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Abstract

One methodology that has met success to infer gene networks from gene expression data is based upon ordinary
differential equations (ODE). However new types of data continue to be produced, so it is worthwhile to investigate how to
integrate these new data types into the inference procedure. One such data is physical interactions between transcription
factors and the genes they regulate as measured by ChIP-chip or ChIP-seq experiments. These interactions can be
incorporated into the gene network inference procedure as a priori network information. In this article, we extend the ODE
methodology into a general optimization framework that incorporates existing network information in combination with
regularization parameters that encourage network sparsity. We provide theoretical results proving convergence of the
estimator for our method and show the corresponding probabilistic interpretation also converges. We demonstrate our
method on simulated network data and show that existing network information improves performance, overcomes the lack
of observations, and performs well even when some of the existing network information is incorrect. We further apply our
method to the core regulatory network of embryonic stem cells utilizing predicted interactions from two studies as existing
network information. We show that including the prior network information constructs a more closely representative
regulatory network versus when no information is provided.
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Introduction

Considerable progress has been obtained in the ability to infer
gene regulatory networks from gene expression data. The three
primary methodologies include probabilistic graphical models [1],
information-theoretic approaches [2,3], and ordinary differential
equations (ODEs) [4,5], see [6–9] for reviews of these and other
approaches. However using only gene expression data will likely not
be sufficient because the noise inherent in the measurements as well
as the expense and difficulty to obtain numerous measurements
under different experimental conditions implies the inference
process on a whole-genome level will always be underdetermined
with respect to the amount of data available. Recent techniques
attempt to integrate additional data sources or introduce constraints
to help guide the inference procedure. Such techniques consider
including modeling of environmental and transcription factor
interactions [10,11], incorporating DNA motif sequence in gene
promoter regions [12–14], combining multiple microarray datasets
from the same organism across multiple experiments [15,16] or
from completely different organisms [2], and integrating proteomics
and metabolomics [17]. Yet despite these advances, gene network
inference remains an extremely difficult problem and new
integrative techniques still need to be explored.
One particularly interesting type of data is experimentally

determined physical interactions whereby the genes regulated by

specific cis-acting transcription factors are identified. These
experimental approaches use protocols such as ChIP-chip and
ChIP-seq [18,19] to perform genome-wide measurements, and
they have been used to construct putative regulatory networks
[20–22] under the assumption that binding peaks discovered in
gene promoter regions implies regulation of those genes. These
protocols are also useful to measure data such as DNA methylation
distributions [23], epigenetic state and chromatin structure
[24,25], and transcription factor promoter occupancy [20]. While
this data has been used with gene expression data for identification
of regulation for a small set of genes [26,27], there currently is no
research utilizing this type of data as part of the genome-wide
computational inference of gene networks. This experimental
strategy provides high-quality interaction data but is restricted in
that the transcription factors must be known in advance and
effective antibodies must be available for the ChIP protocol to
work, therefore many interactions are missed and only provides a
small subset of the regulatory network. However, these interac-
tions can be utilized as a priori network information to help guide
inference procedures. Probabilistic approaches can incorporate
this existing network information through prior distributions
[28,29], but these techniques are computationally expensive.
ODE methods are more computationally tractable, however there
is no existing research that shows how to systematically
incorporate prior network information. We fill that void in this
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article by extending the ODE methodology into a general
optimization framework that incorporates gene expression data
with existing network information. Our approach continues upon
earlier work by also utilizing regularization parameters to
encourage network sparsity, and we show that various types of
experimental data can be formulated into the framework. We
prove that our estimator is asymptotically root-n consistent with
the estimated weights converging to the true weights at a rate of
1ffiffi
n

p , where n is the number of data observations, and that there is a
corresponding probabilistic interpretation which is also asymptot-
ically root-n consistent.
We test our method on simulated network data and show that

existing network information improves performance, overcomes
the lack of observations, and performs well even when some of the
existing network information is incorrect. We demonstrate the
applicability of our framework to real biological data by inferring
the core regulatory network for embryonic stem cells. We utilize
predicted interactions from two experimental studies, each using a
different experimental technique, as existing network information,
and we show that including the experimental network data
constructs a more closely representative network versus when no
information is provided.

