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Abstract. High-throughput sequencing coupled to chromatin immuno-
precipitation (ChIP-Seq) is widely used in characterizing genome-wide
binding patterns of transcription factors, cofactors, chromatin modifiers,
and other DNA binding proteins. A key step in ChIP-Seq data analysis
is to map short reads from high-throughput sequencing to a reference
genome and identify peak regions enriched with short reads. Although
several methods have been proposed for ChIP-Seq analysis, most ex-
isting methods only consider reads that can be uniquely placed in the
reference genome, and therefore have low power for detecting peaks lo-
cated within repeat sequences. Here we introduce a probabilistic ap-
proach for ChIP-Seq data analysis which utilizes all reads, providing a
truly genome-wide view of binding patterns. Reads are modeled using a
mixture model corresponding to K enriched regions and a null genomic
background. We use maximum likelihood to estimate the locations of the
enriched regions, and implement an expectation-maximization (E-M) al-
gorithm, called AREM, to update the alignment probabilities of each
read to different genomic locations. We apply the algorithm to identify
genome-wide binding events of two proteins: Rad21, a component of co-
hesin and a key factor involved in chromatid cohesion, and Srebp-1, a
transcription factor important for lipid/cholesterol homeostasis. Using
AREM, we were able to identify 19,935 Rad21 peaks and 1,748 Srebp-1
peaks in the mouse genome with high confidence, including 1,517 (7.6%)
Rad21 peaks and 227 (13%) Srebp-1 peaks that were missed using only
uniquely mapped reads. The open source implementation of our algo-
rithm is available at http://sourceforge.net/projects/arem.
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1 Introduction

In recent years, high-throughput sequencing coupled to chromatin immunopre-
cipitation (ChIP-Seq) has become one of the premier methods of analyzing
protein-DNA interactions [1]. The ability to capture a vast array of protein
binding locations genome-wide in a single experiment has led to important in-
sights in a number of biological processes, including transcriptional regulation,
epigenetic modification and signal transduction [2–5]. Numerous methods have
been developed to analyze ChIP-Seq data and typically work well for identi-
fying protein-DNA interactions located within non-repeat sequences. However,
identifying interactions in repeat regions remains a challenging problem since
sequencing reads from these regions usually cannot be uniquely mapped to a
reference genome. We present novel methodology for identifying protein-DNA
interactions in repeat sequences.

ChIP-Seq computational analysis typically consists of two tasks: one is to
identify the genomic locations of the short reads by aligning them to a reference
genome, and the second is to find genomic regions enriched with the aligned
reads, which is often termed “peak finding”. Eland, MAQ, Bowtie, and SOAP are
among the most popular for mapping short reads to a reference genome [6–9] and
provide many or all of the potential mappings for a given sequence read. Once
potential mappings have been identified, significantly enriched genomic regions
are identified using one of several available tools [10–18]. Some peak finders
are better suited for histone modification studies, others for transcription factor
binding site identification. These peak finders have been surveyed on several
occasions [19–21].

Many short reads cannot be uniquely mapped to the reference genome. Most
peak finding workflows throw away these non-uniquely mapped reads, and as
a consequence have low power for detecting peaks located within repeat re-
gions. While each experiment varies, only about 60% [in house data] of the
sequence reads from a ChIP-Seq experiment can be uniquely mapped to a ref-
erence genome. Therefore, a significant portion of the raw data is not utilized
by the current methods. There have been proposals to address the non-uniquely
mapped reads in the literature by either randomly choosing a location from a
set of potential ones [22, 23] or by taking all potential alignments [12], but most
peak callers are not equipped to deal with ambiguous reads.

We propose a novel peak caller designed to handle ambiguous reads directly
by performing read alignment and peak-calling jointly rather than in two sepa-
rate steps. In the context of ChIP-Seq studies, regions enriched during immuno-
precipitation are more likely the true genomic source of sequence reads than
other regions of the genome. We leverage this idea to iteratively identify the
true genomic source of ambiguous reads. Under our model, the true locations of
reads and binding peaks are treated as hidden variables, and we implement an
algorithm, AREM, to estimate both iteratively by alternating between mapping
reads and finding peaks.

