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Winner-take-all networks have been proposed to underlie many of the
brain’s fundamental computational abilities. However, not much is known
about how to extend the grouping of potential winners in these networks
beyond single neuron or uniformly arranged groups of neurons. We show
that competition between arbitrary groups of neurons can be realized by
organizing lateral inhibition in linear threshold networks. Given a col-
lection of potentially overlapping groups (with the exception of some de-
generate cases), the lateral inhibition results in network dynamics such
that any permitted set of neurons that can be coactivated by some input
at a stable steady state is contained in one of the groups. The informa-
tion about the input is preserved in this operation. The activity level of a
neuron in a permitted set corresponds to its stimulus strength, amplified
by some constant. Sets of neurons that are not part of a group cannot be
coactivated by any input at a stable steady state. We analyze the storage
capacity of such a network for random groups—the number of random
groups the network can store as permitted sets without creating too many
spurious ones. In this framework, we calculate the optimal sparsity of the
groups (maximizing group entropy). We find that for dense inputs, the op-
timal sparsity is unphysiologically small. However, when the inputs and
the groups are equally sparse, we derive a more plausible optimal spar-
sity. We believe our results are the first steps toward attractor theories in
hybrid analog-digital networks.

1 Introduction

It has long been known that lateral inhibition in neural networks can lead
to winner-take-all competition, so that only a single neuron is active at
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a steady state (Amari & Arbib, 1977; Feng & Hadeler, 1996; Hahnloser,
1998; Sum & Tam, 1996; Coultrip, Granger, & Lynch, 1992; Maass, 2000).
When used for unsupervised learning, such winner-take-all networks en-
force grandmother-cell representations as in vector quantization (Kohonen,
1989). Recently, much research has focused on unsupervised learning al-
gorithms for sparsely distributed representations (Olshausen & Field, 1996;
Lee & Seung, 1999). These algorithmslead to representations where multiple
neurons participate in the encoding of an object and so are more distributed
than vector quantization. Therefore, it is of interest to find ways of using
lateral inhibition to mediate winner-take-all competition between groups
of neurons, enforcing the sparse representation at a network level.

Competing groups of neurons are the essence of attractor models of asso-
ciative memory:. Selectively grouped neurons correspond to patterns that are
stored as attractors in the network, with only one of these patterns retrieved
at a steady state (Hopfield, 1982; Willshaw, Buneman, & Longuet-Higgins,
1969; Willshaw & Longuet-Higgins, 1970). In this case, the input to the net-
work is represented in the initial conditions of the dynamic system, and the
winning group is the resulting steady state. However, the binary behavior of
an individual neuron in associative memory models is much different and
computationally less informative than a biophysical neuron, whose firing
rate encodes information on the signal it is processing. Although there have
been extensions of these discrete and digital attractor networks to networks
with graded (Hopfield, 1984; Miller & Zucker, 1999) or stochastic neurons
(Golomb, Rubin, & Sompolinsky, 1990), the behavior of the individual neu-
ron tends to be inactive or saturate and thus remains binary in essence.

In this article, we show how winner-take-all competition between groups
of neurons can be realized in networks of nonbinary, analog neurons. In a
network model introduced later, neurons at a steady state can be either active
or inactive and form a binary pattern representing a permitted grouping of
the neurons. At the same time, the activated neurons carry analog values
resulting from computations implemented by the network.

We present a natural way of wiring the network to group neurons selec-
tively by adding strong lateral inhibition between them. Given a collection
of potentially overlapping groups, the inhibitory connectivity is set by a
simple formula that can be interpreted as arising from an on-line learning
rule. To show that the resulting network functions as group winner-take-all,
we perform a stability analysis. If the strength of inhibition is sufficiently
great and the group organization satisfies certain conditions, one and only
one group of neurons can be activated at a stable steady state. In general,
the identity of the winning group depends on the network inputs and also
the initial conditions of the dynamics.

We characterize the storage capacity, the maximum number of groups the
network can mediate to produce winner-take-all competitions, for random
sparse groups in which each neuron has the probability p to be included
in each group. Let n be the total number of neurons in the network. We
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determine the optimal sparsities p that maximize group entropy in two
cases: (1) when the input is dense, the optimal sparsity scales as In(n)/n,
and (2) when the inputs are of equal sparsity as the groups themselves, the
optimal sparsity scales as /In(n)/#n. In the first case, the storage capacity
roughly scales as 12, and in the second case, the storage capacity scales as
n/In(n).