Methods

Gene network inference based on ordinary differential equa-
tions (ODEs) describes gene regulation as a function of other
genes:

dxi tð Þ
dt

~Fi x1 tð Þ, . . . ,xp tð Þ
" #

ð1:1Þ

where xi tð Þ is the concentration of mRNA for gene i measured at
time t, dxi tð Þ=dt is the rate of change for the mRNA concentration
of gene i, and p is the number of genes. Each function Fi represents
all of the various factors that affect the amount of mRNA for gene i
including processes such as transcription rate, degradation, post-
transcriptional modifications, translation rate, etc. This represen-
tation indicates a causal interaction versus a conditional
probability as with statistical approaches, but does not necessarily
imply a physical interaction or a direct relationship as proteins,
metabolites, transcription factor binding, and other regulatory
processes are not explicitly represented. The advantage of this
dynamical system representation is that the model can be
expanded to include any of these more detailed interactions.
Though this introduces additional flexibility as it adds more
parameters to the model, little data is available for these
intermediate processes, and the functional form is generally not
known. Furthermore, the system may be amenable to analysis to
deduce properties such as existence of steady-state solutions, bi-
stability and sensitivity analysis of parameter values; and numerical
simulation can be performed for quantitative prediction and
validation.
Variations exist with the exact formulation depending on

whether the available expression data is time-series or steady-state
measurements, the assumed experimental noise model, and the
particular function form for Fi that is chosen. For current
simplicity of presentation we will take the form that approximates
the gene regulatory network with a linear system of equations such
as used by Gardner et al. [5] and expanded upon by others
[4,16,30]; however we will show in later sections how different
forms of data can be included as well as non-linear functions. The
model considers a set of external perturbations u that have been
applied to one or more gene resulting in the following set of linear

ODEs:

dx

dt
~Wx{u ð1:2Þ

where W is a p|p matrix containing the interaction coefficients
and constitutes the network model to be inferred. Given n

observations, x1,u1
" #

, . . . , xn,unð Þ, of the mRNA concentrations

for p genes and their perturbations, and under the assumption the
observations are made at steady-state dxi=dt~0ð Þ, inferring W in
Eq. (1.2) can be expressed as a least-squares minimization
problem:

ŴW~ argmin
W

f Wð Þ~
Xn

j~1

Wxj{uj
$$ $$2 ð1:3Þ

Regularization
For pwn, the linear system is underdetermined. Gardner et al.

[5] with their network identification by multiple regression (NIR)
algorithm argue that assuming a maximum of k incoming
connections serves to transform the problem into an overdeter-
mined system, and makes it robust to measurement noise and
incomplete data. However, this restriction does not reliably
prevent overfitting and all genes tend to have exactly k incoming
connections to minimize the linear regression error, regardless of
whether all those connections are valid. Computationally, the NIR

algorithm has to run
p
k

% &
multiple linear regressions for each

gene which becomes intractable for large p and modest values for

k. Even if there are enough observations, regression tends to use as

many genes as possible to explain the data and thus overfits by

including all k network connections. A more appropriate

methodology is one based on sparsity. Genes should only have

enough connections to predict their expression data without

overfitting, and genes should be allowed to have differing number

of connections to properly reflect the underlying network structure

implied by the data. Various regularization techniques have been

introduced to prevent overfitting including ridge regression [31],

LASSO [32–34], and elastic net [35]. Ridge regression uses an L2-

norm constraint to maintain the best predictors, but it does not

encourage sparsity and is not necessarily the most parsimonious

model. The LASSO (least absolute shrinkage and selection

operator) method adds an L1-norm constraint; this constraint

tends to produce connection coefficients that are exactly zero, and

thus acts to enforce parsimony. Elastic net combines both of these

constraints. Gustafsson et al. [4] and the Inferelator [10] both use

LASSO and provide evidence that it selects parsimonious models.

We consider using LASSO as the basis of our algorithm to enforce

network sparsity and will enhance it to include existing network

information, so the minimization problem becomes:

ŴW~ argmin
W

g Wð Þ~f Wð Þza Wk k1 ð1:4Þ

where Wk k1~
Pp

i~1

Pp

j~1

Wij

'' '' and a is a positive parameter that

enforces the level of sparsity in the gene network. The parameter a

is learned through cross-validation with larger values for a

Gene Network Inference
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producing a more sparse matrix while a~0 corresponds to the
standard least-squares regression problem.