Two ChIP-Seq datasets were used in this study: 1) cohesin, a new dataset
generated in house, and 2) Srebp-1, a previously published dataset [5]. To gen-
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erate the cohesin dataset, ChIP-Seq was performed using mouse embryonic fi-
broblasts and an antibody targeting Rad21 [24], a subunit of cohesin. Cohesin
is an essential protein complex required for sister chromatid cohesion. In mam-
malian cells, cohesin binding sites are present in intergenic, promoter and 3’
regions-especially in connection with CTCF binding sites [25, 26]. It was found
that cohesin is recruited by CTCF to many of its binding sites, and plays a role
in CTCF-dependent gene regulation [27, 28]. Cohesin has been shown to bind
to repeat sequences in a disease-specific manner [24], making it a particularly
interesting candidate for our study.

The second dataset is Srebp-1, a transcription factor important in allostatic
regulation of sterol biosynthesis and membrane lipid composition [29]. This par-
ticular dataset [5] examines the genomic binding locations for Srebp-1 in mouse
liver. Regulation of expression by Srebp-1 is important for regulation of choles-
terol and repeat-binding for this TF has not been previously shown [30, 29].
We choose these datasets because both proteins have well characterized regula-
tory motifs, allowing us to directly test the validity of our peak finding method
directly.

On a 2.8Ghz CPU, AREM takes about 20 minutes and 1.6GB RAM to call
peaks from over 12 million alignments and about 30 minutes and 6GB RAM
to call peaks from nearly 120 million alignments. Each dataset takes less than
40 iterations to converge. AREM is written in Python, is open-source, and is
available at http://sourceforge.net/projects/arem.

2 Methods

2.1 Notations

Let R = {r1, · · · , rN} denote a set of reads from a ChIP-Seq experiment with
read ri ∈ Σl, where Σ = {A, C, G, T}, l is the length of each read, and N denotes
the number of reads. Let S ∈ ΣL denote the reference sequence to which the
reads will be mapped. In real applications, the reference sequence usually consists
of multiple chromosomes. For notational simplicity, we assume the chromosomes
have been concatenated to form one reference sequence.

We assume that for each read we are provided with a set of potential align-
ments to the reference sequence. Denote the set of potential alignments of read
ri to S by Ai = {(lij , qij) : j = 1, · · · , ni}, where lij and qij denote the start-
ing location and the confidence score of the j-th alignment, and ni is the total
number of potential alignments. We assume qij ∈ [0, 1] for all j, and use it to
account for both sequencing quality scores and mismatches between the read
and the reference sequence. There are several programs available to generate the
initial potential alignments and confidence scores.

2.2 Mixture model

We use a generative model to describe the likelihood of observing the given set of
short reads from a ChIP-Seq experiment. Suppose the ChIP procedure results in
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the enrichment ofK non-overlapping regions in the reference sequence S. Denote
the K enriched regions (also called peak regions) by {(sk, wk) : k = 1, · · · ,K},
where sk and wk represent the start and the width, respectively, of the i-th
enriched region in S. Let Ek = {sk, · · · , sk +wk − l} denote the set of locations
in the enriched region k that can potentially generate a read of length l. Let Es

k,
Ew

k denote the start and width of region k. We will use E0 to denote all locations

in S that are not covered by
⋃K

k=1 Ek.
We use variable zi ∈ {1, · · · , ni} to denote the true location of read ri, with

zi = j representing that ri originates from location lij of S. In addition, we use
variable ui ∈ {0, 1, · · · ,K} to label the type of region that read ri belongs to.
ui = k represents that read ri is from the non-enriched regions of S if k = 0, and
is from k-th enriched region otherwise. Both zi and ui are not directly observable,
and are often referred to as the hidden variables of the generative model.

