uniformly

from a 2-dimensional spherical surface with radius 3 × 2.5 and the remaining 198 dimensions are noisy variables

with each variable xj i.i.d drawn from N(0, σ) as (64). Obviously, this data set can be easily separated by a

sphere surface if we project the data to the Euclidean space spanned by the first two dimensions.

In what follows, we illustrate the effectiveness of SGL on this data set for both variable selection and dimension

reduction. In implementing SGL, both the weight function and the kernel are all chosen to be exp(− ‖x−u‖2

2s2 )

with s being half of the median of pairwise distance of the sampling points.

We generated several datasets with different noise levels by varying σ from 0.1 to 3. SGL correctly selected

x1 and x2 as the important variables for all cases we tested. Furthermore, SGL also generated two S-EDRs
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Fig. 2: Nonlinear classification simulation with σ = 3. (a) Training data projected on the first two dimensions, (b) Training
data projected on two S-EDRs derived by SGL. (c)Training data projected on first two ESFs derived by GL. (d) Test data
projected on the first two dimensions. (e) Test data projected on two S-EDRs derived by SGL. (f) Test data projected on
first two ESFs derived by GL.
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Fig. 3: Nonlinear classification simulation with σ = 3 (continued). (a) RKHS norm of empirical gradient derived by SGL.
(b) S-EGCM for first 10 dimension. (c) Eigenvalues of S-EGCM. (d) RKHS norm of empirical gradient derived by GL, (e)
EGCM for first 10 dimension. (f) Eigenvalues of EGCM.
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that captured the underlying data structure for all these cases (Figure 2). It is important to emphasize that the

two S-EDRs generated by SGL are the only two features the algorithm can possibly obtain, since the derived

S-EGCM are supported on a 2×2 matrix. As a result, both of the derived S-EDRs are linear combinations of the

first two variables. By contrast, using the gradient learning method (GL) reported in [38], the first two returned

dimension reduction directions (called ESFs) are shown to be able to capture the correct underlying structure

only when σ < 0.7. In addition, the derived ESFs are linear combinations of all 200 original variables instead

of only two variables as in S-EDRs. Figure 2(b,e) shows the training data and the test data projected on the

derived two S-EDRs for a dataset with large noise (σ = 3). Comparing to the data projected on the first two

dimensions (Figure 2(a)(d)), the derived S-EDRs preserves the structure of the original data. In contrast, the

gradient learning algorithm without sparsity constraint performed much poorer (Figure 2(c)(f)).

To explain why SGL performed better than GL without sparsity constraint, we plotted the norms of the

derived empirical gradients from both methods in Figure 3. Note that although the norms of partial derivatives

of unimportant variables derived from the method without sparsity constraint are small, they are not exactly zero.

As a result, all variables contributed and, consequently, introduced noise to the empirical gradient covariance

matrix (Figure 3(e)(f)).

We also tested LASSO for this artificial data set, and not surprisingly it failed to identify the right variables

in all cases we tested. We omit the details here.

6.3 Leukemia classification

Next we apply SGL to do variable selection and dimension reduction on gene expression data. A gene expression

data typically consists of the expression values of tens of thousands of mRNAs from a small number of samples as

measured by microarrays. Because of the large number of genes involved, the variable selection step becomes es-

pecially important both for the purpose of generating better prediction models, and also for elucidating biological

mechanisms underlying the data.

The gene expression data we will use is a widely studied dataset, consisting of the measurements of 7129

genes from 72 acute leukemia samples [20]. The samples are labeled with two leukemia types according to the

precursor of the tumor cells - one is called acute lymphoblastic leukemia (ALL), and the other one is called acute

myelogenous leukemia (AML). The two tumor types are difficult to distinguish morphologically, and the gene

expression data is used to build a classifier to classify these two types.

Among 72 samples, 38 are training data and 34 are test data. We coded the type of leukaemia as a binary

response variable y, with 1 and −1 representing ALL and AML respectively. The variables in the training samples

{xi}38
i=1 are normalized to be zero mean and unit length for each gene. The test data are similarly normalized,

but only using the empirical mean and variance of the training data.

We applied three methods (SGL, GL and LASSO) to the dataset to select variables and extract the dimension

reduction directions. To compare the performance of the three methods, we used linear SVM to build a classifier

based on the variables or features returned by each method, and evaluated the classification performance using

both leave-one-out (LOO) error on the training data and the testing error. To implement SGL, the bandwidth

parameter s is chosen to be half of the median of the pairwise distances of the sampling points, and K(x,y) = xy.

The regularization parameters for the three methods are all chosen according to their prediction power measured

by leave-one-out error.

Table 2:

Summary of the Leukemia classification results

Method SGL(variable selection) SGL(S-EDRs) GL(ESFs) Linear SVM LASSO
number of variables or features 106 1 6 7129(all) 33
leave one out error (LOO) 0/38 0/38 0/38 3/38 1/38
test errors 0/34 0/34 2/34 2/34 1/34

Table 2 shows the results of the three methods. We implemented two SVM classifiers for SGL using either

only the variables or the features returned by SGL. Both classifiers are able to achieve perfect classification for

both leave-one-out and testing samples. The performance of SGL is better than both GL and LASSO, although

only slightly. All three methods performed significantly better than the SVM classifier built directly from the raw

data as our method in terms of LOO error and test error.
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In addition to the differences in prediction performance, we note a few other observations. First, SGL selects

more genes than LASSO, which likely reflects the failure of LASSO to choose genes with nonlinear relationships

with the response variable, as we illustrated in our first example. Second, The S-EDRs derived by SGL are linear

combinations of 106 selected variables rather than all original variables as in the case of ESFs derived by GL. This

is a desirable property since an important goal of the gene expression analysis is to identify regulatory pathways

underlying the data, e.g. those distinguishing the two types of tumors. By associating only a small number of

genes, S-EDRs provide better and more manageable candidate pathways for further experimental testing.

7 Discussion

Variable selection and dimension reduction are two common strategies for high-dimensional data analysis. Al-

though many methods have been proposed before for variable selection or dimension reduction, few methods

are currently available for simultaneous variable selection and dimension reduction. In this work, we described

a sparse gradient learning algorithm that integrates automatic variable selection and dimension reduction into

the same optimization framework. The algorithm can be viewed as a generalization of LASSO from linear to

non-linear variable selection, and a generalization of the OPG method for learning EDR directions from a non-

regularized to regularized estimation. We showed that the integrated framework offers several advantages over

the previous methods by using both simulated and real-world examples.

The SGL method can be refined by using an adaptive weight function rather than a fixed one as in our current

implementation. The weight function ωs
i,j is used to measure the distance between two sample points. If the data

are lying in a lower dimensional space, the distance would be more accurately captured by using only variables

related to the lower dimensional space rather than all variables. One way to implement this is to calculate the

distance using only selected variables. Note that the forward-backward splitting algorithm eliminates variables at

each step of the iteration. We can thus use an adaptive weight function that calculates the distances based only

on selected variables returned after each iteration. More specifically, let S(k) = {i : ‖(eci)(k)‖2 6= 0} represent the

variables selected after iteration k. An adaptive approach is to use
P

l∈S(k)(xl
i − xl

j)
2 to measure the distance

‖xi − xj‖2 after iteration k.