Incorporating existing network information
Existing network information can be incorporated into the

minimization problem by adding an additional constraint for
connections in the network. Given a W 0 matrix with positive
entries W 0

ij§0 indicating the lack of interaction for gene j on gene
i, the problem becomes:

ŴW~ argmin
W

g Wð Þ~f Wð Þza Wk k1zb W0W 0
$$ $$

1
ð1:5Þ

where W 0W 0 denotes the entry-wise product between matrix W

and W 0. This adds a penalty to edges in W that do not exist in

W 0, making those edges less likely to be included. Notice that this
formulation does not force edges provided by the existing network
information to be included in the resultant network; instead those

edges are just not penalized with W 0
ij~0 which will make them

more likely to be picked over other edges. This allows the
optimization to still pick a different network structure if it fits the
data better. The strength of the penalty is determined by a positive
parameter b, which is learned through cross-validation. If the
existing network information is not beneficial to reducing the error
of the inferred network model, then cross-validation will set b~0
to eliminate the penalty. However bw0 signifies that the existing
network information is beneficial.

Optimization framework
We introduce a general optimization framework for various

types of gene expression data that incorporates sparsity and
existing network information. This formulation encompasses the
standard least-squares problem as in Eq. (1.3), yet it is flexible
enough to handle gene-specific problem alterations such as those
required for certain kinds of gene expression perturbation data.
Let f Wð Þ be a quadratic function of the p|p square matrix W ,
defined in the form:

f Wð Þ~ 1

2
tr WTWS
" #

{tr WUð Þz 1

2

Xp

i~1

WiD
iWT

i ð1:6Þ

where Wi denotes the i-th row vector of the matrix W . Matrices S
and Di are symmetric and positive definite, that is S]0 and

Di]0 for all i~1, # # # ,p. Under this definition f Wð Þ is a convex
function ofW . Our goal is to find W that minimizes f Wð Þ subject
to sparsity constraint and existing network information:

ŴW~ argmin
W

g Wð Þ~f Wð Þza Wk k1zb W0W 0
$$ $$

1
ð1:7Þ

We simplify the notation to the following:

argmin
W

g Wð Þ~f Wð Þz L0Wk k1 ð1:8Þ

by defining a p|p matrix L that combines the two parameters:

Lij~azbW 0
ij ð1:9Þ

We use a coordinate descent algorithm to solve this optimiza-
tion problem for a given L matrix [36]. The algorithm iteratively

updates each Wij matrix entry until f Wð Þ converges to its
minimum value; convergence is guaranteed by the convexity of the
function and the additivity of the L1 regularization term [37]. The
derivate of f Wð Þ with respect to Wij is:

Lf Wð Þ
Wij

~Wij SjjzDi
jj

( )
{cij ð1:10Þ

where cij is independent of Wij and is defined to be:

cij:Uji{
Xp

k~1,k=j

Wik SkjzDi
jk

( )
ð1:11Þ

Now consider the derivate of g Wð Þ in Eq. (1.8) with respect to
Wij :

Lg Wð Þ
Wij

~Wij SjjzDi
jj

( )
{cijzLij sgn Wij

" #
ð1:12Þ

where

sgn Wij

" #
:

1 Wijw0;

{1 Wijv0;

[ {1,1½ % Wij~0

8
><

>:
ð1:13Þ

Therefore the update rule in the coordinate descent algorithm
is:

ŴWij~

cij{Lij

SjjzDi
jj

cijwLij ;

cijzLij

SjjzDi
jj

cijv{Lij ;

0 otherwise

8
>>><

>>>:
ð1:14Þ

The resultant network model ŴW is dependent upon the values

used for the two parameters a,bð Þ, so we use cross-validation to

find values that provide the minimum total testing error. K-fold

cross-validation is common practice; however there tends to be few

observations for gene expression data, so we have used leave-one-

out cross-validation which puts just one observation into the

testing set. Note that if all LijwLmax~max
i,j

Uij

'' '' then all matrix

entries Wij will be constrained to be zero, therefore:

Lmax~max Uij

'' '' ð1:15Þ

This provides bounds 0vLijvLmax that need to be searched. We

perform an exponential search starting from Lmax and going

down, using the W matrix as a warm start from one value to the

next. In fact, L is comprised of two parameters so a matrix of a

and b values is constructed and the minimum error for the
parameter pair is chosen.