Let P (ri|zi = j, ui = k) denote the conditional probability of observing read
ri given that ri is from location lij and belongs to region k. Assuming different
reads are generated independently, the log likelihood of observing R given the
mixture model is then

ℓ =

N
∑

i=1

log





ni
∑

j=0

K
∑

k=0

P (ri|zi = j, ui = k)P (zi = j)P (ui = k)



 ,

where P (zi) and P (ui) represent the prior probabilities of the location and the
region type, respectively, of read ri. P (zi) is set according to the confidence
scores of different alignments

P (zi = j) =
qij

∑ni

k=1 qik
. (1)

P (ui) depends on both the width and the enrichment ratio of each enriched
region. Denote the enrichment ratio of the ChIP regions vs non-ChIP regions by
α, which is often significantly impacted by the quality of antibodies used in ChIP
experiments. We parametrize the prior distribution on region types as follows

P (ui = k) =
1

(α− 1)
∑

j wj + L
×

{

L−
∑

j wj if k = 0

αwk o.w.
(2)

2.3 Parameter estimation

The conditional probability P (ri|zi = j, ui = k) can be modeled in a number
of different ways. For example, bell-shaped distributions are commonly used to
model the enriched regions. However, for computational simplicity, we will use a
simple uniform distribution to model the enriched regions. If read ri comes from
one of the enriched regions, i.e., k 6= 0, we assume the read is equally likely to
originate from any of the potential positions within the enriched region, that is,

P (ri|zi = j, ui = k) =
1

wk − l + 1
IEk

(lij), (3)
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where IA(x) is the indicator function, returning 1 if x ∈ A and 0 otherwise.
If the read is from non-enriched regions, i.e., k = 0, we use pbi to model

the background probability of an arbitrary read originating from location i of
the reference sequence. (We assume pbi has been properly normalized such that
∑L

i=1 p
b
i = 1.) Then the conditional probability P (ri|zi = j, ui = k) for the case

of k = 0 is modeled by

P (ri|zi = j, ui = 0) = IE0
(lij) p

b
lij
. (4)

Numerous ChIP-Seq studies have demonstrated that the locations of ChIP-Seq
reads are typically non-uniform, significantly biased toward promoter or open
chromatin regions [1]. The pbi ’s takes this ChIP and sequencing bias into account,
and can be inferred from control experiments typically employed in ChIP-Seq
studies.

Next we integrate out the ui variable to obtain the conditional probability
of observing ri given only zi

P (ri|zi = j) = P (ui = 0)IE0
(lij) p

b
lij

+

K
∑

k=1

P (ui = k)

wk − l + 1
IEk

(lij). (5)

Note that because E0, E1, · · · , EK are disjoint, only one term in the above sum-
mation can be non-zero. This property significantly reduces the computation for
parameter estimation since we do not need to infer the values of ui variables any
more.

The log likelihood of observingR given the mixture model can now be written
as

ℓ(r1, · · · , rn;Θ) =
N
∑

i=1

log





ni
∑

j=0

P (ri|zi = j)P (zi = j)



 , (6)

where Θ = (s1, w1, · · · , sK , wK , α) denotes the parameters of the mixture model.
We estimate the values of these unknown parameters using maximum likelihood
estimation

Θ̂ = argmax
Θ

ℓ(r1, · · · , rn;Θ). (7)

2.4 Expectation-maximization algorithm

We solve the maximum likelihood estimation problem in Eq. (7) through an
expectation-maximization (E-M) algorithm. The algorithm iteratively applies
the following two steps until convergence:

Expectation step: Estimate the posterior probability of alignments under the
current estimate of parameters Θ(t):

Q(t)(zi = j|R) =
1

C
P (ri|zi = j, Θ(t))P (zi = j), (8)

where C is a normalization constant.
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Maximization step: Find the parameters Θ(t+1) that maximize the following
quantity,

Θ(t+1) = argmax
Θ

N
∑

i=1

ni
∑

j=0

Q(t)(zi = j|R) logP (ri|zi = j, Θ). (9)

2.5 Implementation of E-M updates

The mixture model described above contains 2K + 1 parameters. Since K, the
number of peak regions, is typically large, ranging from hundreds to hundreds
of thousands, exactly solving Eq. (9) in the maximization step is nontrivial.
Instead of seeking an exact solution, we identify the K regions from the data by
considering all regions where the number of possible alignments is significantly
enriched above the background.