An interesting area for future research is to extend SGL for semi-supervised learning. In many applications, it

is often much easier to obtain unlabeled data with a larger sample size u >> n. Most natural (human or animal)

learning seems to occur in semi-supervised settings [4]. It is possible to extend SGL for the semi-supervised

learning along several directions. One way is to use the unlabeled data X = {xi}n+u
i=n+1 to control the approximate

norm of f in some Sobolev spaces and introduce a semi-supervised learning algorithm as

fZ,X ,λ,µ = arg min
f∈Hp

K


1

n2

nX

i,j=1

ωs
i,j

`
yi − yj + f(xi) · (xj − xi)

´2

+
µ

(n + u)2

n+uX

i,j=1

Wi,j‖f(xi) − f(xj)‖2
ℓ2(Rp) + λ‖f‖K

ff
,

where ‖f‖K =
Pp

i=1 ‖f i‖K , Wi,j are edge weights in the data adjacency graph, µ is another regularization

parameter and often satisfies λ = o(µ). In order to make the algorithm efficiency, we can use truncated weight in

implementation as done in section 6.1.

The regularization term
Pn+u

i,j=1 Wi,j‖f(xi) − f(xj)‖2
ℓ2(Rp) is mainly motivated by the recent work of M.

Belkin and P. Niyogi [4]. In that paper, they have introduced a regularization term
Pn+u

i,j=1 Wi,j(f(xi)− f(xj))
2

for semi-supervised regression and classification problems. The term
Pn+u

i,j=1 Wi,j(f(xi)−f(xj))
2 is well-known to

be related to graph Laplacian operator. It is used to approximate
R
x∈M ‖∇Mf‖2dρX(x), where M is a compact

submanifold which is the support of marginal distribution ρX(x), and ∇M is the gradient of f defined on M
[13]. Intuitively,

R
x∈M ‖∇Mf‖2dρX(x) is a smoothness penalty corresponding to the probability distribution.

The idea behind
R
x∈M ‖∇Mf‖2dρX(x) is that it reflects the intrinsic structure of ρX(x). Our regularization

term
Pn+u

i,j=1 Wi,j‖f(xi)− f(xj)‖2
ℓ2(Rp) is a corresponding vector form of

Pn+u
i,j=1 Wi,j(f(xi)− f(xj))

2 in [4]. The

regularization framework of the SGL for semi-supervised learning can thus be viewed as a generalization of this

previous work.

Appendix
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A Proof of Theorem 5

To prove Theorem 5, we need several lemmas which require the notations of the following quantities. Denote

Q(f) =

Z

X

Z

X
ω(x − u)((f (x) −∇fρ(x))(u − x))2dρX(x)dρX (u),

the border set
Xs = {x ∈ X : d(x, ∂X) > s and p(x) ≥ (1 + cρ)sθ}

and the moments for 0 ≤ q < ∞

Mq =

Z

Rp
e−

|t|2

2 |t|qdt, fMq =

Z

|t|≤1
e−

|t|2

2 |t|qdt.

Note that Xs is nonempty when s is small enough.

Lemma 8 Under assumptions of Theorem 5,

fM2sp+2+θ

p

Z

Xs

|f(x) −∇fρ(x)|2dρX (x) ≤ Q(f)

Proof For x ∈ Xs, we have d(x, ∂X) > s and p(x) ≥ (1 + cρ)sθ. Thus {u ∈ X : |u − x| ≤ s} ⊂ X and for u ∈ {u ∈ X :
|u− x| ≤ s}, p(u) = p(x) − (p(x) − p(u)) ≥ (1 + cρ)sθ − cρ|u− x|θ ≥ sθ. Therefore,

Q(f) ≥
Z

Xs

Z

‖x−u‖≤s
ωs(x − u)((f (x) −∇fρ(x))(x − u))2p(u)dudρX (x)

≥ sθ

Z

Xs

Z

‖x−u‖≤s
ωs(x − u)((f (x) −∇fρ(x))(x − u))2dudρX (x).

Denote the i-th entry of a vector x by xi. Then ((f(x) −∇fρ(x))(x − u))2 equals to

pX

i=1

pX

j=1

(f i(x) − ∂fρ

∂xi
(x))(fj (x) − ∂fρ

∂xj
(x))(xi − ui)(xj − uj).

For the case i 6= j, we have

Z

|u−x|≤s
ωs(x − u)(xi − ui)(xj − uj)du = sp+2

Z

|t|≤1
e−

|t|2

2 titjdt = 0.

Therefore,

Q(f) ≥ sp+2+θ
pX

i=1

Z

Xs

(f i(x) − ∂fρ

∂xi
(x))2dρX (x)

Z

|t|≤1
e−

|t|2

2 (ti)2dt

=
fM2sp+2+θ

p

Z

Xs

|f(x) −∇fρ(x)|2dρX(x),

which yields the desired estimate.

Lemma 9 Under the assumption of Theorem 5, we have

Q(f) ≤ C1(s4+p + E(f) − 2σ2
s),

where C1 is a constant independent of s or f .

Proof Denote a1 = (f(x) − ∇fρ(x))(u − x) and a2 = fρ(x) − fρ(u) + ∇fρ(x)(u − x). We have Q(f) =
R

X

R
X

ωs(x −
u)(a1)2dρX (x)dρX (u) and

E(f) =

Z

X

Z

X
ωs(x − u)(a1 + a2)2dρX (x)dρX (u) + 2σ2

s .

Note that (a1 + a2)2 ≥ (a1)2 − 2|a1||a2|. Thus

E(f) − 2σ2
s ≥ Q(f) − 2

Z

X

Z

X
ωs(x − u)|a1||a2|dρX(x)dρX (u).

By the fact ∇fρ ∈ H
p
K and lemma 19 in [36], there exists a constant CK > 0 depending on K and fρ such that

|a2| ≤ CK|x− u|2.
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Together with the assumption p(x) ≤ cρ, we have

Z

X

Z

X
ωs(x − u)|a1||a2|dρX(x)dρX (u)

≤
p

Q(f)(

Z

X

Z

X
ωs(x − u)|a2|2dρX (x)dρX (u))

1
2

≤ CK
p

Q(f)(cρ

Z

X

Z

Rp
ωs(x − u)|x − u|4dxdρX (u))

1
2

≤ CK
p

cρM4s2+p/2
p

Q(f). (65)

Combining the above arguments, we obtain

Q(f) − CK
p

cρM4s2+p/2
p

Q(f) ≤ E(f) − 2σ2
s .

