DISEASE GENE DISCOVERY THROUGH INTEGRATIVE GENOMICS

Cosmas Giallourakis,1,2 Charlotte Henson,1 Michael Reich,1 Xiaohui Xie,1 Vamsi K. Mootha1,3,4
1Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02139; 2Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts 02114; 3Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02446; 4Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114; email: vamsi@hms.harvard.edu

Key Words human genetics, positional cloning, functional genomics, machine learning

Abstract The availability of complete genome sequences and the wealth of large-scale biological data sets now provide an unprecedented opportunity to elucidate the genetic basis of rare and common human diseases. Here we review some of the emerging genomics technologies and data resources that can be used to infer gene function to prioritize candidate genes. We then describe some computational strategies for integrating these large-scale data sets to provide more faithful descriptions of gene function, and how such approaches have recently been applied to discover genes underlying Mendelian disorders. Finally, we discuss future prospects and challenges for using integrative genomics to systematically discover not only single genes but also entire gene networks that underlie and modify human disease.

INTRODUCTION

Elucidating the inherited basis of human disease fundamentally involves linking genomic variation to clinical phenotype. Establishing this relationship, however, can be challenging for several reasons. First, many disease phenotypes are difficult to ascertain, may be heterogeneous, and can be influenced by environmental factors. Second, current genotyping technologies do not permit routine, comprehensive characterization of genomic variation in a large cohort of cases and controls; hence, it is still necessary to focus on variation within high-priority regions of the genome, such as protein-encoding genes. Finally, even when phenotype and a genotype are ascertained in a comprehensive and reliable manner, establishing reliable linkage or association may be statistically challenging, due to the limited number of cases, limited recombination resolution, or admixture.

Despite these challenges, human genetics has been extremely successful, especially for Mendelian diseases, during the past 15 years. The Online Mendelian
Inheritance in Man (OMIM) website lists a total of 1655 inherited human diseases for which genes have been identified, as well as an additional 1436 inherited diseases for which an underlying genetic basis has not yet been discovered (OMIM statistics, November 30, 2004). Much of this success can be attributed to the availability of genetic tools, initially genetic maps and more recently the sequence of the entire human genome (59, 111). Botstein & Risch (14) suggest that the disease genes discovered to date likely represent the easy ones, and that discovering the genetic basis of the remaining Mendelian and complex disorders will be more challenging, perhaps due to the rarity of the phenotypes, due to genetic heterogeneity, or because of complex genetics, i.e., multiple genes and modifiers contributing to a phenotype.

Fortunately, genomics has sparked the creation of vast new functional clues about genes and genomic elements that can aid in our search for human disease genes. New technologies, such as microarrays and tandem mass spectrometry, now enable genome-scale monitoring of RNA, protein, and metabolite abundance, under baseline and perturbed states. Complete genome sequences are available for a variety of organisms, facilitating the annotation of gene structures and regulatory elements. Embedded within these vast databases of information are correlations that weave together genes and genomic elements into functional networks. These networks include well-characterized genes (including the ~1500 genes previously linked to human disease) as well as the vast majority of the genes and genomic elements about which very little is known (Figure 1).

Figure 1 Distribution of literature citations per protein-encoding gene in the human genome. Shown on the x-axis is the number of PubMed citations/gene, and on the y-axis is the number of genes with that number of citations. Data were generated October 19, 2004.
These data sets can be mined to systematically prioritize genes that can be tested individually or collectively for variation in human diseases. Moreover, analyzing these large-scale data sets may help shed insight into disease mechanisms for genes implicated by association studies.

In this article, we review recent progress in utilizing and integrating functional genomic data sources (i.e., integrative genomics) to expedite human disease gene discovery. We begin with a brief overview of the traditional approaches for disease gene discovery. Next we review the wide array of genomics technologies and data sets now becoming available and how they are being used individually to aid in our search for candidate disease genes. Then we discuss practical approaches for integrating these data sets to boost sensitivity and specificity to construct more faithful functional relationships among genes. Finally we discuss future opportunities and challenges for disease gene discovery through integrated analysis of genome-scale information.

TRADITIONAL APPROACHES FOR DISEASE GENE DISCOVERY

Two approaches have traditionally been used to discover genes underlying human diseases: the candidate gene approach and positional cloning via linkage analysis.

The candidate approach relies on prior biochemical knowledge about the disease genes, such as tissues in which they are expressed or putative functional protein domains. Genes are prioritized using these clues and sequentially tested in association studies for segregating mutations or polymorphisms. Genes underlying retinitis pigmentosa (27, 30), familial hypertrophic cardiomyopathy (35), and Li-Fraumeni syndrome (65) were all discovered in this manner.

Positional cloning, on the other hand, does not formally require prior knowledge about gene function. Traditionally these studies are performed in large families with multiple affected members using microsatellite markers and other DNA polymorphisms. Alleles of markers that segregate with the disease help delineate a critical region within which the disease gene lies. This method has been quite effective for mapping the genetic variation underlying Mendelian disease, even though the nature of positional cloning limits its resolution to relatively large regions of the genome. Given the spacing of markers and the observed number of meioses, the resolution limit is on the order of 1–10 centiMorgans (cM). In most favorable cases the critical interval consists of a few dozen genes within 1 cM, but in other cases the interval may include several hundred genes. Researchers must then sift through the candidate genes within this critical region to identify mutations in genes that segregate with the disease.

It is useful to consider the search for the cystic fibrosis (CF) gene—a positional cloning expedition that occupied several labs for many years—and how the search might be performed differently today. In 1985, Lap-Chee Tsui and colleagues (106) used linkage analysis to map the disease to chromosome 7. By testing
additional markers, they mapped the disorder to a 1.5-Mb interval flanked by the protooncogene \textit{MET} and the marker \textit{D7S8} (107). Researchers used chromosome jumping and cloning in yeast artificial chromosomes to further delineate the interval and relied on other clues—evolutionary conservation, presence of an mRNA transcript, hypomethylated CpG islands—to ascertain gene structures. Simultaneously, clinical researchers discovered that CF patients exhibit defects in chloride transport. By 1990 mutations in the \textit{CFTR} gene were identified, and researchers demonstrated that when the fully cloned gene was reintroduced into CF cells, defective ion transport could be rescued (26, 82). Together, these studies established \textit{CFTR} as the gene underlying CF.