For a given window of size w starting at s of the reference genome, we first
calculate the number of reads located within the window, weighted by the current
estimation of posterior alignment probabilities,

f(s, w) =

N
∑

i=1

ni
∑

j=1

Q(t)(zi = j|R) I[s,s+w−l](lij). (10)

We term this quantity the foreground read density. As a comparison, we also
calculate a background read density b(s, w), which is estimated using either
reads from the control experiment or reads from a much larger extended region
covering the window. Different ways of calculating background read density are
discussed in [13].

Provided with both background and foreground read densities, we then define
an enrichment score φ(s, w) to measure the significance of read enrichment within
the window starting at position s with width w. For this purpose, we assume the
number of reads are distributed according to a Poisson model with mean rate
b(s, w). If f(s, w) is an integer, the enrichment score is defined to be φ(s, w) =
− log10(1− g(f, b)), where

g(x, λ) = e−λ

x
∑

k=0

λk

k!
(11)

denotes the chance of observing at least x Poisson events given the mean rate of
λ. However, if f(s, w) is not an integer, the enrichment score cannot be defined
this way. Instead, we use a linear extrapolation to define the enrichment score
φ(s, w) = − log10(1− g̃(f, b)), where function g̃ is defined as

g̃(x, λ) = g(⌊x⌋, λ) + [g(⌈x⌉, λ)− g(⌊x⌋, λ)] (x− ⌊x⌋). (12)

If two potential alignments of a read have the same confidence score and
are located in two peak regions with equal enrichment, the update of posterior
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alignment probabilities in Eq. (8) will assign equal weight to these two align-
ments. This is so because we have assumed that peak regions have the same
enrichment ratio as described in Eq. (2), which is not true as some peak regions
are more enriched than others in real ChIP experiments. To address this issue,
we have also implemented an update of the posterior probabilities that takes the
calculated enrichment scores into account as

Qt(zi = j|R)←
K
∑

k=1

[ φ(Es
k, Ew

k ) P (zi = j) IEk
(zi)] (13)

which is then normalized. In practice, we found this implementation usually
behaves better than the one without using enrichment scores.

We use entropy to quantify the uncertainty of alignments associated with
each read. For read i, the entropy at iteration t is defined to be

Ht
i = −

ni
∑

j=1

Qt(zi = j|R) logQt(zi = j|R). (14)

We stop the E-M iteration when the relative square difference between two con-
secutive entropies is small, that is, when

∑N

i=0(H
t
i −Ht−1

i )2
∑N

i=0(H
t−1
i )2

< ǫ, (15)

where ǫ = 10−5 for results reported in this paper.
AREM seeks to identify the true genomic source of multiply-aligning reads

(also called multireads). Many of the multireads will map to repeat regions of
the genome, and we expect repeats to be included in the K potentially enriched
regions. To prevent repeat regions from garnering multiread mass without suf-
ficient evidence of their enrichment, we impose a minimum enrichment score.
Effectively, unique or less ambiguous multireads need to raise enrichment above
noise levels for repeat regions to be called as peaks. The minimum enrichment
score is a parameter of our model and its effect on called peaks is explored in
Results.