This implies the conclusion with C1 = 2max{C2
KcρM4, 1}.

Proof of Theorem 5. Write

‖f −∇fρ‖2
L2

ρX

=

Z

X\Xs

|f(x) −∇fρ(x)|2dρX (x) +

Z

Xs

|f(x) −∇fρ(x)|2dρX(x). (66)

We have

ρX(X\Xs) ≤ cρs + (1 + cρ)cρ|X|sθ ≤ (cρ + (1 + cρ)cρ|X|)sθ,

where |X| is the Lebesgue measure of X. So the first term on the right of (66) is bounded by

κ2(r + ‖∇fρ‖K)2(cρ + (1 + cρ)cρ|X|)sθ.

By lemma 8 and lemma 9, the second term on the right hand of (66) is bounded by

pC1

fM2

1

sp+2+θ
(s4+p + E(f) − 2σ2

s).

Combining these two estimates finishes the proof of the claim with

C0 = κ2(1 + ‖∇fρ‖K)2(cρ + (1 + cρ)cρ|X|) +
pC1

fM2

.

This is the end of the proof.

B Proof of Lemma 2

Proof of Lemma 2. Denote ξ(x, y, u, v) = ωs(x − u)(y − v + f(x)(u − x)). Then E(f) = E(u,v)E(x,y)ξ(x, y,u, v)} and

EZ(f ) = 1
n2

Pn
i,j=1 ξ(xi, yi, xj , yj). One can easily check that

S(Z, r) ≤ sup
f∈Fr

|E(f) − 1

n

nX

j=1

E(x,y)ξ(x, y,xj , yj)|

+ sup
f∈Fr

˛̨
˛̨
˛̨
1

n

nX

j=1

E(x,y)ξ(x, y, xj , yj) − EZ(f )

˛̨
˛̨
˛̨

≤ sup
f∈Fr

E(x,y)

˛̨
˛̨
˛̨E(u,v)ξ(x, y,u, v) − 1

n

nX

j=1

ξ(x, y, xj , yj)

˛̨
˛̨
˛̨

+
1

n

nX

j=1

sup
f∈Fr

sup
(u,v)∈Z

˛̨
˛̨
˛̨E(x,y)ξ(x, y, u, v) − 1

n − 1

nX

i=1,i6=j

ξ(xi, yi,u, v)

˛̨
˛̨
˛̨

+
1

n2(n − 1)

nX

j=1

nX

i6=j,i=1

ξ(xi, yi,xj , yj)

:= S1 + S2 + S3.
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Let ǫi, i = 1, · · · , n be independent Rademacher variables. For S1, by using the properties of Rademacher complexities [45],
we have

ES1(Z) = E(x,y) sup
f∈Fr

˛̨
˛̨
˛̨E(u,v)ξ(x, y, u, v) − 1

n

nX

j=1

ξ(x, y, xj , yj)

˛̨
˛̨
˛̨

≤ 2 sup
(x,y)∈Z

E sup
f∈Fr

˛̨
˛̨
˛̨
1

n

nX

j=1

ǫjωs(x − xj)(yj − y + f(xj)(x − xj))
2

˛̨
˛̨
˛̨

≤ 4(M + κDiam(X)r)

0
@ sup

(x,y)∈Z
E sup

f∈Fr

1

n

nX

j=1

ǫj(yj − y + f(xj)(x − xj)) +
M√

n

1
A

≤ 5(κDiam(X)r + M)2√
n

.

Similarly, we can verify ES2(Z) ≤ 5(κDiam(X)r+M)2√
n

. Obviously, S3 ≤ (M+κDiam(X)r)2

n
. Combining the estimates for

S1, S2 and S3, we can get the desired estimate

ES(Z, r) ≤ 10(κDiam(X)r + M)2√
n

+
(M + κDiam(X)r)2

n
≤ 11(M + κDiam(X)r)2√

n
.

C Proof of Propositions in section 3.3

Firstly, we would like to denote some operators and constants that would be used frequently in this section.

fρ,s,J =

Z

X

Z

X
w(x − u)(fρ(u) − fρ(x))(uJ − xJ)KxdρX (x)dρX (u). (67)

efρ,s,J =

Z

X

Z

X
w(x − u)(fρ(u) − fρ(x))(uJc − xJc )KxdρX (x)dρX (u). (68)

LJ(fJ) =

Z

X

Z

X
w(x − u)

`
fJ(x) · (uJ − xJ)

´
(uJ − xJ)KxdρX(x)dρX (u), ∀ fJ ∈ H

|J|
K . (69)

eLJ(fJ) =

Z

X

Z

X
w(x − u)

`
fJ(x) · (uJ − xJ)

´
(uJc − xJc )KxdρX (x)dρX (u), ∀ fJ ∈ H

|J|
K . (70)

For any d, q ∈ N+, denote

Md,q =

Z

Rd
e−

|t|2

2 |t|qdt.

Denote Diam(X) = supex1,ex2∈X |ex1 − ex2|.

Lemma 10 Let J = J(∇fρ) and ∇Jfρ = (
∂fρ

∂xj )j∈J. Under Assumption 1, we have

‖fρ,s,J − LJ(∇Jfρ)‖K ≤ sp+3κC′
ρCρM|J|,3M|Jc|,2.

Proof According to the definition of fρ,s,J in (67) and LJ in (69), we have

fρ,s,J − LJ∇Jfρ =

Z

X

Z

X
w(x− u)

`
fρ(u) − fρ(x) −∇Jfρ(x) · (uJ − xJ)

´
(uJ − xJ)KxdρX(x)dρX (u).

Assumption 1 implies
|fρ(u) − fρ(x) −∇Jfρ(x) · (uJ − xJ)| ≤ C′

ρ|u− x|2, ∀ u, x ∈ X.

Therefore,

‖fρ,s,J − LJ∇Jfρ‖ ≤ C′
ρ

Z

X

Z

X
w(x − u)|uJ − xJ||u− x|2‖Kx‖KdρX(x)dρX (u)

≤ κC′
ρCρ

Z

X

Z

X
e
− |x−u|2

2s2 |uJ − xJ||u− x|2dxdρX (u)

≤ sp+3κC′
ρCρM|J|,3M|Jc|,2.

The following Proposition which will be used frequently in this paper can be found in [37].