2 Basic Definitions

Let m groups of neurons be given, where the group membership of the ath
group is specified by

1 if the ith neuron is in the ath group 1)

"~ o otherwise,
fori=1,...,n.

We will assume that every neuron belongs to at least one group! and that
every group contains at least one neuron. A neuron is allowed to belong to
more than one group, so that the groups are potentially overlapping. The
inhibitory synaptic connectivity of the network is defined in terms of the
group membership,

n 0 ifiand jboth belong to a group
i =[]0 -eren !

a=1

_ . 2.2)
1 otherwise.

The matrix | basically states that a connection between neuron i and j is
established only if they do not belong to any of the same groups. This pattern
of connectivity could arise from a simple learning mechanism. Suppose that
all elements of | are initialized to be unity, and the groups are presented
sequentially as binary vectors&!, ..., £ The ath pattern is learned through
the update,

Ji < Jii(1 = &7&1). (2.3)

In other words, if both neurons i and j belong to pattern 4, then the con-
nection between them is removed. After presentation of all m patterns, this
leads to equation 2.2. At the start of the learning process, the initial state of
J corresponds to uniform inhibition, which is known to implement winner-
take-all competition between individual neurons. It will be seen that as in-
hibitory connections are removed during learning, the competition evolves
to mediate competition between groups of neurons rather than individual
neurons.

! This condition can be relaxed but is kept for simplicity.
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Let x; be the activity of neuron i. The dynamics of the network is given

+

dx; 1
d—t‘ +xi= |bi+oxi—BY Jix| . (2.4)
=1
foralli = 1,...,n, where [z]' = max{z, 0} denotes rectification, a > 0 is

the strength of self-excitation, and > 0is the strength of lateral inhibition.
b; is the external input. Equivalently, the dynamics can be written in matrix
vector form as

X +x=[b+ Wx]t, (2.5)

where W = ol — B8] includes both self-excitation and lateral inhibition.
The state of the network is specified by the vector x = [x1, ..., x,]T and
the external input by the vector b = [by, .. ., b,]T. Recurrent networks with
linear threshold units have been used in a variety of neural modeling studies
(Hansel & Sompolinsky, 1998; Salinas & Abbott, 1996; Wersing, Beyn, &
Ritter, 2001; Hahnloser, Sarpeshkar, Mahowald, Douglas, & Seung, 2000).

A vector v is said to be nonnegative, v > 0, if all of its components are
nonnegative. The nonnegative orthant is the set of all nonnegative vectors.
Notice that in equation 2.4, x; > 0 whenever x; = 0. Moreover, the linear
threshold function is obviously Lipschitz continuous. These two properties
are sufficient to guarantee that the nonnegative orthant is a positive invari-
ant set of the dynamics, that is, any trajectory of equation 2.4 starting in the
nonnegative orthant remains there (Khalil, 1996). Furthermore, even if the
initial state of x is negative, it will become nonnegative after some transient
period. Therefore, for simplicity, we consider trajectories that are confined
to the nonnegative orthant x > 0. However, we consider input vectors b
whose components are of arbitrary sign.

3 Network Performance

Next, we briefly state some of the properties of the network. The detailed
analysis is deferred to later sections.

We start with a simple case with n different groups, each containing one
of the n neurons, which is the traditional winner-take-all network. Suppose
k > 1 neurons are active initially. After proper ordering, the interaction
matrix between these k active neurons is W = (a + 8)I — 117, where 1 is
the column vector consisting of all ones. One eigenvector of W is 1 with
eigenvalue o — (k—1) 8. The other k — 1 eigenvectors are differential modes
whose components sum to zero, with eigenvalue a + f. If the inhibition
strength is strong enough, § > 1 — @, the differential modes are unstable,
therefore, the network cannot have more than one neuron active at a steady
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state. Moreover, the network is guaranteed to converge to a steady state
provided that a < 1. Under these conditions, we can conclude that for all
b and initial conditions of x, the network always converges to one of the
given groups.

For the general case with arbitrary group membership matrix &, the above
conclusion still holds true, except in some degenerate cases (which will
be described in the next section). If the lateral inhibition is strong enough
(B > 1— a) asinthe previous case, any steady state with two active neurons
not contained in the same group is unstable. If « < 1, the network is again
guaranteed to converge to a steady state. Therefore, one and only one of the
given groups can be active at each steady state.