Perturbation gene expression data
Suppose we are given a set of n observation,

x1,u1
" #

, x2,u2
" #

, . . . , xn,unð Þ, representing the activities of genes
xi in the network after input perturbation ui, for i~1, . . . ,p. We
infer the network connections W between the genes by
minimizing the following error function:

Gene Network Inference
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ŴW~ argmin
W

f Wð Þ~
Xn

j~1

Wxj{uj
$$ $$2 ð1:16Þ

The error function can be rewritten as:

f Wð Þ ~
Pn

j~1

Wxj{ujð ÞT Wxj{ujð Þ

~ 2 1
2 tr WTWSð Þ{tr WUð Þ
* +

zC

ð1:17Þ

where C is a term independent of W thus dropping out of the
minimization, and the matrices S and U are defined to be:

S~
Pn

j~1

xj xjð ÞT U~
Pn

j~1

xj ujð ÞT ð1:18Þ

Thus standard gene expression perturbation experiments fit in the
optimization framework as described in Eq. (1.6) with D~0.

Modified formulation for different perturbation
experiments
The formulation as described in Eq. (1.3) requires a measurement of

the external perturbation distinct from the expression values of the
perturbed genes, which might not be available for all types of
experiments. We propose an alternate formulation where we consider
genetic perturbations Dxb~xb{x& away from the gene expression of
the wild-type gene network x&. We show in the next sections that we
can still express the system as a least-squares minimization problem in
the same form as Eq. (1.6) and use our optimization framework to find
the best network model to explain the perturbation.

Null mutant gene expression data. Null mutant
experiments remove or prevent a gene from being expressed; the
simplest form is to knock out one gene per experiment then
measure the steady-state expression values for the p{1 other
genes. Suppose we are given p observations where a single
different gene i is removed in each observation. Denote the
observed steady state by the vector xnulli , for all i~1, # # # ,p after
gene i is removed. The perturbation of xnulli away from the wild-
type steady state is:

Dxnulli ~xnulli {x& ð1:19Þ

We infer the connection model and strengths between the genes by
minimizing the following error function:

f Wð Þ~
Xp

i~1

Xp

j~1,=i

WDxnulli {Dxnulli

* +2
j

ð1:20Þ

Gene i cannot be used to predict itself for the observation when
gene i is removed, so the error function indicates this by excluding
gene i for observation i. We reformulate the error function and
cast into Eq. (1.6) where we have defined:

S ~
Pp

i~1

Dxnulli Dxnulli

" #T

Di ~ Dxnulli Dxnulli

" #T

Uij ~ Sij{Dxnullii Dxnullij

ð1:21Þ

Heterozygous knockdown gene expression data.
Heterozygous knockdown experiments remove one of two copies

of a gene; a series of experiments might knockdown one gene per
experiment then measure the steady-state gene expression values
for all p genes. Suppose we are given p observations where a single
different gene i is knocked down in each observation. Denote the
observed steady state by the vector xhi , for all i~1, # # # ,p after
removing once copy of gene i. The perturbation of xhi away from
the wild-type steady state is:

Dxhi ~xhi {x& ð1:22Þ

However for the experiment with gene i knocked-down, only
one copy of gene i can contribute so we denote the perturbation of
the other copy of gene i by:

~DDxhii~xhii{x&i
,
2 ð1:23Þ

We infer the connection model between the genes by minimizing
the following error function:

f Wð Þ~
Xp

i~1

Xp

j~1,=i

WDxhi {Dxhi
* +2

j
z
Xp

i~1

1

2
WiDx

h
i {

~DDxhii

- .2
ð1:24Þ

We can reformulate the error function and cast into Eq. (1.6) with:

S ~
Pp

i~1

Dxhi Dxhi
" #T

Di ~ 3
4Dx

h
i Dxhi
" #T

Uij ~ Sij{ Dxhii{
1
2
~DDxhii

( )
Dxhij

ð1:25Þ

Time-series gene expression data
Time-series gene expression data has also been utilized in ODE

methodology. The basic idea is to no longer assume the system has
been measured at steady-state dx=dt~0ð Þ, and use the time-series
data as an approximation to the derivative. We can still consider
perturbations to the system but we should take into account that
dynamics of different genes operate on different time scales. We
are given a set of trajectories, each from a different initial
perturbation, along with n observations for all genes at unit time
intervals Dt as the system relaxes back to the steady state. The final
measurement is not necessarily the steady state. We consider each
trajectory as a time sequence, x1i ,x