Proposition 12 Let Z = {zi}n
i=1 be i.i.d. draws from a probability distribution ρ on Z, (H, ‖ · ‖) be a Hilbert space, and

F : Zn 7→ H be measurable. If there is fM ≥ 0 such that ‖F (Z) − Ezi(F (Z))‖ ≤ fM for each 1 ≤ i ≤ n and almost every
Z ∈ Zn, then for every ǫ > 0

ProbZ∈Zn
˘‚‚F (Z) − EZ(F (Z))

‚‚ ≥ ǫ
¯
≤ 2 exp

(
− ǫ2

2(fMǫ + σ2)

)
,

where σ2 :=
Pn

i=1 supZ
˘
zi}∈Zn−1 Ezi{

‚‚F (Z) − Ezi(F (Z))
‚‚2¯

.
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Lemma 11 Let Z = {zi}n
i=1 be i.i.d. draws from a probability distribution ρ on Z. Assume fJ ∈ H

|J|
K and independent of

Z. For any ǫ > 0, we have

Prob
˘
‖SZ,J(fJ) − LJ(fJ)‖K ≥ ǫ

¯
≤ 2 exp


− ǫ2

2(Msǫ + σ2
s )

ff
,

where Ms = 4κ2(Diam(X))2‖fJ‖∞
n

, σs = 16κ4CρM|J|,4M|Jc|,0‖fJ‖2
∞

sp+4

n
.

Proof Let F (Z) = SZ,J(fJ) = 1
n(n−1)

Pn
i,j=1 ωs

i,j

`
fJ(xi) · (xj,J − xi,J)

´
(xj,J − xi,J)Kxi . By independence, the expected

value of F (Z) equals

1

n(n − 1)

nX

i=1

Ezi

X

i6=j

Ezj

˘
ωs

i,j

`
fJ(xi) · (xj,J − xi,J)

´
(xj,J − xi,J)Kxi

¯

=
1

n

nX

i=1

Ezi

Z

X
ω(xi − u)

`
fJ(xi) · (uJ − xi,J)

´
(uJ − xi,J)KxidρX(u).

It follows that EZF (Z) = LJ(fJ). Now we would apply Proposition 12 to the function F (Z) to get our error bound on
F (Z) − EZF (Z). Let i ∈ {1, . . . , n}, we know that

F (Z) − EziF (Z) =
1

n(n − 1)

X

j 6=i

ωs
i,j

`
fJ(xi) · (xj,J − xi,J)

´
(xj,J − xi,J)Kxi

+
1

n(n − 1)

X

j 6=i

ωs
i,j

`
fJ(xj) · (xj,J − xi,J)

´
(xj,J − xi,J)Kxj

− 1

n(n − 1)

X

j 6=i

Z

X
e
−

|x−xj |2

2s2
`
fJ(x) · (xj,J − xJ)

´
(xj,J − xJ)KxdρX(x)

− 1

n(n − 1)

X

j 6=i

Z

X
e
− |x−xj |2

2s2
`
fJ(xj) · (xJ − xj,J)

´
(xJ − xj,J)Kxj dρX(x).

Note that Diam(X) = supex1,ex2∈X |ex1 − ex2|. Therefore, |xJ − xj,J| ≤ |x− xj | ≤ Diam(X). For any x ∈ X, we see that

‖F (Z) − Ezi

`
F (Z)

´
‖K ≤ Ms =

4(κDiam(X))2

n
‖fJ‖∞.

Furthermore,

`
Ezi‖F (Z) − EziF (Z)‖2

K
´1/2 ≤ 4

n2

X

j 6=i

0
@
Z

X

 
e
−

|x−xj |

2s2 κ‖fJ‖∞|xj,J − xJ|2
!2

dρX(x)

1
A

1
2

≤ 4κ2
q

CρM|J|,4M|Jc|,0‖fJ‖∞
s

p
2
+2

n
.

Therefore,

σ2 =
nX

i=1

sup
Z\{zi}∈Zn−1

Ezi‖F (Z) − Ezi(F (Z))‖2
K ≤ σ2

s := 16κ4CρM|J|,4M|Jc|,0‖fJ‖2
∞

sp+4

n
.

The lemma follows directly from Proposition 12.

Lemma 12 Let Z = {zi}n
i=1 be i.i.d. draws from a probability distribution ρ on Z. Assume |y| ≤ M almost surely. Let

YJ and fρ,s,J be defined as in (30) and (67). For any ǫ > 0, we have

Prob
˘
‖fρ,s,J − YJ‖K ≥ ǫ

¯
≤ 2 exp

(
− ǫ2

2(MYǫ + σ2
Y

)

)
,

where MY =
8κMDiam(X)

n
, σY = 64κ2M2CρM|J|,2M|Jc|,2

sp+2

n
.

Proof Let F (Z) = YJ = 1
n(n−1)

Pn
i,j=1 ωs

i,j(yi − yj)(xi,J −xj,J)Kxi . By independence, the expected value of F (Z) equals

1

n(n − 1)

nX

i=1

Ezi

X

j 6=i

Ezj ωs
i,j(yi − yj)(xi,J − xj,J)Kxi =

1

n

nX

i=1

Ezi

Z

X
ω(xi − u)(yi − v)(uJ − xi,J)KxidρX (u, v).

It follows that EZF (Z) = fρ,s,J.
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Now we would apply Proposition 12 to the function F (Z) to get our error bound on F (Z) − EZF (Z). Let i ∈
{1, 2, . . . , n}, we know that

F (Z) − EziF (Z) =
1

n(n − 1)

X

j 6=i

ωi,j(yi − yj)(xi,J − xj,J)(Kxi + Kxj )

− 1

n(n − 1)

X

j 6=i

Z

Z
ω(x − xj)(y − yj)(xJ − xj,J)(Kx + Kxj )dρ(x, y).

Using |x − xj | ≤ Diam(X) for any x ∈ X, we see that

‖F (Z) − EziF (Z)‖K ≤ MY =
8κMDiam(X)

n
.

Furthermore, Ezi‖F (Z) − Ezi(F (Z))‖2
K is bounded by

4

n(n − 1)

X

j 6=i

Z

X

`
ω(x − xj)

´2|xj,J − xJ|2(2κM)2dρX(x)

ff1/2

=
8κM

n(n − 1)

X

j 6=i

(Z

X
e
− ‖x−xj‖2

s2 |xj,J − xJ|2Cρdx

)1/2

≤ 8κM
√

sp+2

n

q
CρM|J|,2M|Jc|,0.

Therefore, σ2 =
Pn

i=1 supZ\{zi}∈Zn−1 Ezi

n‚‚F (Z) − Ezi(F (Z))
‚‚2
o

≤ σ2
Y

:= 64κ2M2CρM|J|,2M|Jc|,0
sp+2

n
. The lemma

follows directly from Proposition 12.

The following lemma can be easily derived from Theorem 19 in [37].

Lemma 13 Suppose Assumption 1 holds. Let 0 < s ≤ λ1/(p+2+θ). If ‖L−r
K ∇fρ‖ρ < ∞ for some r ≥ 1

2
, then we have for

any λ > 0,

‖λ(LJ + λI)−1∇Jfρ‖K ≤ Cρ,r(λsp+2)r−1/2n−r,

where Cρ,r = 2
`
Vρ(2π)n/2

´−r‖L−r
K ∇fρ‖ρ.