Which groups could potentially be the winner is specified by the input b.
In the case of nonoverlapping groups, the potential winners are determined
by the aggregate positive input B = )" ,[b;]*&f that each group receives.
Any group with B® > (1 — &) B 'bmax could end up as the winning group,
where bmax = max;{b;}. Which group wins in the end depends on the initial
conditions. It is possible for a specific group to win for all initial conditions
if its inputs are sufficiently large.

The synaptic connections between neurons within a group are restricted
to self-excitation. This causes the activities of winning neurons to be equal
to their rectified input, amplified by a gain factor 1/(1 — «). Thus, the net-
work implements a form of hybrid analog-digital computation, selectively
amplifying activities in only one group of neurons.

4 Analysis of the Network Dynamics

4.1 Convergencetoa Steady State. Thissection characterizes the steady-
state responses of the network equation 2.4 to an input b that is constant in
time. For this to be a sensible goal, we need some guarantee that the dy-
namics converges to a steady state and does not diverge. This is provided
by the following theorem.

Theorem 1. Consider the network equation 2.4. The following statements are
equivalent:

1. For any input b, the network state x converges to a steady state that is stable
in the sense of Lyapunov, except for initial conditions in a set of measure zero
consisting of unstable equilibria.

2. The strength o of self-excitation is less than one.
Proof. To prove equation 2.2 = equation 2.1, if a < 1, the function

Ex) = =(1 — a)xTx + ng]x —b'x 4.1)

N =
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is bounded below and radially unbounded in the nonnegative orthant. Fur-
thermore, E is nonincreasing following the dynamics

dE/dt = —((I — W)x —b)T(x — [Wx + b]")
= —Z ((I—W)x—b)l-z—z (x? — (Wx + b); x;)
ieM i¢M
<= (I=Wx—b)] -
ieM i¢M
<0,

where M= {i| (Wx+b); > 0,Vi=1,...,n}. The notation (z); denotes the
ith component of the vector z.

Equality above holds if and only if x is at the steady state. Therefore, E(x)
is a Lyapunov-like function ensuring convergence to a stable steady state,
except for initial conditions in a set of measure zero.

To prove equation 2.1 = equation 2.2, let us suppose that equation 2.2
is false. If @ > 1, choose b = (1,0,...,0)7T and initial conditions x(0) =
(1,0,...,0)T so that the dynamics of the first neuron is reduced to x1 + x1 =
[ox1 + 1]7 > x; + 1, in which x; diverges. In addition, x; diverges for ini-
tial conditions in a set of nonzero measure, so equation 2.1 is contradicted.
Therefore, a < 1 is both the necessary and sufficient condition for conver-
gence to a stable steady state.

In the following, we restrict the network to a < 1.

4.2 Permitted and Forbidden Sets. In general, the network may have
many fixed points. However, only those that are stable are typically ob-
served at a steady state. We will call a set of neurons that can be coactivated
by some input at a stable (in the sense of Lyapunov) steady state a permitted
set. Otherwise, it is termed a forbidden set.

For a set of neurons to be a permitted set, two conditions have to be
satisfied: its neurons have to be steadily coactivated by some input, and
the steady coactivation must be stable. For the network we are considering,
it is always possible to choose an input that realizes a steady coactivation
of the given set of neurons. Hence, the first condition is readily satisfied.
Consequently, whether a set is permitted or forbidden depends on only its
stability, which is determined by the synaptic connection matrix between
the coactivated neurons. If the largest eigenvalue of that matrix is less than
unity, then the set is permitted. Otherwise, it is forbidden.

One special property of the permitted and forbidden sets is that any su-
perset of a forbidden set is forbidden, and any subset of a permitted set
is permitted (Hahnloser et al., 2000). An intuitive understanding of this
property is that by inactivating a neuron, its feedback is removed. Because
the connections in a symmetric network form effectively positive feedback
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loops, in the form of mutual excitation or disinhibition, removing feedbacks
increases stability of the network. Similarly, adding positive feedbacks de-
creases stability, in agreement with the property that any superset of a for-
bidden set is forbidden.

The above property adds convenience for verifying whether a set is per-
mitted or forbidden. For example, if we know a subset of a set is forbidden,
then the set itself is forbidden. We will use this property in the following
sections.

4.3 Relationship Between Groups and Permitted Sets. The network in
equation 2.4 is constructed to make the groups and their subgroups the
only permitted sets of the network. To determine whether this is the case,
we must answer two questions. First, are all groups and their subgroups
permitted? Second, are all permitted sets contained in the given groups?
The first question is answered by the following lemma.