3 Results

Building on the methodology of the popular peak-caller MACS [13], we imple-
ment AREM, a novel peak caller designed to handle multiple possible align-
ments for each sequence read. AREM’s peak caller combines an initial sliding
window approach with a greedy refinement step and iteratively aligns ambigu-
ous reads. We use two ChIP-Seq datasets in this study: Rad21, a subunit of the
structural protein cohesin, contained 7.2 million treatment reads and 7.4 million
control reads (manuscript in preparation). Srebp-1, a regulator of cholesterol
metabolism, had 7.7 million treatment reads and 6.4 million control reads [5].
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Fig. 1. A) AREM workflow diagram. de novo discovery of motifs (from top to bottom):
B) CTCF in MACS peaks from uniquely mapping reads, C) CTCF in AREM’s peaks
with multireads, D) Srebp-1 in MACS peaks from uniquely mapping reads, E) Srebp-1
in AREM’s peaks with multireads.

Using AREM, we identify 19,935 Rad21 peaks covering more than 10 million
base pairs at a low FDR of 3.7% and 1,474 Srebp-1 peaks covering nearly 1
million bases at a moderate FDR of 8%. For comparison, we also called peaks
using MACS and SICER [15], another popular peak finding program. To compare
our results, we use FDR and motif presence as indicators of bona fide binding
sites.

3.1 AREM identifies additional binding sites

We seek to benchmark both AREM’s peak-calling and its multiread methodol-
ogy. To benchmark peak-calling, we limit all reads to their best alignment and
run AREM, MACS and SICER. In the Rad21 dataset, AREM identifies 456
more peaks than MACS and 1920 more peaks than SICER but retains a similar
motif presence (81.6% MACS, 82.5% SICER, 81.3% AREM) and has a lower
FDR (2.8% MACS, 12.7% SICER, 1.9% AREM) (see Table 1). For Srebp-1,
AREM identifies more than double the number of peaks compared to MACS
and 816 more than SICER, though the FDR is slightly higher (4.85% MACS,
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Fig. 2. Graphs displaying varying parameters and number of possible alignments per
read. A) Total number of peaks discovered. B) Percentage of peaks with repetitive
sequences. C) False Discovery Rate. D) Percentage of peaks with motif.

9% SICER, 8% AREM) and motif presence slightly lower (46.6% MACS, 59%
SICER, 39% AREM). In both datasets, AREM appears to be more sensitive to
true binding sites, picking up more total sites with motif instances, although it
trades off some specificity in Srebp-1.

To see if AREM can identify true sites that are not significant without
multireads, we performed peak-calling with multireads, removing peaks that
overlapped with those identified using AREM without multireads. Up to 1,546
(8.1%) and 272 (18.9%) previously unidentified peaks were called from Rad21
and Srebp-1, respectively. These new peaks have a similar motif presence com-
pared to previous peaks but overlap with annotated repeat regions more often.

3.2 AREM’s sensitivity is increased with ambiguous reads

Several methods for dealing with ambiguous reads have been proposed, includ-
ing retaining all possible mappings, retaining one of the mappings chosen at
random, and distributing weight equally among the mappings. The first option
will clearly lead to false positives, particularly in repeat regions as the number
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Method # Alignments # Peaks Peak Bases FDR New Peaks Motif Repeat

Cohesin

MACS 2,368,229 18,556 9,546,641 2.8% — 81.67% 56.55%
SICER 2,368,229 17,092 17,374,108 12.71% — 82.55% 70.42%
AREM 1 2,368,229 19,012 9,353,567 1.9% — 81.32% 55.30%
AREM 10 7,616,647 19,881 10,225,479 3.8% 1,404 81.04% 58.88%
AREM 20 12,312,878 19,935 10,531,465 3.7% 1,517 80.88% 59.66%
AREM 40 20,527,010 19,863 10,744,836 3.2% 1,546 80.93% 60.34%
AREM 80 34,537,311 19,820 10,972,796 2.9% 1,538 80.73% 60.91%

Srebp-1

MACS 10,482,005 721 495,968 4.85% — 46.60% 53.95%
SICER 10,482,005 622 963,778 9.0% — 59.00% 77.33%
AREM 1 10,482,005 1,438 880,284 8.0% — 39.08% 53.47%
AREM 10 28,347,869 1,815 996,346 10.5% 262 39.22% 56.04%
AREM 20 44,493,532 1,748 959,646 8.0% 227 39.95% 55.97%
AREM 40 72,453,642 1,685 983,459 8.2% 248 40.34% 56.46%
AREM 80 118,744,757 1,695 987,746 7.3% 272 40.66% 56.73%