Proof of Proposition 7 Note that from Cauchy-Schwarz inequality, we have

0
@X

j∈J

‖fj‖K

1
A

2

=

0
@X

j∈J

‚‚‚‚
∂fρ

∂xj

‚‚‚‚
1
2

K

‖fj‖K
‖∂fρ/∂xj‖1/2

K

1
A

2

≤
X

j∈J

‚‚‚‚
∂fρ

∂xj

‚‚‚‚
K

X

j∈J

‖fj‖2
K

‖∂fρ/∂xj‖K
.

We consider the unique minimizer f̄Z,J of the following cost function, built by replacing the regularization by its upper
bound,

F (fJ) =
1

n(n − 1)

nX

i=1

`
yi − yj + fJ(xi) · (xj,J − xi,J)

´2
+ λ

X

j∈J

‚‚‚‚
∂fρ

∂xj

‚‚‚‚
K

X

j∈J

‖fj‖2
K

‖∂fρ/∂xj‖K
. (71)

Firstly, we would prove that there exists a constant 0 < s0 ≤ 1 such that for all 0 < s ≤ s0, we have

Prob


‖ efZ,J −∇Jfρ‖K ≥ 1

2
min
j∈J

‚‚‚‚
∂fρ

∂xj

‚‚‚‚
K

ff
≤ Prob

n
‖f̄Z,J −∇Jfρ‖K ≥ s1−θ

o
. (72)

That is, we need to show that for all 0 < s ≤ s0, ‖f̄Z,J −∇Jfρ‖K < s1−θ implies

‖ efZ,J −∇Jfρ‖K <
1

2
min
j∈J

‚‚‚‚
∂fρ

∂xj

‚‚‚‚
K

.

Consider the cost function defining efZ,J.

eF (fJ) =
1

n(n − 1)

nX

i=1

`
yi − yj + fJ(xi) · (xj,J − xi,J)

´2
+ λ

`X

j∈J

‖fj‖K
´2

.

Denote CF to be the uniform lower bound on the second derivative of
`P

j∈J
‖fj‖K

´2
. Then for all fJ ∈ H

|J|
K , we have

eF (fJ) ≥ eF (f̄Z,J) + 〈fJ − f̄Z,J,∇fJ
eF (f̄Z,J)〉 + CF λ‖fJ − f̄Z,J‖2

K. (73)
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Note that

eF (fJ) − F (fJ) = λ
`X

j∈J

‖fj‖K
´2 − λ

X

j∈J

‚‚‚‚
∂fρ

∂xj

‚‚‚‚
K

X

j∈J

‖fj‖2
K

‖∂fρ/∂xj‖K
.

∇fi
eF (fJ) −∇fiF (fJ) = 2λ

`X

j∈J

‖fj‖K
´ f i

‖f i‖K
− 2λ

`X

j∈J

‖ ∂fρ

∂xj
‖K
´ f i

‖∂fρ/∂xj‖K
.

There exists a constant C′
F > 0 such that

‖∇fi
eF (f̄Z,J)‖K = ‖ eF (f̄Z,J) − F (f̄Z,J) −

` eF (∇Jfρ) − F (∇Jfρ)
´
‖K ≤ C′

F λ‖f̄Z,J −∇Jfρ‖K,

Together with (73) and the fact ‖f̄Z,J −∇Jfρ‖K < s1−θ, for any fJ ∈
˘
fJ : ‖fJ − f̄Z,J‖K =

√
s1−θ

¯
,

eF (fJ) ≥ eF (f̄Z,J) − C′
F λ(s1−θ)

3
2 + CF λs1−θ .

Choose s0 = min

“
CF
C′

F

” 2
1−θ

,
“

1
4

minj∈J

‚‚‚ ∂fρ

∂xj

‚‚‚
K

” 2
1−θ

, 1

ff
, then for all s < s0, we would have eF (fJ) ≥ eF (f̄Z,J). Hence,

we must have all minima inside the ball fJ ∈
˘
fJ : ‖fJ − f̄Z,J‖K =

√
s1−θ

¯
which implies that

‖f̄Z,J − efZ,J‖K ≤
p

s1−θ.

Together with the fact that 0 < s < min{s0, 1} and ‖f̄Z,J −∇Jfρ‖K < s1−θ, we have

‖ efZ,J −∇Jfρ‖K ≤ ‖f̄Z,J −∇Jfρ‖K + ‖f̄Z,J − efZ,J‖K < s1−θ +
p

s1−θ ≤ 2
p

s1−θ ≤ 1

2
min
j∈J

‚‚‚‚
∂fρ

∂xj

‚‚‚‚
K

.

Therefore, the inequality (72) holds.
Now we would prove that there exists constants CJ such that

Prob
n‚‚f̄Z,J −∇Jfρ

‚‚
K ≥ s1−θ

o
≤ 2 exp

˘
−CJnsp+2

¯
. (74)

Since (71) is a regularized least-square problem, we have

f̄Z,J = (SZ,J + λD)−1YJ, (75)

where D =
`P

j∈J
‖ ∂fρ

∂xj ‖K
´
diag(1/‖∂fρ/∂xj‖K)j∈J. Let Dmin = minj′∈J

`P
j∈J

‖ ∂fρ

∂xj ‖K
´
/‖∂fρ/∂xj′‖K and Dmax =

maxj′∈J

`P
j∈J

‖ ∂fρ

∂xj ‖K
´
/
‚‚∂fρ/∂xj′

‚‚
K. Then D is upperbounded and lowerbounded, as an auto-adjoint operator on HK,

by strictly positive constants times the identity operator, that is, DmaxI � D � DminI. Note that f̄Z,J − ∇Jfρ =
(SZ,J + λD)−1(YJ − LJ∇Jfρ) + (SZ,J + λD)−1LJ∇Jfρ −∇Jfρ. Hence

Prob
n‚‚f̄Z,J −∇Jfρ

‚‚
K ≥ s1−θ

o

≤ Prob


‖YJ − LJ∇Jfρ‖K ≥ 1

2
s1−θλ

ff

+Prob

‚‚(SZ,J + λD)−1LJ∇Jfρ −∇Jfρ

‚‚
K ≥ 1

2
s1−θ

ff
. (76)

Choosing λ = eCM,θsp+2+θ and using lemma 10, we have

Prob


‖YJ − LJ∇Jfρ‖K ≥ 1

2
s1−θλ

ff

≤ Prob

‚‚YJ − fρ,s,J

‚‚
K ≥ 1

2
s1−θλ −

‚‚fρ,s,J − LJ∇Jfρ

‚‚
K

ff

≤ Prob

‚‚YJ − fρ,s,J

‚‚
K ≥ 1

2
sp+3

ff

≤ exp


− s2p+6

2(MY sp+3 + σY )

ff
≤ exp

˘
−CY nsp+4

¯
. (77)

where CY = 1
16κMDiamX+128κ2M2CρM|J|,2M|Jc|,0

. On the other hand,

(SZ,J + λD)−1LJ∇Jfρ −∇Jfρ =
˘
(SZ,J + λD)−1 − (LJ + λD)−1

¯
LJ∇Jfρ + (LJ + λD)−1λD.