How might this search be different if it occurred today? First, the availability of the genome sequence offers a virtually unlimited source of markers for positional cloning (of course, many of these may be linked), thus assigning the disease to a narrower genomic locus. After mapping CF to the interval flanked by \textit{MET} and \textit{D7S8}, we could (in a single afternoon) examine the human genome browser (11, 56) and rapidly identify 14 known and predicted gene structures within the 1.6-Mb interval. We could then ask which genes are functionally associated with “clues” provided by the disease. For example, it was known that CF was likely due to a defect in ion channel activity and that the pancreas, lungs, and glands are particularly affected. Today, we can immediately determine that three (\textit{MET}, \textit{ST7}, \textit{CFTR}) of the 14 genes within this interval encode transmembrane proteins (92). Of these 14 genes, \textit{ST7} shows nearly ubiquitous expression whereas \textit{MET} exhibits limited expression in bronchoepithelial cells. \textit{CFTR}, on the other hand, shows enriched expression in fetal lung, pancreas, and salivary glands (http://symatlas.gnf.org/SymAtlas/), precisely the tissues most affected in CF. Hence, \textit{CFTR} emerges as an attractive candidate by joining these publicly available data sets. Of course, we would still have to sequence the gene in patients and controls and demonstrate segregating mutations as well as additional functional support, but this example illustrates how rapidly we can prioritize candidate genes with freely available functional genomics data.

In the next few sections, we review new genomic resources that are now becoming available and how they are being used in clever ways to discover genes underlying human diseases.

HUMAN GENOME SEQUENCE AND ITS FUNCTIONAL ELEMENTS

A draft sequence of the human genome was published in 2001 (59, 111) and more recently in completed form (48a), representing the most valuable resource for disease gene discovery. An international effort is currently underway to systematically catalog common variation across selected populations of humans, which promises to expedite the mapping of human phenotypic traits by providing a virtually unlimited collection of markers (83).
Analysis of the human genome has revealed that of the 2.85 billion bases in the genome, only 1.2% of the sequence encodes the estimated 22,500 proteins. However, comparative sequence analysis suggests that about 5% of the genome is under evolutionary selection based on human-mouse comparisons, and thus is likely to be functionally important (113). Hence, in addition to protein-coding exons, there are a vast number of “features” present in the genome’s landscape. In principle, these additional, conserved regions represent functional elements that may represent high-quality candidate disease genes.

One subset of the conserved elements encodes an estimated 200–400 micro-RNAs (10) that help regulate the expression of thousands of human genes (54, 61, 115). MicroRNAs are evolutionarily conserved genes whose transcripts are processed to form short, single-stranded 21–23 nucleotide RNA species that typically bind to the untranslated regions (UTRs) of genes to cooperate with a set of proteins to either halt translation or promote RNA cleavage/degradation (8). Another subset of conserved elements encodes thousands of antisense transcripts, which are developmentally regulated and expressed in a tissue-specific manner to regulate target genes (13, 57).

While the above elements are transcribed, another large fraction of conserved features represent putative regulatory elements. Such features include cis-elements that control expression of individual or small groups of transcripts, such as promoters, enhancers, and insulators, or structural elements such as locus control regions and matrix attachment sites that may control the architecture of large chromosomal territories (75, 85, 101). Comparative sequence analysis has helped in the discovery and annotation of hundreds of such regulatory elements that are enriched upstream or downstream of functionally related genes (9, 115), and elegant experimental approaches are being developed to elucidate their roles (64).

Although theoretically any nucleotide in the genome can contribute to human diseases, in the near future we will still have to prioritize segments of the genome. In addition to protein-encoding genes, these additional classes of functional elements naturally expand the inventory of candidate genomic elements that ought to be prioritized in disease gene expeditions. In the next few sections, we discuss some experimental and computational approaches for collectively understanding the function of these genomic elements.

INFERRING FUNCTION THROUGH GENOME-SCALE DATA SETS

Having a handle on the function of a gene enables researchers to assess its candidacy in an inherited disease. Currently, only a small fraction (~25%) of all protein encoding genes are well characterized using traditional approaches (Figure 1). Historically, candidate gene approaches for rare and common diseases have focused on this small fraction of well-characterized genes, and, as stated above, these protein-encoding genes represent only a fraction of all evolutionarily conserved elements.
Some of the systematic strategies for inferring gene function.

Figure 2

Genome-scale experiments afford an opportunity to rapidly annotate the other genes in the genome so that they can be considered in such studies. These technologies include DNA microarrays, mass spectrometry-based proteomics, and genome-wide RNAi screens. Thanks to sharing policies enforced by funding agencies and journals, these data sets are being deposited into the public domain. Gene expression profiles of cells in response to radiation (108), proteomic surveys of malaria during developmental stages (31), and genome-wide RNAi screens in worms (32) represent just a few examples of the types of data that shed insight into many of the genes. Such experiments do not provide an in-depth understanding of an individual gene, and they tend to be noisy relative to traditional experiments. But they do provide simultaneous snapshots of all the genes in the genome that collectively can be useful. Simple “guilt by association” strategies can be used to mine these large-scale data sets to infer the function of poorly characterized genes (Figure 2). For example, two genes that share RNA expression profiles, or whose protein products physically interact, may be functionally related. Hence, these large-scale data sets enable us to search for relationships between genes that may not be apparent at the level of sequence. These different functional genomic experiments provide complementary views of gene function and facilitate more reliable grouping of genes based on shared roles in the cell. In the next few sections, we consider some of the functional genomic data sets and analytical strategies already being used to discover human disease genes.
Fully Sequenced Genomes

Sequencing technologies and computational algorithms have matured so that sequencing and assembling entire genomes in a matter of weeks to months is relatively straightforward. Draft genome sequences are currently available or will soon become available for a number of vertebrates, including mouse, rat, dog, chimpanzee, and chicken (37, 45, 113). In addition, hundreds of genome sequences are available from other animals, plants, and fungi.