Table 1. Comparison of peak-calling methods for cohesin and Srebp-1. Three
peak callers (MACS, SICER, and AREM) were run on both datasets. For AREM,
the maximum number of retained alignments per read is varied (from 1 to 80). The
total number of peaks and bases covered by peaks is reported as well as the FDR
by swapping treatment and control. For both datasets, AREM’s minimum enrichment
score was fixed at 1.5 with 20 maximum alignments per read. For comparison, the
motif background rate of occurence was 4.5% (CTCF) and 27% (Srebp-1) in 100,000
genomic samples, sized similarly to Rad21 MACS peaks and Srebp-1 MACS peaks,
respectively.

of retained mappings increases. We compare the latter two methods to our E-M
implementation, varying the number of retained reads and summarize the results
in Table 1. Although both random selection and fractionating reads increases
the number of peaks called, our E-M method outperforms them, yielding 1546
more peaks for Rad21, and 272 for Srebp-1 with comparable quality. As the num-
ber of retained alignments increases, the disparity gets smaller. AREM shows
fairly consistent results across datasets with a large increase in total number of
alignments (nearly 40-fold for Rad21, over 10-fold for Srebp-1).

For a given sample, the iterations show a continued shift of the max alignment
probabilities to either 1 or 0. This shift is consistent across datasets with larger
numbers of max alignments (data not shown), but does depend on other param-
eters. What is apparent is that AREM’s E-M heuristic performs well, allowing
for significant shift toward a ”definitive” alignment; at the same time, it does
not force a shift on reads with too little information, preventing misalignment
and resulting spurious peak-calling.
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3.3 AREM is sensitive to repeat regions

An important parameter in our model is the minimum enrichment score for all
K regions. Since repeat regions have such similar sequence content, many reads
will share the same repetitive elements. If one of the shared repeat elements has a
slightly higher enrichment score by chance, the E-M method will iteratively shift
probability into that repeat region, snowballing the region into what appears to
be a full-fledged sequence peak. To distinguish repetitive peaks arising by small
enrichment fluctuations from true binding sites within or adjacent to repetitive
elements, we impose a minimum enrichment score on all regions. Lower threshold
scores will be sensitive to these random fluctuations but true binding peaks may
be missed if the score is too high.

To explore the effect of varying the minimum enrichment score, we varied the
minimum score from 0.1 to 2, keeping the maximum number of alignments fixed
at 20. For Rad21, we see a declining number of discovered peaks ranging from
28,305 to 19,634 peaks respectively. In addition to a decline in discovered peaks
as minimum enrichment score increases, we also see a decrease in the reported
FDR and the percent of peaks in repeat regions from 11.28% to 2.95% FDR
and 71.56% to 59.02%. Lastly, the percent of peaks with motif increases from
63.64% to 81.12%. These additional peaks appear to be of lower quality: motifs
are largely absent from them and the FDR is much higher, see Figure 2.

For our method, detecting peaks near repeat regions is a tradeoff between sen-
sitivity and specificity. As the minimum score increases, the method approaches
the uniform or ”fraction” distribution, in which only the initial mapping qual-
ity scores (and not the enrichment) affect alignment probabilities. The fraction
method is explored explicitly, showing increased power compared to unique reads
only, but decreased sensitivity to true binding sites compared to other AREM
runs.

4 Discussion

Repetitive elements in the genome have traditionally been problematic in se-
quence analysis. Since sequenced reads are short and repetitive sequences are
similar, many equally likely mappings may exist for a given read. Our method
uses the low-coverage unique reads near repeat regions to evaluate which poten-
tial alignments for each read are the most likely. Sensitivity to repeat regions
is adjustable, however there is a tradeoff: increasing sensitivity may introduce
false positives. Further refinement of our methodology may lead to increased
specificity.