Since (SZ,J + λD)−1 − (LJ + λD)−1 = (SZ,J + λD)−1(LJ − SZ,J)(LJ + λD)−1, we have

‚‚˘(SZ,J + λD)−1 − (LJ + λD)−1
¯
LJ∇Jfρ

‚‚
K ≤ 1

λ
‖LJ∇Jfρ − SZ,J∇Jfρ‖K.
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Together with lemma 13 and the fact nrs(2p+4+θ)(1/2−r)+1−θ ≥ 4Dmax(Dmin)r− 3
2 ( eCM,θ)r− 1

2 Cρ,r, we have

Prob

‚‚(SZ,J + λD)−1LJ∇Jfρ −∇Jfρ

‚‚
K ≥ 1

2
s1−θ

ff

≤ Prob


‖LJ∇Jfρ − SZ,J∇Jfρ‖K ≥ 1

2
λs1−θ − DmaxCρ,r(Dmin)r− 3

2 λ(λsp+2)r−1/2n−r

ff

≤ Prob


‖LJ∇Jfρ − SZ,J∇Jfρ‖K ≥ 1

4
λs1−θ

ff
.

Then using lemma 11, we can easily get

Prob

‚‚(SZ,J + λD)−1LJ∇Jfρ −∇Jfρ

‚‚
K ≥ 1

2
s1−θ

ff
≤ 2 exp{− eCsnsp+4}, (78)

where eCs =
( eCM,θ)2

16(κ(Diam(X))2‖∇fρ‖∞ eCM,θ+16κ4CρM|J|,4M|Jc|,0‖∇fρ‖2
∞)

.

Combining (76), (77) and (78), we get (74) by letting CJ = min{CY , eCs}. Together with (72), we get the desired result.

Lemma 14 Let Z = {zi}n
i=1 be i.i.d. draws from a probability distribution ρ on Z. Assume fJ ∈ H

|J|
K and independent of

Z. For any ǫ > 0, we have

Prob
n
‖eSZ,J(fJ) − eLJ(fJ)‖K ≥ ǫ

o
≤ exp

(
− ǫ2

2(fMsǫ + eσ2
s )

)
,

where fMs =
4(κDiam(X))2‖fJ‖∞

n
and eσ2

s = 16κ4CρM|J|,2M|Jc|,2‖fJ‖∞ sp+4

n
.

Proof Let F (Z, fJ) = SZ,J(fJ) = 1
n(n−1)

Pn
i,j=1 ωs

i,j

`
fJ(xi) · (xj,J − xi,J)

´
(xj,Jc − xi,Jc )Kxi . By independence, the

expected value of F (Z, fJ) equals

1

n(n − 1)

nX

i=1

Ezi

X

i6=j

Ezj

˘
ωs

i,j

`
fJ(xi) · (xj,J − xi,J)

´
(xj,Jc − xi,Jc )Kxi

¯

=
1

n

nX

i=1

Ezi

Z

X
ω(xi − u)

`
fJ(xi) · (uJ − xi,J)

´
(uJc − xi,Jc)KxidρX (u).

It follows that EZF (Z, fJ) = LJ(fJ). Now we would apply Proposition 12 to the function F (Z, fJ) to get our error bound
on F (Z, fJ) − EZF (Z, fJ). Let i ∈ {1, . . . , n}, we know that

F (Z, fJ) − EziF (Z, fJ) =
1

n(n − 1)

X

j 6=i

ωs
i,j

`
fJ(xi) · (xj,J − xi,J)

´
(xj,Jc − xi,Jc )Kxi

+
1

n(n − 1)

X

j 6=i

ωs
i,j

`
fJ(xj) · (xj,J − xi,J)

´
(xj,Jc − xi,Jc )Kxj

− 1

n(n − 1)

X

j 6=i

Z

X
e
−

|x−xj |2

2s2
`
fJ(x) · (xj,J − xJ)

´
(xj,Jc − xJc )KxdρX (x)

− 1

n(n − 1)

X

j 6=i

Z

X
e
− |x−xj |2

2s2
`
fJ(xj) · (xJ − xj,J)

´
(xJc − xj,Jc)Kxj dρX(x).

Note that Diam(X) = supex1,ex2∈X |ex1 − ex2|. Therefore, max{|xJ − xj,J|, |xJc − xj,Jc |) ≤ |x − xj | ≤ Diam(X). For any
x ∈ X, we see that

‖F (Z, fJ) − Ezi

`
F (Z, fJ)

´
‖K ≤ fMs =

4(κDiam(X))2‖fJ‖∞
n

.

Furthermore,

`
Ezi‖F (Z, fJ) − EziF (Z, fJ)‖2

K
´1/2 ≤ 4κ

n2

X

j 6=i

0
@
Z

X

 
e
− |x−xj |

2s2 κ‖fJ‖∞|xj,J − xJ||xj,Jc − xJc |
!2

dρX(x)

1
A

1
2

≤ 4κ2
q

CρM|J|,2M|Jc|,2‖fJ‖∞
s

p
2
+4

n
.

Therefore,

σ2 =
nX

i=1

sup
Z\{zi}∈Zn−1

Ezi‖F (Z, fJ) − Ezi(F (Z, fJ))‖2
K ≤ eσ2

s := κ2CρM|J|,2M|Jc|,2‖fJ‖∞
sp+4

n
.
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According to Proposition 12, for any ǫ > 0, we have

Prob
n
‖eSZ,J(fJ) − eLJ(fJ)‖K ≥ ǫ

o
≤ exp

(
− ǫ2

2(fMsǫ + eσ2
s )

)
,

where fMs = 4(κDiam(X))2‖fJ‖∞
n

and eσ2
s = 16κ4CρM|J|,2M|Jc|,2‖fJ‖∞ sp+4

n
.

Note that B1 = {fJ : ‖fJ‖K ≤ 1} and JK be the inclusion map from B1 to C(X). Let 0 < η < 1
2
. The covering number

N (JK(B1), η) is the minimal ℓ ∈ N such that there exists ℓ disks in JK(B1) with radius η covering S.

Proposition 13 Let Z = {zi}n
i=1 be i.i.d. draws from a probability distribution ρ on Z. For any ǫ > 0, we have

Prob{‖eSZ,J − eLJ‖K < ǫ} ≥ 1 −N
„

JK(B1),
ǫ

8(κDiam(X))2

«
exp

(
− ǫ2

4(f̄M sǫ + 2ēσ2
s)

)
.

where f̄Ms =
4(κDiam(X))2

n
and ēσ2

s = 16κ4CρM|J|,2M|Jc|,2
sp+4

n
. In particular,

Prob
n
‖eSZ,J − eLJ‖K < sp+2+θ

o
≥ 1 −N

„
JK(B1),

sp+2+θ

8(κDiam(X))2

«
exp

n
−Cesnsp+2+θ

o
, (79)

where Ces = 1/
`
16(κDiam(X))2 + 32κ4CρM|J|,2M|Jc|,2

´
.