2
i , . . . ,x

n
i , for each gene i. We

have a linear system of the form:

t
dx

dt
~Wx{u ð1:26Þ

The derivative can be estimated in a number of ways, but we will
consider here the Mean-Value Theorem approximation:

dxti
dt

&
xtz1
i {xt{1

i

2Dt
ð1:27Þ

The problem is formulated as a least-squares minimization

problem and we use our same optimization framework as before:

ŴW~ argmin
W

f Wð Þ~
Xn{1

t~2

Wxt{ utzt
dxt

dt

% &$$$$

$$$$
2

ð1:28Þ

Gene Network Inference
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However, we do not know ti for each gene so we will need to
learn it iteratively with W. Assume that we have a reasonable
initial value for ti, we first calculate ŴW then optimize Eq. (1.26) for
each ti:

E tið Þ~tiAi{Bi~0 ð1:29Þ

where Ai~
dx2i
dt , # # # ,

dxn{1
i

dt

( )
and Bi~ui{ŴWix. The optimal

solution for ti is:

ti~AT
i Bi A

T
i Ai

" #{1 ð1:30Þ

Use the determined ti to recalculate the derivative entries in Eq.

(1.28) and compute a new ŴW , repeat this iteratively until
convergence.

Nonlinear functional form
Consider just a single gene xi for Eq. (1.3) where we have a

nonlinear differentiable response function Fi and we want to find:

b̂bi~ argmin
b

g bið Þ~
Xn

j~1

Fi b
T
i x

j
" #

{uji

$$$
$$$
2

ð1:31Þ

where bi are the interaction coefficients for gene i, essentially
corresponding to row i of the network model W. To solve the
problem, we first find a quadratic approximation of the objective
function around an arbitrary point b0:

g bð Þ~
Xn

j~1

Fi b
T
i x

j
" #

{uji

$$$
$$$
2
~g b0ð ÞzJ b0ð ÞTDb

z
1

2
DbTH b0ð ÞDbzo Dbk k2

( )
ð1:32Þ

where Db~b{b0, J b0ð Þ~+g b0ð Þ is the gradient of g at b0, and
H b0ð Þ is the Hessian matrix. Specifically, we have:

J bð Þ~2
Pn

j~1

F bTi x
j

" #
{uji

h i
F ’ bTi x

j
" #

xj

H bð Þ~2
Pn

j~1

F bTi x
j

" #
{uj

* +
F ’’ bTi x

j
" #

{F ’ bTi x
j

" #2h i
xj xjð ÞT

ð1:33Þ

Thus, around b0, the problem fits into our convex optimization
framework and can be solved with the same coordinate descent
algorithm:

b̂b b0ð Þ~ argmin
b

f bð Þ~ 1

2
bTH b0ð Þbz J b0ð Þ{H b0ð Þb0½ %b ð1:34Þ

In summary, we propose the following algorithm to indepen-
dently find the set of interaction coefficients for each gene:

1) Randomly choose b0 [ Rp.

2) Find b̂b b0ð Þ using Eq. (1.34) and the coordinate descent
algorithm.

3) Perform line search: find âa [ 0,1½ % such that

âa~ argmin
a

g b að Þð Þ

where b að Þ~b0za b̂b b0ð Þ{b0

h i
.

4) Set b0~b b̂b
( )

and go to Step 2) if a=0.

Asymptotic properties
Consider Eq. (1.16) with a matrix L of non-negative entries and

a parameter for L1-norm regularization:

ŴW~ argmin
W

g Wð Þ~f Wð Þzl L0Wk k1

~
Xn

j~1

Wxj{uj
$$ $$2zl L0Wk k1

ð1:35Þ

This equation is equivalent to:

ŴW~argmin
W

g Wð Þ~tr WTWS
" #

{2tr WUT
" #

zl L0Wk k1 ð1:36Þ

with matrices S and U as defined in Eq. (1.18).
Consider the following noise model:

u~Wxze ð1:37Þ

where the noise term e*N 0,s2I
" #

follows normal distribution

with a fixed variance.

Theorem 1
If l=

ffiffiffi
n

p
?l0§0, L~O 1ð Þ, and

C~ lim
n??