Lemma 1. All groups and their subgroups are permitted.

Proof. If a set is contained in a group, then there is no lateral inhibition
between the neurons in the set. Provided that a < 1, all eigenvalues of the
interaction matrix between neurons in the group are less than unity, so the
set is permitted.

The answer to the second question, whether all permitted sets are con-
tained in the groups, isnotnecessarily affirmative. For example, consider the
network defined by the group membership matrix & = {(1,1,0), (0,1, 1),
(1, 0,1)}. Since every pair of neurons belongs to some group, there is no lat-
eral inhibition (] = 0), which means that there are no forbidden sets. As a re-
sult, (1, 1, 1) is a permitted set, but obviously itis not contained in any group.

Let us define a spurious permitted set to be a permitted set that is not
contained in any group. For example, (1,1, 1) is a spurious permitted set
in the above example. To eliminate all the spurious permitted sets in the
network, certain conditions on the group membership matrix & have to be
satisfied.

Definition 1. The membership matrix & is degenerate if there exists a set of
k > 3 neurons that is not contained in any group, but all of its subsets with
k — 1 neurons belong to some group. Otherwise, & is called nondegenerate.

For example, & = {(1, 1, 0), (0,1,1), (1, 0, 1)} is degenerate. Using this defi-
nition, we can formulate the following theorem.

Theorem 2. The neural dynamics equation 2.4 with o < land B > 1 — o has
a spurious permitted set if and only if € is degenerate.
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To prove the theorem, we need the following lemma.

Lemma2. IffB > 1— o, any set containing two neurons not in any same group
is forbidden under the neural dynamics equation 2.4.

Proof. We start by analyzing a very simple case where there are two
neurons belonging to two different groups. Let the group membership be
{(1,0), (0,1)}.Inthiscase, W = {(a, —B); (=B, o) }. This matrix has eigenvec-
tors (1, 1)Tand (1, —1)T with eigenvalues being a—f and o+ f3, respectively.
Since a < 1 for convergence to a steady state and § > 0 by definition, the
(1, 1)T modeis always stable. Butif > 1 —a, the (1, —1)T mode is unstable.
This means that it is impossible for the two neurons to be coactivated at a
stable steady state. Since any superset of a forbidden set is also forbidden,
the result generalizes to more than two neurons.

Now we are ready to prove theorem 2 by using lemma 2.

Proof of Theorem 2. If ¢ is degenerate, there must exist a set k > 3 neurons
that is not contained in any group, but all of its subsets with k — 1 neurons
belong to some group. There isno lateral inhibition between these kneurons,
since every pair of neurons belongs to some group. Thus, the set containing
all k neurons is permitted and spurious.

On the other hand, if there exists a spurious permitted set P, we need to
prove that £ must be degenerate. We will prove this by contradiction and
induction. Let us assume & is nondegenerate.

P must contain at least two neurons since any one neuron subset is per-
mitted and not spurious. By lemma 2, these two neurons must be contained
in some group, or else it is forbidden. Thus, P must contain at least three
neurons to be spurious, and any pair of neurons in P belongs to some group
by lemma 2.

If P contains at least k neurons and all of its subsets with k — 1 neurons
belong to some group, then the set with these k neurons must belong to
some group; otherwise, £ is degenerate. Thus, P must contain at least k + 1
neurons to be spurious, and all its k subsets must belong to some group.

By induction, this implies that P must contain all neurons in the network,
in which case P is either forbidden or nonspurious. This contradicts the
assumption that P is a spurious permitted set.

Remark. The group winner-take-all competition described above holds
only for the case of strong inhibition 8 > 1 —a. If g is small, the competition
willbe weak and may notresultin group winner-take-all. In particular,if § <
(1— ) /Amax(—]), where Amax (—]) is the largest eigenvalue of —], then the set
of allneurons is permitted. Since every subset of a permitted set is permitted,
this means that there are no forbidden sets, and the network is monostable.
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Hence, group winner-take-all does not hold. In the intermediate regime,
(1 — &)/Amax(=]) < B < 1 — @, the network has forbidden sets, but the
possibility of spurious permitted sets cannot be excluded.

5 The Potential Winners

We have seen that if £ is nondegenerate, any stable coactive set of neurons
must be contained in a group, provided that lateral inhibition is strong
(B > 1 — a). The group that contains the coactive set is the “winner” of the
competition between groups. The identity of the winner depends on input
b and also on the initial conditions of the dynamics.