Proof (1) Let N = N
“
JK(B1), ǫ

8(κDiam(X))2

”
. Note that B1 is dense in JK(B1), there exists fJ,j ∈ H

|J|
K , j = 1, . . . , N

such that disks Dj center at fJ,j with radius ǫ
4(κDiam(X))2

cover JK(B1). It is easy to see that, for any fJ ∈ Dj ∩ H
|J|
K ,

we have
‖eSZ,J(fJ) − eLJ(fJ) − eSZ,J(fJ,j ) + eLJ(fJ,j)‖K ≤ 2(κDiam(X))2‖fJ − fJ,j‖∞ ≤ ǫ

2
.

Since this holds for all fJ ∈ Dj ∩ H
|J|
K , we get

sup
fJ∈Dj∩H

|J|
K

‖eSZ,J(fJ) − eLJ(fJ)‖K ≥ ǫ =⇒ ‖eSZ,J(fJ,j) − eLJ(fJ,j)‖K ≥ ǫ

2
.

We conclude that, for j = 1, . . . , N ,

Prob

8
<
: sup

fJ∈Dj∩H
|J|
K

‖eSZ,J(fJ) − eLJ(fJ)‖K ≥ ǫ

9
=
; ≤ Prob

n
‖eSZ,J(fJ,j) − eLJ(fJ,j)‖K ≤ ǫ

2

o
.

Note that B1 = {fJ : ‖fJ‖K ≤ 1} = (D1 ∩ H
|J|
K ) ∪ . . . ∪ (DN ∩ H

|J|
K ), we have

Prob

(
sup

‖fJ‖K≤1
‖eSZ,J(fJ) − eLJ(fJ)‖K ≤ ǫ

)
≤

NX

j=1

Prob

8
<
: sup

fJ∈Dj∩H
|J|
K

‖eSZ,J(fJ) − eLJ(fJ)‖K ≥ ǫ

2

9
=
; .

Together with lemma 14, we have

Prob{‖eSZ,J − eLJ‖K < ǫ} ≥ 1 − 2N
„

JK(B1),
ǫ

8(κDiam(X))2

«
exp

(
− ǫ2

4(fMsǫ + 2eσ2
s )

)
.

where f̄Ms =
4(κDiam(X))2

n
and ēσ2

s = 16κ4CρM|J|,2M|Jc|,2
sp+4

n
. Letting ǫ = sp+2+θ, (79) follows directly.

Proof of Proposition 8: It is easy to see that ‖eLJ(fJ)‖K ≤
R

X

R
X κ2‖fJ‖Kω(x−u)|uJ−xJ||uJc −xJc |p(x)dxdρ(u).

Using the fact that ω(x)|xJ||xJc | = ω(−x)| − xJ|| − xJc | and |p(x) − p(u)| ≤ Cρ|x− u|θ, we have

‖eLJ‖K ≤ κ2CρM|J|,1M|Jc|,1sp+2+θ.

Note that ‖eSZ,J − eLJ‖K ≥ ‖eSZ,J‖K −‖eLJ‖K. The inequality ‖eSZ,J‖K ≥ (κ2CρM|J|,1M|Jc|,1 +1)sp+2+θ implies ‖eSZ,J −
eLJ‖K ≥ sp+2+θ. Together with Lemma 14, we have

Prob(Ωc
4) ≤ Prob

n
‖eSZ,J − eLJ‖K ≥ sp+2+θ

o

≤ N
„

JK(B1),
sp+2+θ

8(κDiam(X))2

«
exp

n
−Cesnsp+2+θ

o
.

The desired result follows by using Prob(Ωc
4) = 1 − Prob(Ω4).
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Proof of Proposition 9: On the event Ω0, we have 2
3
DminI � Dn � 2DmaxI. Therefore,

‖(SZ,J + λDn)−1Dn∇Jfρ‖K

≤ 2Dmax

‚‚‚‚(SZ,J +
2

3
DminλI)−1∇Jfρ

‚‚‚‚
K

≤ 2Dmax

‚‚‚‚(SZ,J +
2

3
DminλI)−1∇Jfρ − (LJ +

2

3
DminλI)−1∇Jfρ

‚‚‚‚
K

+ 2Dmax

‚‚‚‚(LJ +
2

3
DminλI)−1∇Jfρ

‚‚‚‚
K

≤ 9Dmax

2D2
minλ2

‖(LJ − SZ,J)∇Jfρ‖K +
3Dmax

Dminλ

‚‚‚‚(LJ +
2

3
DminλI)−1 2

3
Dminλ∇Jfρ

‚‚‚‚
K

.

Together with lemma 13, on the event Ω0 ∩ Ω4,

‖eSZ,J(SZ,J + λDn)−1Dn∇Jfρ‖K
≤ ‖eSZ,J‖K‖(SZ,J + λDn)−1Dn∇Jfρ‖K

≤
9Dmax

`
κ2CρM|J|,1M|Jc|,1 + 1

´
sp+2+θ

2D2
minλ2

‖(LJ − SZ,J)∇Jfρ‖K

+
3Dmax

Dminλ

`
κ2CρM|J|,1M|Jc|,1 + 1

´
Cρ,r(

2

3
Dminλsp+2)r− 1

2 n−rsp+2+θ.

If nrs(2p+4+θ)( 1
2
−r) ≥ eCD,θ, then ‖eSZ,J(SZ,J + λDn)−1Dn∇Jfρ‖K ≥ 1

6
‖∇fρ‖K implies

‖LJ∇Jfρ − SZ,J∇Jfρ‖K ≥
‖∇Jfρ‖KD2

min
eC2

M,θ

54Dmax(κ2CρM|J|,1M|Jc|,1 + 1)
sp+2+θ.

Therefore,

Prob(Ωc
1|Z ∈ Ω0 ∩ Ω4) ≤ Prob

n
‖LJ∇Jfρ − SZ,J∇Jfρ‖K ≥ CD,κ,ρsp+2+θ

o
, (80)

where CD,κ,ρ =
‖∇Jfρ‖KD2

min
eC2

M,θ

54Dmax(κ2CρM|J|,1M|Jc|,1+1)
. Together with lemma 11, we get the desired result by letting CΩ1

=

C2
D,κ,ρ/

`
8κ2(Diam(X))2‖∇fρ‖∞CD,κ,ρ + 16κ4CρM|J|,4M|Jc|,0‖∇fρ‖2

∞
´
.