1

n

Xn

i~1

xix
T
i

 !

ð1:38Þ

is non-singular, then when n??,

ffiffiffi
n

p
ŴW{W
" #

?
D
argmin Vð Þ ð1:39Þ

where

V Zð Þ~tr ZTZC
" #

{2tr ZYT
" #

zl0tr I W=0ð Þ0sgn Wð Þ0ZzI W~0ð Þ0 Zj j½ %LT
/ 0 ð1:40Þ

and Y is a random matrix with normal distribution of mean 0 and covariance

E YijYkl

* +
~Sikdjls2 for all i, j, k, l.

Proof of the theorem is provided in Appendix S1. This theorem
suggests that the estimate is root-n consistent with the estimated ŴW
converging to the true W at a rate of 1=

ffiffiffi
n

p
when the penalty term

is reduced at a rate of 1=
ffiffiffi
n

p
. The root-n consistency property is

similar to the asymptotic property of the Lasso estimator first
described by Knight and Fu [38].

A special case: orthogonal design. In this section, we show
how prior network information can aid us in network inference
with a special case where we can analytically solve for the error
rate. Consider the case of an orthogonal design: S~I . Different
entries of W decouple and have the optimal value in the form of a
soft-threshold function:

ŴWij~sgn Uij

" #
Uij{lij
* +

z
ð1:41Þ

Now consider a noise model of Uij~Wijzeij where
eij*N 0,s2

" #
for all i, j. We assume W is sparse with N{ zero

Gene Network Inference
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entries and Nz non-zero entries. Note that N{zNz~p2.
Denote w xð Þ the density of a standard normal distribution and
W xð Þ its cumulative distribution. The probability of ŴWij~0 is:

Pr ŴWij~0
" #

~Pr Wijzeij
'' ''ƒlij
" #

~W
lij{Wij

s

% &
{W

{lij{Wij

s

% & ð1:42Þ

If Wij~0, the probability of misidentifying ŴWij as non-zero is:

1{Pr ŴWij~0
" #

~1{W
lij
s

% &
zW

{lij
s

% &
ð1:43Þ

The overall error rate of misidentifying non-zero entries as zero

and zero entries as non-zero is:

Xp

i~1

Xp

j~1

I Wij~0
" #

1{W
lij
s

% &
zW

{lij
s

% &- .

zI Wij=0
" #

W
lij{Wij

s

% &
{W

{lij{Wij

s

% &- . ð1:44Þ

For simplicity of discussion, assume Wij~w for all non-zero

entries and lij~l for all i, j. Then the error rate is:

E !ll
" #

~N{ 1{W !ll
" #

zW {!ll
" #* +

zNz W !ll{!ww
" #

zW {!ll{!ww
" #* +

ð1:45Þ

where !ww~w=s and !ll~l=s. When !ww&1, the optimal !ll that
minimizes E !ll

" #
is:

!ll&~min 0,
!ww

2

2a

1{a

1 2
ð1:46Þ

where a~N{= N{zNzð Þ is the proportion of zero entries, or

the sparsity of the network. The optimal regularization !ll& can be
derived through cross-validation in real applications if the number
of observations is sufficiently large.
Next consider how to incorporate the existing network

information (potentially incorrect). Suppose we are provided with
the information that a subset of the connections is zero. For these
connections, we increase the regularization parameter l to lzc
with c§0. Suppose among the subset, K{ connections are indeed
zero and Kz connections are actually non-zero. In summary, we
have 4 groups of connections: 1) K{ with true zero connection
strength and parameter lzc; 2) N{{K{ with zero connection
strength and parameter l; 3) Kz with non-zero connection
strength and parameter lzc; and 4) Nz{Kz with non-zero
connection strength and parameter l. The total error rate is then:

E l̂l,ĉc
( )

~K{ 1{W !llz!cc
" #

zW {!ll{!cc
" #* +

zKz W !llz!cc{!ww
" #

{W {!ll{!cc{!ww
" #* +

z N{{K{ð Þ 1{W !ll
" #

zW {!ll
" #* +

z Nz{Kzð Þ W !ll{!ww
" #

{W {!ll{!ww
" #* +

ð1:47Þ

where !cc~c=s. Similarly, if !ww&1, the optimal !cc is:

ĉc&~min 0,
1

!ww

2b

1{b
{

2a

1{a

% &1 2
ð1:48Þ

where b~K{= K{zKzð Þ is the sparsity in the subset. Note that

ĉc&w0 if and only if bwa. This suggests that by adjusting the

parameter c through cross-validation, we should be able to

decrease the prediction error rate if the sparsity of the subset is

lower than the sparsity of the entire network. On the other hand, if

bva, this means that the prior information on the subset is

actually worse than a random guess. In that case, the cross-

validation should set c~0 thus ignoring the prior information.