Suppose the ath group is the winner. For all neurons not in this group to
be inactive, the self-consistent condition should read

Dbl e = (1— o) [b]", G.1)

i

for all j ¢ a. If the group a contains the neuron with the largest input, this
condition is always satisfied. Hence, any group containing the neuron with
the largest input is always a potential winner.

In the case of nonoverlapping groups, the condition in equation 5.1 can
be simplified as

Yol = (1—a)p! %x{[bﬂ*}, (52

1

and therefore potential winners are determined by the aggregate group
inputs B* = ) ,[b;]T&f. Denote the largest input as bmax = max;{b;}, and
assume bmax > 0. Only those groups whose aggregate inputs are not smaller
than (1 — &) B~ bmax can win, with the exact winner identity determined by
the initial conditions of the dynamics.

6 An Example: The Ring Network

In this section, we take the ring network as an example to illustrate several
results we have obtained so far. Let n neurons be organized into a ring, and
let every set of d contiguous neurons form a group. Thus, in total, there are
n patterns to be stored. In the special case d = 1, this network becomes a
traditional winner-take-all network.

In the case d > 1, the groups are overlapping and & could be degenerate.
In fact, it can be shown that £ becomes degenerate when d > 1/3 + 1. This
is illustrated in Figure 1, which shows the permitted sets of a ring network
with 15 neurons. If the group width is d = 5 neurons, there are no spurious
permitted sets (see Figures 1A-1C). However, when the group width is 6,
the network contains 5 spurious permitted sets (see Figure 1F).
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Figure 1: Permitted sets of the ring network. The ring network consists of 15
neurons with o = 0.4 and 8 = 1. (A, D) The 15 groups are represented by
columns. Black refers to active neurons, and white refers to inactive neurons.
(A) Fifteen groups of width d = 5. (B) All permitted sets corresponding to the
groups in A. (C) The 15 permitted sets in B that have no permitted supersets.
They are the same as the groups in A. (D) Fifteen groups with width d = 6.
(E) All permitted sets corresponding to groups in D. (F) There are 20 permitted
sets in E that have no permitted supersets. Note that there are five spurious
permitted sets.

Figure 2 shows the effect of changing the strength of lateral inhibition.
When the strength of inhibition is strong (8 > 1 — a), there are no spurious
permitted sets provided that & isnondegenerate (see Figure 2D). At the other
extreme, when 8 < (1 — a)/Amax(—]J), there is no unstable differential mode
in the network. All neurons could potentially be active at a stable steady
state, given a suitable input (see Figure 2A). Between these two critical
values (1 —a < B < (1 — &) /Amax(—])), there exist both unstable differential
modes and spurious permitted sets (see Figure 2C).

7 Storage Capacity for Random Sparse Groups

An important characterization of any attractor network is its storage capac-
ity for random patterns, that is, random groups (Amit, Gutfreund, & Som-
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Figure 2: Lateral inhibition strength 8 determines the behavior of the network.
The network is a ring network of 15 neurons with width d = 5 and where
a = 0.6, and input b; = 1 for all i. The panels show the steady-state activities
of the 15 neurons. (A) There are no forbidden sets. (B) The marginal state § =
(1 — @)/Amax(—]) = 0.0874, in which the network forms a continuous attractor.
(C) Forbidden sets exist, and so do spurious permitted sets. (D) Group winner-
take-all case; no spurious permitted sets.

polinsky, 1985; Miller & Zucker, 1999). In our case, as the number of groups
gets larger, the probability of the groups’ being degenerate increases. We
call the probability of error the probability that a neuron outside a group is
activated by mistake.

We choose random sparse groups; p « 1 is the probability that a par-
ticular neuron is part of a particular group. The storage capacity is defined
to be the maximum number of groups the network can store, such that the
error probability remains smaller than a given bound. After constructing
the synaptic weight matrix, we present random inputs to the network. We
assume that each component of the input b has the probability g of being pos-
itive. The expected number of neurons receiving positive inputs is i1 = ng.
Since a neuron receiving a nonpositive input can never become active in
our network, the error probability is effectively determined by the network
of the 1 neurons receiving positive inputs.
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Figure 3: Diagram of m random groups. Filled circles represent active neurons.
The first c neurons in group 1 are coactivated. For a perfect retrieval, all the other
i1 — ¢ neurons must be inactive; that is, all must be inhibited by at least one of
the ¢ active neurons. The error probability P is the probability that at least one
of the # — ¢ neurons is active.