Phylogenetic profiling is a powerful computational strategy that leverages these completed genome sequences to infer gene function (78, 100). The strategy is based on the assumption that functionally related genes will likely evolve in a correlated fashion, and therefore they are likely to share homologs among organisms. A phylogenetic profile for each gene can be created in the form of a binary vector representing whether the homolog of the gene is present in a set of sequenced organisms. Phylogenetic profiles can then be organized based on similarity.

Recently, two groups published elegant studies (21, 62) in which they integrated genetic linkage intervals with phylogenetic profiles to discover genes underlying Bardet-Biedel syndrome (BBS). BBS is a multisystem disorder characterized by retinal degeneration, obesity, polydactyly, renal and genital malformations, and learning disabilities. Defective basal body function has been implicated in the pathogenesis of this pleiotropic disease. Six genes associated with BBS have been identified ($BBS1$, $BBS2$, $BBS4$, $BBS6/MKKS$, $BBS7$, and $BBS8$), and all encode protein components of the flagellar and basal body (FABB). The two studies discovered additional genes underlying other forms of BBS by beginning with the clinical clue that previously characterized BBS forms are due to defects in FABB.

Li et al. (62) considered $BBS5$, which resides within one of the intervals associated with this syndrome. They compared three genomes—human, *Chlamydomonas*, and *Arabidopsis*—to compile a list of putative FABB components. Specifically, they reasoned that because this apparatus is found in humans and in *Chlamydomonas* but not in plants, proteins contained in the first two genomes but not in the third would serve as a high-quality list enriched in the FABB list. They noted that proteins mutated in five of the previously described six BBS proteins were in this list of 688 proteins, and that 52 of the previously known 58 FABB proteins were in this list, demonstrating the sensitivity of their approach. Finally, they crossed this list with the list of genes residing within the 2q31 genetic interval linked to $BBS5$. This is a large region, with ~230 protein-encoding genes. Only two of these genes intersected with the FABB proteome, and one had a splice site mutation that segregates with the disease in one family, and additional genetic data supported its involvement in $BBS5$.

Chiang et al. (21) investigated the molecular etiology of $BBS3$, which had been linked to a 10-cM interval (containing an estimated 64 genes) in a single Bedouin family. Chiang et al. reasoned that organisms containing orthologues to the known BBS genes likely contain orthologues to as-yet-unidentified BBS genes. They compared human genes with those from 11 fully sequenced metazoan genomes.
and identified a total of 1588 genes that shared phylogenetic profiles with the known BBS genes. Four of these genes landed within the 10-cM critical region, one of which harbored a truncation mutation that segregated with the disease phenotype. These studies demonstrate the power of phylogenetic profiling for homing in on candidate disease genes, especially for syndromes and for other Mendelian disorders.

Global Profiles of RNA Expression

Systematic RNA expression profiling represents one of the earliest functional genomics technologies (1, 19, 86, 110). Some of these technologies, such as expressed sequence tags (ESTs) and serial analysis of gene expression (SAGE), enable the discovery and quantitation of expressed genes in a particular tissue or cell type. Other technologies, such as oligonucleotide and cDNA microarrays, enable facile profiling of a predefined set of genes. These technologies have been widely used and have already yielded vast collections of freely available data (see Appendix).

How can these RNA expression resources be used for disease gene discovery? First, some disorders are due to defects in genes that are expressed in a limited number of tissues. Hence, catalogs of tissue-specific expression provide excellent candidate genes. Second, these large-scale data sets can be mined, using coexpression analysis, to infer the function of poorly characterized genes or modules. We consider each of these applications.

TISSUE EXPRESSION ATLAS

Some human disease genes are expressed only in tissues exhibiting a pathologic phenotype. Several rich sources of information about tissue-specific expression are currently available.

The dbEST database at NCBI has >4 million ESTs derived from >7000 cDNA libraries representing more than 600 cell types/states. GeneAtlas (www.symatlas.org) is a tissue expression compendium of human, mouse, and rat samples that allows users at the most basic level to view a gene’s expression profile across multiple tissue types (96, 97). The Gene Expression of the Nervous System Atlas (GENE-SAT) is intended to provide a spatiotemporal expression map of 5000 genes in the developing and adult mouse brain. This resource may help spotlight genes expressed in specific neurons that are altered in specific human brain diseases (42). Both of these valuable resources can be exploited in searching for diseases believed to exhibit restricted patterns of tissue expression.

Recently, Katsanis and colleagues computationally mined dbEST to identify clusters that exhibit preferential expression in the retina and integrated the results with retinal disease gene loci (55). This approach identified 88% (22/25) of known retinal disease genes exclusively expressed in the retina. It also yielded positional candidates for 42 mapped but unidentified disease genes. In a complementary approach, Blackshaw and colleagues coupled SAGE data and large-scale in situ hybridization of 1085 transcripts that showed dynamic changes and preferential expression in the retina to provide a valuable resource for mapping retinopathies.
INTEGRATIVE GENOMICS 389

These strategies can be applied to numerous other disorders, such as cardiomyopathies, muscular dystrophies, deafness, and others, where diseases are likely to be due to mutations in genes expressed in those tissues.