Lemma 15 Let Z = {zi}n
i=1 be i.i.d. draws from a probability distribution ρ on Z. Assume fJ ∈ H

|J|
K and independent of

Z. For any ǫ > 0, we have

Prob
n
‖eSZ,J(fJ) − eYJ − (eLJ(fJ) − efρ,s,J)‖K ≥ ǫ

o
≤ 2 exp

(
− ǫ2

2(cMsǫ + bσ2
s )

)
,

where cMs = 4(κDiam(X))2

n
(2M + ‖fJ‖∞) and bσ2

s =
`
κ
p

CρM|J|,2M|Jc|,2‖fJ‖∞ + 2Mκ
p

CρM|J|,1M|Jc|,1
´2 sp+4

n
.

Proof Let F (Z) = eSZ,J(fJ)− eYJ = 1
n(n−1)

Pn
i,j=1 ωs

i,j

`
yi − yj + fJ(xi) · (xj,J −xi,J)

´
(xj,J −xi,J)Kxi . By independence,

the expected value of F (Z) equals

1

n(n − 1)

nX

i=1

Ezi

X

i6=j

Ezj

˘
ωs

i,j

`
yi − yj + fJ(xi) · (xj,J − xi,J)

´
(xj,J − xi,J)Kxi

¯

=
1

n

nX

i=1

Ezi

Z

Z
ω(xi − u)

`
yi − v + fJ(xi) · (uJ − xi,J)

´
(uJ − xi,J)Kxidρ(u, v).

It follows that EZF (Z) = eLJ(fJ)−efρ,s,J. Now we would apply Proposition 12 to the function F (Z) to get our error bound
on F (Z) − EZF (Z). Let i ∈ {1, . . . , n}, we know that

F (Z) − EziF (Z) =
1

n(n − 1)

X

j 6=i

ωs
i,j

`
yi − yj + fJ(xi) · (xj,J − xi,J)

´
(xj,J − xi,J)Kxi

+
1

n(n − 1)

X

j 6=i

ωs
i,j

`
yi − yj + fJ(xj) · (xj,J − xi,J)

´
(xj,J − xi,J)Kxj

− 1

n(n − 1)

X

j 6=i

Z

Z
e
− |x−xj |2

2s2
`
y − yj + fJ(x) · (xj,J − xJ)

´
(xj,J − xJ)Kxdρ(x, y)

− 1

n(n − 1)

X

j 6=i

Z

Z
e
−

|x−xj |2

2s2
`
y − yj + fJ(xj) · (xJ − xj,J)

´
(xJ − xj,J)Kxj dρ(x, y).

Note that Diam(X) = supex1,ex2∈X |ex1 − ex2|. Therefore, max{|xJ − xj,J|, |xJc − xj,Jc |} ≤ |x − xj | ≤ Diam(X). For any
x ∈ X, we see that

‖F (Z) − Ezi

`
F (Z)

´
‖K ≤ cMs =

4(κDiam(X))2

n
(2M + ‖fJ‖∞).
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Furthermore,

`
Ezi‖F (Z) − EziF (Z)‖2

K
´1/2 ≤ 4

n2

X

j 6=i

0
@
Z

X

 
e
− |x−xj |

2s2 (2M + κ‖fJ‖∞)|xj,J − xJ|2
!2

dρX(x)

1
A

1
2

≤
“
κ
q

CρM|J|,2M|Jc|,2‖fJ‖∞ + 2Mκ
q

CρM|J|,1M|Jc|,1
” s

p
2
+1

n
.

Therefore,

σ2 =
nX

i=1

sup
Z\{zi}∈Zn−1

Ezi‖F (Z) − Ezi(F (Z))‖2
K

≤ bσ2
s :=

“
κ
q

CρM|J|,2M|Jc|,2‖fJ‖∞ + 2Mκ
q

CρM|J|,1M|Jc|,1
”2 sp+2

n
.

The lemma follows directly from Proposition 12.

Proof of Proposition 10: According to the definition of efρ,s,J in (68) and eLJ in (70), we have

efρ,s,J − eLJ∇Jfρ =

Z

X

Z

X
w(x− u)

`
fρ(u) − fρ(x) −∇Jfρ(x) · (uJ − xJ)

´
(uJc − xJc )KxdρX(x)dρX (u).

Assumption 1 implies

|fρ(u) − fρ(x) −∇Jfρ(x) · (uJ − xJ)| ≤ C′
ρ|u− x|2, ∀ u, x ∈ X.

Hence,

‖efρ,s,J − eLJ∇Jfρ‖ ≤ C′
ρ

Z

X

Z

X
w(x − u)|uJc − xJc ||u− x|2‖Kx‖KdρX(x)dρX (u)

≤ κC′
ρCρ

Z

X

Z

X
e
− |x−u|2

2s2 |uJc − xJc ||u− x|2dxdρX(u)

≤ sp+3κC′
ρCρM|J|,2M|Jc|,3.

Note that ‖eYJ − eSZ,J∇Jfρ‖ ≤ ‖efρ,s,J − eLJ∇Jfρ‖ + ‖eYJ − eSZ,J∇Jfρ − (efρ,s,J − eLJ∇Jfρ)‖. Choose λ = eCM,θsp+2+θ, we
have

Prob(Ωc
2) ≤ Prob

n
‖eYJ − eSZ,J∇Jfρ − (efρ,s,J − eLJ∇Jfρ)‖K ≥ sp+2+θκC′

ρCρM|J|,2M|Jc|,3
o

. (81)

The desired result follows directly from lemma 15.

Proof of Proposition 11: On the event Ω0, we have 2
3
DminI � Dn � 2DmaxI. Therefore,

‖(SZ,J + λDn)−1(YJ − SZ,J∇fρ)‖K ≤ 3

2Dminλ

‚‚YJ − SZ,J∇fρ

‚‚
K

Together with lemma 13, on the event Ω0 ∩ Ω4,

‖eSZ,J(SZ,J + λDn)−1(YJ − SZ,J∇fρ)‖K
≤ ‖eSZ,J‖K‖(SZ,J + λDn)−1(YJ − SZ,J∇fρ)‖K

≤
κ2CρM|J|,1M|Jc|,1 + 1

2Dminλ
sp+2+θ

‚‚YJ − SZ,J∇fρ

‚‚
K .

Note that ‖YJ − SZ,J∇fρ‖K ≤ ‖YJ − SZ,J∇fρ + LJ∇Jfρ − fρ,s,J‖K + ‖LJ∇fρ − fρ,s,J‖K. Choosing λ = eCM,θsp+2+θ

with eCM,θ in (35) and using lemma 10, we have

Prob(Ωc
3|Z ∈ Ω0 ∩ Ω4) ≤ Prob

n
‖YJ − SZ,J∇fρ + LJ∇Jfρ − fρ,s,J‖K ≥ sp+2+θ

o

≤ Prob


‖YJ − fρ,s,J‖K ≥ sp+2+θ

2

ff
+ Prob


‖LJ∇Jfρ − SZ,J∇fρ‖K ≥ sp+2+θ

2

ff
.

Together with lemma 11 and lemma 12, we get the desired result.
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