Under the randomness in both the groups and the inputs, the expected
number of coactive neurons in a stable steady state is ¢ = np = npg. Next, we
assume that ¢ neurons are coactivated and calculate the probability Pg of
mistakenly activating any of the other 77 — ¢ neurons.

We use X(i, j) to denote the existence of synaptic inhibition between
neurons i and j, which in our network implies that neurons i and j are not
contained in any same group (see Figure 3). According to lemma 2, X(i, )
also represents mutual exclusion of neuron i and j at any stable steady state.

Without loss of generality, we index the ¢ active neurons from 1 to c. For
neuron j within the other n — ¢ neurons to be inactive, it must make an
inhibitory connection with at least one of the ¢ neurons. The probability of
this happening is Pr {\/¢_; X(i, j)}, where \/ represents logical OR. Extend-
ing this to all the other 77 — ¢ neurons, we derive the probability for all the
71 — ¢ neurons being inactive as follows:

Pe = Pr \C/X(i, . (7.1)
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where /\ represents logical AND. The error probability Pg for at least one
neuron being mistakenly activated is then

n—c ¢
Pg=1—7>c=1>r[\/ XZ]] (7.2)
1

i=1i=

where the overbar denotes logic complement. Next, we find an upper bound
on Pg¢ and use it to estimate the capacity of the network.

7.1 Capacity. The error probability is upper bounded by

Pe < (i1 — c)Pr [\C/X(i,j)] =(n—oc (1 —Pr (\C/X(i,j)]> , (7.3)

i=1 i=1

where Pr{ X (i, ) } canbe exactly calculated using the inclusion-exclusion
principle (Stanley, 1999) as follows:

Pr[\C/XZ]] i( k“() (/\ X (i, ] (74)

i k=1 11,12

= Z(—l)k“(D[l —p+pl—phm (7.5)

k=1

In the above equation, the term 1 — p + p(1 — p)¥ represents the probability

that neuron j does not coexist with other k neurons. This can happen in two

cases: with neuron j being inactive (with probability 1 —p) or neuron jbeing

active but all other k neurons being inactive (with probability p(1 — p)¥).
Equation 7.5 can be further simplified by

Pr [\7 X(, j)] =1+ i(—l)k“(;)[l —kp* +o(p)1m! (7.6)
i=1 k=0

~1 - k(€ 2
~ 1 k:ZO( 1) (k) exp(—kmp?) (7.7)
=1-[1- exp(—mpz)]c. (7.8)

Wehave made two approximations in the above calculation. To derive equa-
tion 7.6, we have assumed that ¢p is sufficiently small, implying sparse
groups. In the approximation made in equation 7.7, we have assumed
m(cpz)2 — 0 in the large n limit, that is, the number of groups m should
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Figure 4: The error probability P, is plotted as a function of the number of
groups m. Here, g = 1, and the number of neurons n = 100. The solid curves
show the results from numerical simulations, and the dashed curves are the
upper bounds calculated by equation 7.8. Two different sparsities p are used.

scale in order less than 1/ (sz)z_ We will see later, after deriving the capacity
m, that these assumptions are indeed satisfied.

By substituting equation 7.8 into equation 7.3, we derive the upper bound
on the error probability:

Pe < (it — o) [1 — exp(—mp?)". (7.9)

We observed close tightness of this bound when compared to the true error
probability from numerical simulations of random groups (see Figure 4).

Given some small number d, the error probability Pg is guaranteed not
to exceed this number, provided that m < m*(d), where

m*(d) = —p~2In{1 — [d/ (7 — )]V} (7.10)
~ —p~2In{1 — [d/ (ng) ]V "7}, (7.11)

where equation 7.11 follows from ¢ < 7.

Given #n, p, and g, using equation 7.11, we can estimate the maximum
number of random groups the network can store in such a way that the
probability of incorrect retrieval remains smaller than d.
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7.2 Optimal Sparsity. How sparse should the random groups optimally
be? We define the optimal sparsity p* as the sparsity p that maximizes the
information capacity of the network. We measure the information capacity
I by the normalized entropy of the m* random groups,

I=—m"nlplog,p+ (1 —p)log,(1 —p)l/n* (7.12)

In other words, I is the entropy of the m* binary words with length n with
probability p of 1, normalized by the number of synaptic connections.