COEXPRESSION ANALYSIS Atlases of gene expression in combination with coexpression analysis provide valuable insight into the function of poorly characterized genes. Perhaps the richest sources of RNA expression data have come from cDNA and oligonucleotide microarrays (19, 86), which have had numerous applications in classifying cancers (41), elucidating pathogenesis of complex diseases (70), deciphering mechanism of drug action (47), characterizing genomic activity during various cellular processes, such as the cell cycle (22, 93) and response to serum (51), and profiling expression across different tissues (96). Data submission standards have been established and enforced by a variety of journals and funding agencies; hence, a wealth of expression data is now available from the Stanford University Microarray Database (40), Gene Expression Omnibus (GEO) (28), and Array Express (EBI) (15). As a public resource, these expression databases are valuable substrates for coexpression analysis, which can detect gene properties that are subtler than simple tissue-specific expression patterns.

Coexpression analysis attempts to group genes together on the basis of shared expression similarity across a battery of “conditions.” Genes that exhibit coexpression likely share the same function (24, 52, 101). A variety of similarity metrics (e.g., Euclidean distance, Pearson correlation coefficient, or Spearman rank correlation coefficient) can be coupled with different clustering algorithms [e.g., hierarchical clustering (29), k-means (101), and self-organizing maps (SOMs) (99)]. These algorithms often have varying strengths and applicability. A commonly shared disadvantage of these algorithms is that they rely on similarity metrics defined over all experimental conditions. Often one would like to organize genes into different modules in which genes share similar expression profiles only among a subset of experimental conditions. Recently, several “bi-clustering” algorithms were developed that attempt to group genes together within the context of a subset of experimental conditions (20, 36, 73).

Another computational strategy seeks to score genes on the basis of their expression similarity not to a single gene, but rather to a set of genes. Our group introduced the “neighborhood analysis” algorithm (71), and a related methodology was developed and applied to C. elegans expression studies (77). With these simple strategies, the user defines a gene set corresponding to a pathway or process of interest—it could even represent previously discovered disease genes for a related set of disorders. The algorithms then identify all other genes in the microarray data set that share expression similarity to the gene set.

Tiranti and colleagues (103) applied neighborhood analysis to prioritize the 130 candidate genes located within the locus for ethylmalonic encephalopathy (EE). Given the clinical features of the disease, they hypothesized that the defect was due to mutations in genes related to mitochondrial functioning. Using neighborhood analysis (71), they identified other genes within the interval coexpressed
with well-characterized nuclear-encoded mitochondrial genes. One of these co-expressed genes, \textit{HSCO}, harbors homozygous mutations in all probands from the four consanguineous families that were originally used for the mapping. Nearly all of these mutations were loss-of-function mutations, producing premature stop, frameshift, or aberrant splicing defects, providing definitive genetic proof of \textit{HSCO} involvement in EE.

Proteomics

Proteomics refers to the systematic analysis of proteins, protein complexes, and their interactions (23). The technologies underlying proteomics are less mature than microarray technologies for RNA expression, but they are already providing complementary information that can be useful in studying disease processes. Two types of proteomic data sets that are emerging are catalogs of organelle proteins and genome-wide interaction maps.

Organelle Proteomics To date, proteomic catalogs of proteins residing in the nucleolus, centrosome, nuclear speckles, golgi, splicesome, midbody, lysosome, mitochondria, and nuclear envelope have been generated (2, 3, 7, 72, 81, 84, 87, 91, 114). Comprehensive analysis of subcellular localization in yeast was recently achieved using large-scale epitope tagging (48).

The analysis of cellular substructures provides powerful functional clues about genes as certain protein complexes and cellular organelles can be associated with human diseases. For example, human respiratory chain disorders are often due to defects in the mitochondrion. Cardiomyopathies are often due to mutations in the cardiac myocyte’s contractile machinery (88). Recent proteomic surveys of organelles can help expand candidate genes for diseases while also helping us to understand the function of known disease genes.

Autosomal recessive malignant infantile osteopetrosis (ARO) is a genetically heterogeneous disease characterized by a spectrum of phenotypes including severe osteosclerosis, pathologic fractures, hepatosplenomegaly, pancytopenia, and retinal degeneration (102). In many cases, mutations in \textit{TCIRGI} or in \textit{CLCN7}, which encode lysosomal proteins, underlie this disorder (33, 58, 98). Recently, scientists discovered that mutations in a third gene, \textit{OSTM1}, can also result in ARO, and that the mouse orthologue of \textit{OSTM1} is mutated in another osteosclerotic mouse mutant (17). Interestingly, a recent lysosomal proteomic survey (7) assigns OSTM1 to this organelle, demonstrating how dysfunction of three proteins, all located in the same organelle, can conspire in the pathogenesis of ARO. Here we see a striking example of the emerging link between this heterogeneous Mendelian disease and lysosomal biology.

Protein Interaction Maps Several methodologies now exist for high-throughput construction of protein interaction networks based on yeast two-hybrid (Y2H) screening, affinity tag purification coupled with mass spectrometry, directed
peptide libraries, and protein arrays (23). Two large-scale, mass spectrometry-based studies of protein interactions in yeast have been performed to date, each focusing broadly on gene sets involved in signal transduction or genes involved in the DNA damage response (34, 46). Both studies yielded interactions for about 25% of the yeast proteome. In contrast to mass spectrometry-based proteomics, which interrogates protein complexes, Y2H detects pairwise interactions, and has been applied on genome-wide scales to create interaction maps in yeast, C. elegans, and Drosophila (39, 50, 63, 109).

Several recent studies demonstrate the value of protein interaction maps, even from model organisms, in our search for human disease genes. Syndromes such as xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD)—all of which have overlapping clinical and cellular phenotypes associated with UV DNA damage repair—are associated with mutations in genes encoding components of the TFIIH complex, which is involved in DNA transcription and repair. A rare form of TTD, termed TTD-A, had been identified in three families in whom the TFIIH complex exhibited biochemical instability; however, none of the previously known components were mutated (112). Recently, Ranish et al. (80) applied yeast proteomics to identify proteins in the polymerase II initiation complex, identifying a previously unrecognized tenth member, TFB5. TFB5 is evolutionarily conserved and its orthologue in Chlamydomonas reinhardtii is a suppressor of an UV-sensitive mutant (38). Ranish and colleagues discovered mutations in TFB5 in patients with TTD-A and performed additional functional studies to provide definitive evidence that TFB5 underlies this disorder (80).