Our results imply that functional CTCF binding sites exist within repeat
regions, revealing an interesting relationship between repetitive sequence and
chromatin structure. Another application of our method would be to explore
the relationship between repetitive sequence and epigenetic modifications such
as histone modifications. Regulation of and by transposable elements has been
linked to methylation marks [31], and transposable elements have a major role
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in cancers [32]. Better identification of histone modifications in regions of repet-
itive DNA increases our understanding of key regulators of genome stability and
diseases sparked by translocations and mutations.
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6 Appendix

6.1 Alignment

Alignment was performed using Bowtie [7]. We used the Burrows-Wheeler index
provided by the Bowtie website to align reads; the index is based on the un-
masked MM9 reference genome from the UCSC Genome Browser [33]. The first
base of all raw reads was clipped to remove sequencing artifacts and a maximum
of two mismatches were allowed in the first 28 bases of the remaining sequence.
We generated several alignment collections for both Srebp-1 and Rad21 by vary-
ing k, the maximum number of reported alignments. We restricted our study to
search the 1, 10, 20, 40, and 80 best alignments. Table 1 shows that the total
number of alignments was only starting to plateau at k=80, indicating that many
sequences have more than 80 possible alignments, for practicality we restricted
our search as above. Map confidence scores were calculate from Bowtie output
as in [8]. We also provide an option for using the aligner’s confidence scores di-
rectly rather than recalculating them from mismatches and sequence qualities.
During preparation of the sequencing library, unequal amplification can result
in biased counts for reads. To eliminate this bias, we limit the number of align-
ments to one for each start position on each strand. In particular, we choose the
best alignment (based on quality score) for each position; in the event that all
alignments have the same quality score, we choose a random read to represent
that particular position.

6.2 Peak Finding

Our peak finding method is an adapted version of the MACS [13] peak finder.
Like MACS, we empirically model the spatial separation between +/- strand
tags and shift both treatment and control tags. We also continue MACS’ con-
servative approach to background modeling, using the highest of three rates as
the background (in this study, genome-wide or within 1,000 or 10,000 bases). As
a divergence from MACS, we use a sliding window approach to identify large
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potentially enriched regions then use a smoothened greedy approach to refine
called peaks. We call peaks within this large region by greedily adding reads
to improve enrichment, but avoid local optima by always looking up to the full
sliding window width away. The initial large regions correspond to the K regions
used for the E-M steps of Section ??. During the E-M steps, local background
rates are used as during final peak-calling. Peaks reported in this study are above
a p-value of 10−5. All enrichment scores and p-values are calculated using the
poisson linear interpolation described in equation 12. Once E-M is complete on
the treatment data and peaks are called, we reset the treatment alignment prob-
abilities, swap treatment and control and rerun the algorithm, including E-M
steps, to determine the False Discovery Rate (FDR). For all algorithms tested in
this study, we define the FDR as the ratio of peaks called using control data to
peaks called using treatment data. This method of FDR calculation is common
in ChIP-Seq studies (e.g., [13, 15]).

6.3 Motif finding

Motif presence helps determine peak quality, as shown in [34]. To determine if
our new peaks were of the same quality as the other peaks, we performed de

novo motif discovery using MEME [35] version 4.4. Input sequence was limited
to 150 bp (Rad21) and 200 bp (Srebp-1) around the summit of the peaks called
by MACS from uniquely mapping reads. All sequences were used for Srebp-1,
while 1,000 sequences were randomly sampled a total of 5 times for Rad21. The
motif signal was strong in both datasets and the discovered motif position weight
matrix (PWM) was extracted for further use. We also used performed the motif
search using Srebp-1 and CTCF motifs catalogued in Transfac 11.3, and found
similar results. For the CTCF motif, we did genomic sampling (100,000 samples)
to identify a threshold score corresponding to a z-score of 4.29. For Srebp-1, we
used the threshold score reported by MEME. See Figure 1.