The denominator 1% corresponds to the total entropy the binary synaptic
weight matrix | can hold. Thus, I is expressed as the fraction of the possi-
ble entropy of ], used to store groups. The optimal sparsity p* is given by
p* = argmaxp{I }. To calculate p*, we first have to choose some value for g,
determining the probability that a neuron receives an excitatory input. We
consider two different cases. First, g is independent of p, and without loss
of generality we take g = 1, which corresponds to the case where the inputs
are excitatory and nonsparse. Second, 4 depends on p, and for simplicity we
choose g = p, which is the case where the inputs are of equal sparsity as the
groups.

The optimal sparsity calculations for both cases are derived in the ap-
pendix. Here we state only the results:

. log,(n)/n  wheng=1

P VkIn(n)/n when g = p,

where k = 2.86 is a constant. The approximation becomes exact when the
number of neurons goes to infinity. This result shows that to achieve the
maximum information capacity, p* should scale as In(n)/n when g = 1 and
as y/In(n)/n when g = p. Correspondingly, the average number of neurons
in each pattern scales as In(n) for g = 1 and /nIn(n) for g = p.

By substituting p* into equation 7.11, we derive the storage capacity for
these optimal sparsities,

(7.13)

an?Ve when g =1

*

~ (7.14)
kmn/In(n) wheng = p,

where ¢ ~ log, (n), a = dtley log%(n) and k,, = —In[1 —exp(—1/(2k?))1/ K> ~
0.35. Since In(n) hardly increases for large n, the capacity in the g = 1 case
roughly scales as n? and in the g = p case it roughly scales as .

Equation 7.7 is derived under the assumption that m(q?)? — 0 in the
large nlimit. Now we check the validity of this assumption. Self-consistently,
inthe case g = 1, we find m* (cp"‘z)2 ~ 1/12, and in the case qg=pm* (Cp"‘z)2 ~
1/n. Both approach zero in the large n limit.
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8 Discussion

We have presented a network that uses structured lateral inhibition to me-
diate winner-take-all competition between potentially overlapping groups
of neurons. Our construction uses the distinction between permitted and
forbidden sets of neurons and identifies the allowed groupings as permitted
sets inherent in the network.

Our capacity calculation in the g = 1 case reveals similarity with the Will-
shaw model (Willshaw & Longuet-Higgins, 1970): we find that the optimal
sparsity scales as In(n)/n, for example, for a network of 100 neurons, an
optimal group consists of fewer than 30 neurons and is thus unrealistically
small. In the case where inputs are sparse, 4 = p, we find that the optimal
sparsity scales roughly as v/n and is thus within the realm of real networks.

A distinct feature of our generalized winner-take-all network is the coex-
istence of discrete pattern selection and analog computation. We use strong
lateral inhibitory interactions to constrain certain groupings of neurons, but
leave the analog values of the active neurons unconstrained, except by the
input. It might be interesting to apply our principle of how to constrain
active groups to the problem of data reconstruction using a constrained set
of basis vectors. The constraints on the linear combination of basis vectors
could, for example, implement sparsity or nonnegativity constraints (Lee &
Seung, 1999).

The coexistence of analog filtering with logical constraints on neural ac-
tivation represents a form of hybrid analog-digital computation that may
be especially appropriate for perceptual tasks. Using this network model
for object recognition, the perception of an object could be represented by
the set of active neurons, while activities of these neurons correspond to
continuous instantiations of the object such as viewpoint, illumination, and
scale (Seung & Lee, 2000). In addition, this type of network may constitute
a neural mechanism for feature binding and sensory segmentation prob-
lems, as suggested by Wersing et al. (Wersing, Steil, & Ritter, 2001; Wersing,
2002). In the domain of olfactory perception, recent experimental data on
odor-evoked population responses in the olfactory bulb also show some
promising applications of our model (Hildebrand & Shepherd, 1997; Chris-
tensen, Pawlowski, Lei, & Hildebrand, 2000; Mori, Nagao, & Yoshihara,
1999).