Physiology and Phenomics

An organism's DNA sequence, via RNA, proteins, and metabolites, is ultimately expressed as a context-dependent phenotype—a phenotype could correspond to yeast fitness on selected media or the outcome of a host-pathogen interaction in humans. Several recent high-throughput approaches illustrate the utility of phenotypic screens in prioritizing disease genes. One class of such experiments utilizes deletion strains, whereas another is based on systematic perturbations.

SYSTEMATIC DELETION PROJECTS Several efforts are currently in progress to systematically knock out each gene in a genome. If the resulting phenotype resembles a disease phenotype, the underlying gene may represent a candidate gene.

Ron Davis's group (89) developed systematic deletion strains of yeast that have been used for various functional genomics projects. Steinmetz et al. (94) used 4706 viable deletion strains in a high-throughput assay for mitochondrial respiratory function to link novel genes to mitochondrial biology, yielding high-quality, candidate genes for heritable respiratory chain disorders. They performed a retrospective analysis of known Mendelian mitochondrial disease genes and reported that many of their yeast orthologues, when deleted, exhibit a respiratory petite phenotype. Prospectively, their screen promises to accelerate positional cloning.
by providing 11 new disease candidates for mutational screens for 7 putative mitochondrial disease loci.

Perhaps the most interesting use of the deletion strains has been the systematic survey of synthetic lethal interactions (104). Synthetic lethality results when two mutations in two different genes are each viable as single mutations, but lethal when combined in the same haploid genome. This study began with a subset of 132 query genes and generated all pairwise crosses with the ~4700 mutants carrying viable gene deletions. They discovered approximately 1000 synthetic lethal interactions in their sampling. When extrapolated, their investigation implies a tremendous genomic load of epistatic interactions in humans. Such synthetic lethal screens help group genes together based on functional redundancy and provide a complementary approach for annotating gene networks, as well as pairs that could be jointly considered in human disease studies.

A repository of mouse knockout strains, analogous to deletion strains available for yeast, was proposed by the Knockout Mouse Project (5). Currently, approximately 10% (2600) of the mouse genes have been knocked out, although only 415 are readily available in the public domain via Jackson Laboratory. In addition, there are several gene-trap consortia through which embryonic stem (ES) cells can be obtained for genes of interest. However, knockouts to date have not been subjected to a standard set of phenotyping protocols and are often characterized using the expertise of the lab that generated the mice. Hence, many of these mice are grossly normal, resulting in “no-phenotype” publications. In such cases, it is likely that more subtle physiological parameters are not being appreciated. Efforts are needed to systematically phenotype these mice, as was proposed by several recent conferences and consortia (5).

A noteworthy study in the shift to examine physiological phenotypes at the genome-wide level is Howard Jacob’s group’s (95) Herculean task of completing measurements of a constellation of 239 parameters related to cardiovascular or renal physiology. Genotyping intercrossed F2 rats allowed his group to map 81 quantitative loci in rat and, with comparative genomics, localize these loci to the human genome.

HIGH-THROUGHPUT GAIN AND LOSS OF FUNCTION A new class of genome-wide experiments attempts to systematically perform genetic or chemical perturbation followed by cellular phenotyping (e.g., reporter gene activity or high-content microscopy). These approaches are possible in part due to large, high-quality collections of cDNAs, RNAi libraries, and growing collections of chemical compounds. Some of these studies have also been facilitated by the development of new methods for introducing DNA and chemicals into cells in a high throughput fashion (117).

For instance, Labow and colleagues tested the ability of 20,704 cDNAs to activate transcription from an IL-8 promoter reporter construct, identifying an unrecognized CAMP-like response element and a novel coactivator (TORC1) (49). In a similar fashion, others have reported large-scale screens of minimal synthetic
reporters seeking to identify genes that regulate AP1 or NF-κB activation (18, 67). RNAi screens have been used to investigate deubiquitinating enzymes in cancer-related pathways (16) as well as to study modulators of TRAIL-induced apoptosis and NF-κB activation (6, 116).

Several genome-wide RNAi screens in model organisms have helped discover entire catalogs of candidate genes for human diseases. For example, a genome-wide RNAi screen in *C. elegans* identified 417 genes that modulate fat metabolism (4). This screen employed a clever visual screen for fat-staining. The catalog of fat-related genes identified in this study includes the human orthologue of a human gene mutated in maturity onset diabetes of the young. The remaining genes identified in this study represent excellent candidate genes for human obesity or lipodystrophies.

Other Emerging Technologies

A number of other emerging technologies hold promise for facilitating disease gene discovery. Genome-scale location analysis is a technology for systematically detecting nucleic acid-protein interactions and was recently applied to discover target genes of diabetes-related transcription factors (76). Similarly, genome-wide profiling of RNA-binding proteins with their cognate transcripts (44) promises to shed insight into human diseases related to RNA processing. Systematic profiling of metabolites using NMR or tandem mass spectrometry, often dubbed “metabolomics” or “metabonomics,” represents additional high-content readouts of cellular function that will complement RNA and protein profiling (74).

INTEGRATING GENOME-SCALE DATA SETS

In the examples described thus far, human disease genes were prioritized using information from a single type of functional genomics data set. In our search for human disease genes, we would ideally rely on multiple tiers of support that an individual gene is involved in a process before pursuing a costly association study. There are biological and statistical rationales for integrating diverse genomic data sources.

First, each technology interrogates different aspects of gene function. For example, affinity tag-based protein-interaction methods tend to discover membership in the same physical complex, whereas the Y2H technique discovers direct interactions (stable or transient). Synthetic lethality screens tend to discover genes that can compensate for each other, whereas coexpression analysis identifies genes that are likely under similar regulatory control. Combining these complementary viewpoints could be useful, providing a more comprehensive description of functional gene networks.

Second, each technology tends to produce noisy data and can be associated with its own inherent experimental limitations. For example, mass spectrometry-based proteomics systematically misses low-abundance proteins (43). Oligonucleotide
microarrays are sensitive to even low-abundance transcripts, but they can only quantify transcripts predefined on the chip. Metabolite profiling can be powerful, but the class of metabolites surveyed in a single experiment may depend on properties of the chromatography column. In addition, many of these large-scale experimental data sets are extremely noisy, so making genome-wide predictions using information from a single large-scale data set can lead to high numbers of false positives.

Several recent studies have shown that integration of different types of functional genomics data sets can produce more reliable predictions of yeast protein function and interaction (53, 60, 105). Specifically, these studies demonstrated that data integration can improve the sensitivity and specificity for detecting true functional relationships among genes. The benefits of integration are particularly valuable in prioritizing candidate human disease genes, where genomic intervals may be extremely large, and the cost of mutation screening or follow-up can be tremendous. In the CF example presented earlier, both transmembrane domain predictions and patterns of tissue distribution supported a role for CFTR in cystic fibrosis.

Here we briefly review ad hoc and formal approaches for integrating functional genomics data sets and discuss how such an integrated approach has been applied successfully to the identification of a human disease gene.

Approaches for Integrating Data Sets

A simple but intuitive approach for integrating data from diverse data sets uses simple logical operators such as AND and OR. The AND rule predicts a functional relationship only when all data sets agree, e.g., gene product A and gene product B share similar functions if A and B interact in a protein interaction network AND A and B exhibit coexpression in microarray experiments. The OR rule predicts an interaction when any of the experimental data sets supports the functional interaction. The AND rule is more stringent (and is expected to yield a higher specificity), whereas the more permissive OR rule provides greater sensitivity to detect functional interactions at the cost of specificity. Another way to combine different sources is to use majority voting. In this case, a functional relationship is predicted only when the majority of data sets agree. All of these methods suffer from one major disadvantage: They are all based on the assumption that each prediction from a data set has equal weight of confidence. This is not true because some methods can be more reliable than others.

Machine-learning methods provide more sophisticated data integration procedures that consider data reliability and redundancy as well as missing data, often leading to better results. An effective method is Bayesian inference, which was previously applied successfully in computational biology research, ranging from the prediction of subcellular localization of proteins (25) to the prediction of protein interactions in yeast (53). Bayesian inference combines information from heterogeneous data sets in a probabilistic manner, assigning a probability to the prediction result rather than just a binary classification (105). Each individual data set is essentially weighted by its accuracy and redundancy, which are determined...
using gold standard “true positives” and “true negatives.” Here we briefly review the principles of Bayesian inference through a simple example.

Imagine that we are interested in identifying candidate genes for aging, and that our hypothesis is that genes associated with reactive oxygen species (ROS) underlie this process. Our goal is to enumerate all genes in the genome that might be associated with ROS, as these will be reasonable candidate genes for aging.

We must begin with a prior estimate of the number of ROS-related genes in the genome. With such an estimate we can compute the “prior odds” of finding an ROS gene, given by

\[O_{\text{prior}} = \frac{P(\text{ROS})}{P(\sim\text{ROS})}. \]

We can also consider the posterior odds of finding an ROS gene given \(N \) genome-scale data sets with values \(g_1 \cdots g_N \):

\[O_{\text{posterior}} = \frac{P(\text{ROS}|g_1 \cdots g_N)}{P(\sim\text{ROS}|g_1 \cdots g_N)}. \]

Posterior refers to the fact that the odds have changed after we have additional information from the large-scale data set. According to Bayes’ theorem, the posterior odds can be calculated as \(O_{\text{posterior}} = L(g_1 \cdots g_N)O_{\text{prior}} \), where \(L(g_1 \cdots g_N) \) is the likelihood ratio defined as

\[L(g_1 \cdots g_N) = \frac{P(g_1 \cdots g_N|\text{ROS})}{P(g_1 \cdots g_N|\sim\text{ROS})}. \]

The two probabilities are estimated separately using a positive control set of ROS genes as well as a collection of genes known not to participate in this process. When the data \(g_1 \cdots g_N \) are discrete, the probabilities are often constructed using contingency tables. Estimating the two probabilities can be rather challenging when \(N \) is large. However, if the \(N \) genome-scale data sets are independent of each other (i.e., they provide uncorrelated data), in which case the scenario is often termed naïve, then the \(L \) can be simplified to

\[L(g_1 \cdots g_N) = \prod_{i=1}^{N} \frac{P(g_i|\text{ROS})}{P(g_i|\sim\text{ROS})}. \]

In this case, different sources of data are decoupled. The likelihood ratio for each data source can be calculated separately and multiplied together to form \(L \). The naïve Bayesian network is more easily computed and yields optimal results when the different data sets contain uncorrelated evidence; but even when this condition is not met, the results are often useful.

Such Bayesian approaches have been valuable in predicting yeast protein subcellular localization (25), protein interactions (53), and functional gene networks (105) using publicly available data.

Discovery of a Human Disease Gene via Integrative Genomics

Can such integrated approaches be applied to human diseases? We recently combined evidence from publicly available atlases of gene expression with organelle proteomics data (using a simple AND rule) to home in on the gene underlying Leigh Syndrome French Canadian variant (LSFC) (71).
LSFC is an autosomal recessive disorder characterized by a subacute degeneration of the brainstem as well as by a cytochrome c oxidase (COX) deficiency. The genes underlying four other inherited forms of COX deficiency were previously identified, and all encode mitochondrial proteins involved in assembling this multisubunit complex (90). Based on the clinical features of the disease (lactic acidosis and Leigh syndrome) and biochemical features of the disease (COX deficiency), we hypothesized that the gene underlying this disease encodes a protein involved in mitochondrial biology.