As we have shown, there are some degenerate cases of overlapping
groups to which our method does not apply. It is an interesting open ques-
tion whether there exists a general way of translating arbitrary groups of
coactive neurons into permitted sets without involving spurious permit-
ted sets. There are several possible approaches. For example, we could use
a more sophisticated interaction matrix, including both lateral inhibition
and excitation. For instance, in the three-neuron degenerate example given
earlier, if we choose the interaction matrix W = avo! with v = [1, =1, 1]T
and 1/3 < a < 1/2, then the spurious set (1,1, 1) is forbidden, whereas
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its subsets are still permitted. Another possible approach would be to use
higher-order interactions. Take again the three-neuron degenerate case as
an example. If we added quadratic interactions to the dynamics, x; + x; =
[b; + ax; — B Z]- Jiixj —v Zj, kXixx]", it would follow that for large enough
inputs and suitable parameters, the set (1, 1, 1) would not be permitted, but
its subsets would. One more possible approach would be to use hierarchical
networks with interlayer excitation and intralayer inhibition.

In the past, a great deal of research has been inspired by the idea of storing
memories as fixed-point attractors in neural networks with a fixed input.
Our model suggests an alternative viewpoint, which is to regard permitted
sets as memories latent in the synaptic connections, while the fixed points
corresponding to permitted sets can continuously change depending on the
input. From this viewpoint, the contribution of this article is a method of
storing and retrieving memories as permitted sets in neural networks.

Appendix: Calculation of the Optimal Sparsity for Random Patterns

Start from the information capacity of the network, given by

I = —m*n[plog,p + (1 —p)log,(1 — p)]/n2
~ log, (p) (pn) " In{1 — [ (ng) ~1d]"/ %)},
Here, m* is from equation 7.11 and the approximation is made in the small
p limit. Next we consider two cases for choosing the value of g and find the

optimal p* = argmax,,{I} for these two cases, respectively. The calculation is
done under the condition that the number of neurons n is sufficiently large.

A.1 Dense inputs, 4 = 1. The information capacity I can be written as
I=cIn(1 — (d/n)"¢) log, (c/n), where ¢ = pn. By setting the derivative of
I with respect to ¢ equal to zero, we find

In(d/n)YIn(c/n) + [(d/n)"Y¢ =1]1In[1 — (d/n)Y][1 —1In(c/n)] = O.
Let z = (d/n)¢. Then we have
Inzln(c/n) + (z7' =1)In(1 —2) [1 = In(c/n)] = 0.

Under sparsity assumption, p = ¢/n <« 1, we have [In(¢/n)| > 1. Hence,
the above equation can be simplified to

(1=2)In(1 —z) = zIn(z). (A1)
The solutions of the above equation are z = 0, 1/2, and 1. Given a fixed #,

¢ can be only a finite number. Therefore, the solution z = 1 is impossible.
The other two solutions lead to ¢ = 0 or ¢ = log,(n). Correspondingly,
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p = 0 or p = log, (n)/n. Substituting the value of p = 0 into I, we find that
p = 0 corresponds to a local minimum. Furthermore, the boundary value
p = 1 also corresponds to a local minimum. From these, we conclude that
the optimal probability is given by p* = log, (1)/n. Notice that it satisfies
sparsity assumption (p* « 1).

A.2 Sparse inputs, g = p. The derivative of I with respect to p is

I'(p) = {In(1 —1)[1 —1In(p)]
+t(1 =) n(p)/ (mp®)[1 + 21In(d/ (pn)) 1}/ (np* In2)
~ —[1 = 2kIn(pn) / (np*)11In(p) In(1 — )/ (mp* In 2),

where k= —#[(1 —t) In(1 — )]~ and t = [d/ (pn)]"/P*"). To derive the above
equation, we have neglected small terms by assuming that  is sufficiently
large.
By setting I'(p*) = 0, we find that p* obeys,
In(p*n) 1
np*z T2k
Deriving the exact form of p* as a function of n from the above equation is not
easy. However, when # is sufficiently large, we can simplify the calculation

by assuming that k is independent of n. Under this ansatz, we derive p* to
scale as

p* = VklIn(n)/n. (A.2)

Next, we need to self-consistently verify that our ansatz still holds by
replacing p* in the definition of ¢,

In(d) —In[knIn(n)]/2 1

Inf — ~——
nt KIn(n) 2%k

(A.3)

The approximation becomes exact as n goes to infinity. Thus, we have veri-
fied that t is approximately constant, equal to exp(—1/(2k)). This completes
our ansatz.

We still need to determine the value of k. Substituting equation A.3 into
the definition of k, we derive that

1-—t In(t)
—_—— A4
2t In(1 —¢) (A4)
The root of this algebra equation can be found numerically. The final result
is t = 0.8396 and k = 2.86. We can further check that the boundary values
p at 0 or 1 lead only to local minima of I. Therefore, we conclude that p* in
equation A .2 is the optimal sparsity.
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