Beginning with this clinical clue, we integrated three sources of data: genome sequence, RNA abundance, and protein expression, with the goal of identifying genes in the genome that encode proteins related to mitochondrial function (Figure 3). First, we used genome browsers and ab initio gene predictions to compile a

![Diagram](image.png)

Figure 3 Discovery of a human disease gene through the integrated analysis of large-scale biological data sets (71). Leigh Syndrome French Canadian variant (LSFC) is an autosomal recessive, fatal metabolic disease that was previously mapped to a 2-Mb interval on chromosome 2. Its clinical and biochemical features suggested a disorder secondary to mitochondrial dysfunction. To prioritize these candidates, the authors used neighborhood analysis of publicly available microarray data sets to discover genes in the genome (of unknown function) that are coexpressed with the known mitochondrial genes. The authors also mapped tandem mass spectra (corresponding to peptides) from a mitochondrial proteomics project to this interval. When the two large-scale data sets and the genomic interval were integrated with a simple AND rule, one gene, LRPPRC, emerged as a candidate that is coregulated with known mitochondrial genes and gives rise to mitochondrial peptides. Based on this analysis, this gene was prioritized as the top candidate and resequenced in patients and controls. Mutations in LRPPRC provided strong genetic proof that LRPPRC underlies LSFC.
comprehensive list of candidate genes within the genetic linkage interval, thus identifying 30 genes total. Second, we explored four large-scale, publicly available atlases of RNA expression (69, 79, 96) and applied neighborhood analysis (described earlier) to score a query gene’s expression correlation with the known, nuclear-encoded mitochondrial genes. Using this metric, we scored all the genes in the genome for their correlation in expression to the previously known mitochondrial genes. Third, we took tandem mass spectra (each corresponding to a single peptide) from a mitochondrial proteomics project and mapped them directly onto the genome.

We then integrated these three data sets to discover that exactly one gene, \textit{LRPPRC}, had a high neighborhood analysis score and peptide support from the proteomics project (Figure 4). Hence, it emerged as a high-quality candidate gene for a disease characterized by mitochondrial dysfunction.

Prior to screening \textit{LRPPRC} for mutations in the patients, we needed to ascertain its proper gene structure. By mapping the proteomic data directly onto the genomic interval, we determined that \textit{LRPPRC} actually had a 38-exon structure, contrary to previous reports. We reasoned that the gene was misannotated and performed rapid amplification of cDNA ends (RACE) to validate a 38-exon structure of \textit{LRPPRC}. With the complete gene structure in hand, we resequenced \textit{LRPPRC} in patients, parents, and unrelated controls to discover two mutations in this gene that underlie LSFC. Hence, the combined analysis of genome, RNA, and protein enabled us to

Figure 4 Genomics-based disease gene discovery in the future. Genome-scale data sets, like those described in the text, can be used to decipher the functional network relationships among all the genes in the human genome. Via accessible databases, it will soon be possible to cluster human diseases on the basis of clinical signs, symptoms, etiology, and pathogenesis to help construct disease networks. Gene networks can be mapped to disease networks via the \nobreakdash−\nobreakdash\nobreakd
quickly move from clinical clues to a candidate gene, annotate that gene structure, and then subject it to systematic resequencing. This example illustrates how one can link clinical features of a disease to genes through the integrated analysis of genomic data.

FUTURE PROSPECTS

Genome-scale experiments are generating a wealth of data that provide systematic and complementary views of gene function. These resources, combined with new computational methodologies, are already accelerating disease gene discovery. Studies in yeast and in other model organisms have been extremely valuable: Not only have they generated valuable data that has directly assisted in the discovery of human disease genes, but they have provided important lessons on how best to integrate diverse data sets to infer gene function. Botstein & Risch (14) suggested that the disease genes discovered to date likely represent the easy ones, but hopefully the integrated analysis of genome-scale information will facilitate the discovery of those that remain.

We anticipate that in the very near future, strategies will be developed that systematically link clinical features to genomic elements (Figure 4). We can consider two separate networks: networks of genes and networks of disease. Diseases can be related to each other on the basis of shared clinical signs and symptoms, pathophysiology, etiology, or cellular endophenotypes. Genes and genomic elements can be related to each other using the growing wealth of functional genomics data with the approaches described in this review. The established ~1500 disease-gene relationships provide links between these two spaces. For a new disease (possibly complex) of unknown etiology, we can identify other disorders sharing similar clinical features, a subset of which may be previously associated with human genes. Gene networks containing these genes naturally represent excellent candidates or modifiers for the query disease. The mapping between clinical features (phenotype) and genes may become so robust that genes underlying a sporadic disease may be identified on the basis of the presenting symptoms in a single individual. Achieving this goal fundamentally requires integrating clinical informatics databases with genomics databases and carries with it key challenges.

First, we need improved nosology, i.e., methods for disease classification. Traditionally, diseases have been categorized on the basis of pathophysiology or on etiology, but often these characterizations break down and more ad hoc approaches are used, resulting in the celebrated debate between splitters and lumpers (68). An ontology-based approach to disease classification, in which a fixed vocabulary is used to annotate diseases, can improve this process. The Unified Medical Language System (UMLS) represents a set of knowledge sources developed at the U.S. National Library of Medicine (http://umlsinfo.nlm.nih.gov) and is a promising resource for improving disease classification. Medical textbooks and other clinical data sources need to adopt such a standard so that information can be freely exchanged.
Second, to construct disease networks, it is essential that we can access the tremendous wealth of knowledge stored in medical textbooks, scientific literature, and clinical journals. The recent collaboration between the Internet search engine company Google and leading research libraries at Harvard University, Oxford University, Stanford University, University of Michigan, and New York Public Library promises to provide searchable access to millions of texts in the public domain or excerpted from copyrighted materials. In addition to making a great number of current texts available online, this initiative will add nineteenth and early twentieth century texts to the body of electronically searchable knowledge, transcending limitations of predigital publishing technologies (66). When combined with improved data-mining tools, such data sets promise to help us construct informative and structured mappings among human diseases.

Third, we need more freely accessible genome-scale data sets. Most of the currently available large-scale data sets focus on a subset of protein-encoding genes, making it difficult to extend functional predictions to other genomic elements. If we are to implicate noncoding conserved elements in human disease, it’s essential that we generate large-scale data sets that annotate their function. We also need improved data standards and tools for accessing and visualizing data. At present, genome sequence information and microarray data sets are beginning to become freely available and accessible to all users via standard formats. Similar standards and resources will be required for other large-scale data sets.

Finally, we need improved methods for integrating large-scale data sets that can properly manage the nuances of these genomic data sets. Ideal integrative strategies would handle categorical as well as continuous measures, would take into account positive and negative controls, and would make reasonable predictions without overfitting. Such strategies would also have to handle missing data or sparse data as well as highly correlated data. Bayesian approaches represent a reasonable approach to this challenge, but other techniques will certainly be needed.

Genomics is yielding a tremendous amount of information on the nature and function of all features of the human genome. In the coming years, as comprehensive genotyping and sequencing technologies mature, we will see a rapid shift from candidate gene studies to genome-wide association studies for rare and for common human diseases. The challenge then will lie in determining which statistical associations are true and relevant to disease biology. As we embark on these exciting new studies, the integration of genome-wide association studies with functional genomics data sets will enable us to spotlight not only single genes but also entire networks of genes that underlie and modify human disease.

ACKNOWLEDGMENTS

We thank Tracey Petryshen, Emily Walsh, Debora Marks, and Joel Hirschhorn for valuable comments on the manuscript. We thank Yanhui Hu for generating the data in Figure 1. VKM is funded by a Career Award in the Biomedical Sciences from the Burroughs Wellcome Fund.
The Annual Review of Genomics and Human Genetics is online at http://genom.annualreviews.org

LITERATURE CITED

60. Lee I, Date SV, Adai AT, Marcotte EM.

APPENDIX Online resources for accessing large-scale biological data sets

Genome Browsers
- UCSC: http://genome.ucsc.edu/

Gene Expression Repositories
- ArrayExpress EBI: http://www.ebi.ac.uk/arrayexpress/

Protein Databases
- Biomolecular Interaction Network Database: http://bind.ca/
- Human Reference Protein Database: http://www.hprd.org

Pathway Databases and Resources

Disease Databases

Model Organism Databases
- Rat Genome Database: http://rgd.mcw.edu/
- FlyBase: http://flybase.org
- Saccharomyces Genome Database: http://www.yeastgenome.org

Other Resources
- miRNA Registry: http://www.sanger.ac.uk/Software/Rfam/mirna/
- ChemBank: http://chembank.broad.harvard.edu/
CONTENTS

A PERSONAL SIXTY-YEAR TOUR OF GENETICS AND MEDICINE, Alfred G. Knudson

NOONAN SYNDROME AND RELATED DISORDERS: GENETICS AND PATHOGENESIS, Marco Tartaglia and Bruce D. Gelb

SILENCING OF THE MAMMALIAN X CHROMOSOME, Jennifer C. Chow, Ziny Yen, Sonia M. Ziesche, and Carolyn J. Brown

THE GENETICS OF PSORIASIS AND AUTOIMMUNITY, Anne M. Bowcock

EVOLUTION OF THE ATP-BINDING CASSETTE (ABC) TRANSPORTER SUPERFAMILY IN VERTEBRATES, Michael Dean and Tarmo Annilo

TRADE-OFFS IN DETECTING EVOLUTIONARILY CONSTRAINED SEQUENCE BY COMPARATIVE GENOMICS, Eric A. Stone, Gregory M. Cooper, and Arend Sidow

MITOCHONDRIAL DNA AND HUMAN EVOLUTION, Brigitte Pakendorf and Mark Stoneking

THE GENETIC BASIS FOR CARDIAC REMODELING, Ferhaan Ahmad, J.G. Seidman, and Christine E. Seidman

HUMAN TASTE GENETICS, Dennis Drayna

MODIFIER GENETICS: CYSTIC FIBROSIS, Garry R. Cutting

ADVANCES IN CHEMICAL GENETICS, Inese Smukste and Brent R. Stockwell

THE PATTERNS OF NATURAL VARIATION IN HUMAN GENES, Dana C. Crawford, Dayna T. Akey, and Deborah A. Nickerson

A SCIENCE OF THE INDIVIDUAL: IMPLICATIONS FOR A MEDICAL SCHOOL CURRICULUM, Barton Childs, Charles Wiener, and David Valle

COMPARATIVE GENOMIC HYBRIDIZATION, Daniel Pinkel and Donna G. Albertson

SULFATASES AND HUMAN DISEASE, Graciana Diez-Roux and Andrea Ballabio
CONTENTS

DISEASE GENE DISCOVERY THROUGH INTEGRATIVE GENOMICS, Cosmas Giallourakis, Charlotte Henson, Michael Reich, Xiaohui Xie, and Vamsi K. Mootha 381

BIG CAT GENOMICS, Stephen J. O’Brien and Warren E. Johnson 407

INDEXES
Subject Index 431
Cumulative Index of Contributing Authors, Volumes 1–6 453
Cumulative Index of Chapter Titles, Volumes 1–6 456

ERRATA
An online log of corrections to Annual Review of Genomics and Human Genetics chapters may be found at http://genom.annualreviews.org/