Probabilistic Interpretation
There is correspondence of the least-square minimization model

as described above with a probabilistic interpretation using
Gaussian random fields to model the interaction between genes.
Under this model, we assume the distribution of gene expression
values are described by a multivariate normal distribution with
mean m and covariance matrix S. We are interested in the inverse
of the covariance matrix, V~S{1, which encodes conditional
dependency between two genes conditioned on all others, and
therefore it contains information on the connectivity between
genes. Our goal is to estimate V from a set of observations
x1,x2, . . . ,xn

/ 0
where xj[Rp is a vector with dimension p, and we

assume each xi is standardize with mean 0. Then the log likelihood
for observing the data is:

l x;Sð Þ~{
n

2
log det(S){

1

2

Xn

j~1

xj
" #T

S{1xj ð1:49Þ

up to a constant difference. After standardizing the data, we can
rewrite the log likelihood as a function of V:

l x,Vð Þ~ n

2
log det Vð Þ{ n

2
tr SVð Þ ð1:50Þ

where S~
Pn

j~1

xj xjð ÞT
.
n is the empirical covariance matrix. The

inverse covariance matrix V can be estimated by maximizing this

log likelihood function. Non-zero entries, Vij , indicate the
existence of a connection between gene i and j. Also note that
different from the linear network model, the probabilistic model
infers a network with undirected edges as it is making a statement
about conditional dependency between two genes. This problem
can be solved using several convex optimization algorithms
including interior point methods [39] and coordinate descent [34].
When nvp, S is singular and the solution is underdetermined.

Even when n§p, we will likely overfit the data using Eq. (1.50) if n
is not large. A solution is to add a regularization term to the log
likelihood function. In fact, we can incorporate the same L1-norm
sparsity constraint that we did for the ODE model, thus providing
us the capability to both enforce a parsimonious model as well as
introduce existing network information. Given a matrix L of non-
negative entries and a single non-negative parameter l, we can
formulate the following minimization problem:

V̂V~ argmin
V]0

f Vð Þ~{
n

2
log det Vð Þz n

2
tr SVð Þzl L0Vk k1 ð1:51Þ

where L0V is the component-wise product of the two matrices.
Similar to the linear network inference described in Theorem 1,

we can prove (provided in Appendix S1) that the estimated V
converges to the true V at the rate of 1ffiffi

n
p as n?? thus showing

that the estimate is still root-n consistent.
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Theorem 2
If l=

ffiffiffi
n

p
?l0§0, L~O 1ð Þ, and S is non-singular, then

ffiffiffi
n

p
V̂V{V

( )
?
D
argmin Vð Þ ð1:52Þ

where

V Dð Þ~ 1

4
tr SDSDð Þz 1

2
tr ZDð Þ

zl0tr I V~0ð Þ0 Dj jzI V=0ð Þ0sgn Vð Þ0D½ %LT
/ 0 ð1:53Þ

and Z is a random matrix with normal distribution of mean 0 and covariance

E ZijZkl

* +
~SijSjlzSilSjk for all i, j, k, l.

Results

Simulation Results
We generated a set of random linear network models to test the

utility of our optimization framework and to characterize the effect
of providing existing network information. Each network contains
p~10 nodes with 2–3 uniform randomly selected incoming edges
for a total of exactly 25 edges in the network; a weight for each
edge was randomly drawn from the normal distribution N 0,1ð Þ.
We verified that the generated network, W , was not singular with
a valid inverse then generated a random perturbation matrix, u,
with n~15 experiments (or observations) for all p nodes. Each
random response value was drawn from the normal distribution
N 0,1ð Þ and the observation matrix, x, was calculated:

x~W{1u ð1:54Þ

Experimental noise was added to both the perturbation and
observation matrices. The noise for the perturbation matrix was
drawn from N 0,0:1ð Þ and for the observation matrix was drawn
from N 0,0:3ð Þ. The larger standard deviation for the observation
matrix signifies the additive noise for 2–3 incoming edges from the
perturbations.
For our experiments utilizing existing network information, we

considered the simplest network information that can be provided,
the existence of a directed edge going from one gene to another as
a boolean value. The set of existing edges is provided as a boolean
network W 0 to our algorithm where an entry W 0

ij~0 indicates a
directed interaction from gene j to gene i and thus is not penalized,
while W 0

ij~1 for all other edges.
Fewer observations decreases prediction

performance. One of the key challenges with inferring gene
networks from gene expression data is the relatively few
observations available compared to the large number of genes.
This has a direct effect on how well an inferred model can predict
the observed data as illustrated by Figure 1. While an
underdetermined linear model can be constructed to fit the data
exactly, this is clearly overfitting and cross-validation more
correctly specifies the best fitting model. Figure 1 shows how
when the number of observations decrease then the error increases
for the best fitting model as determined by cross-validation.
Furthermore, when the number of observations is greater than the
number of variables, then the error stabilizes.

Existing network information overcomes fewer
observations. We tested how providing existing network
information could overcome the lack of observations by running
our algorithm on a set of five randomly generated linear models.

We systematically provided more valid edges to the algorithm
going from zero edges up to the fully correct network. The results
can be seen in Figure 2. For each of the five randomly generated
linear network models, we ran our algorithm five times with a
different set of edges randomly selected from the correct network.
The cross-validation error results are averaged over the 25 total
simulation runs for each number of valid edges provided as
existing network information.
Figure 2 clearly illustrates that the error decreases as more valid

edges are provided to the algorithm. An interesting observation is
that the rate of decrease is significantly more for fewer
observations; this indicates that each valid edge has a more
important role in inferring the correct network model when the
total information available is scarce. Therefore, even providing
just a few valid edges can substantially improve the inference
process. Furthermore note that the variation is greater for fewer
observations, we could have made these curves smoother by
running more simulations, but the variation illustrates another key
point that not all valid edges are equal in their ability to reduce
error. Some edges are more important than others, though which
edges is typically not known beforehand.

Providing incorrect network information does not hurt
prediction. While we showed in the previous section that
providing correct edges as existing network information helps
prediction, what about if we give the algorithm incorrect edges?
Figure 3 shows the results. If we only provide invalid edges, it does
not significantly hurt performance. The reason is apparent if we
consider the constraint added to the optimization problem for
incorporating network information. If the existing network
information provided to the algorithm does not help to reduce
the error, then cross-validation will determine the best minimum
error is obtained by setting b~0, essentially ignoring the network
information. The algorithm then performs equally as well as when
no network information is provided.

Figure 1. Minimum Cross-Validation Error given Number of
Input Observations. The minimum error for the best fitting model as
determined by cross-validation and averaged for five simulated linear
network models. The network models have ten nodes, so once there
are enough observations then the error stabilizes; however the error
increases as less observations are provided to the inference algorithm.
doi:10.1371/journal.pone.0006799.g001
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Combination of valid and invalid network information
still performs better than providing no network
information. It would not generally be the case that the
provided existing network information is completely correct; it is
more likely that it contains a mixture of valid and invalid edges.
Figure 4 shows that our algorithm still performs well in this mixed
situation. When the majority of the edges are valid then adding
invalid edges increases the error but not significantly enough to
detract from the usefulness of the valid edges. Even when there are
only a few valid edges compared to the number of invalid edges,
then the algorithm is able to still utilize those valid edges. In all
cases, providing existing network information, even with some
invalid edges, performs better than providing no network
information.

Biological Results
The discovery that introduction of transcription factors into

mouse and human somatic cells is sufficient to induce a pluripotent
stem cell fate has generated considerable excitement [40–46].
Further experiments have been performed to elucidate the core
transcriptional network involved with maintaining pluripotency
including correlation of transcription factor binding data with gene
expression [21], ChIP-seq [22] and biotin-mediated ChIP [20].
While such experiments suggest potential gene regulatory
interactions, they do not provide definitive evidence because not
all of the detected interactions may be functional [47]. However
such data constitutes prior network information we can provide to
our gene network inference procedure, and in this section we will
compare an inferred network that includes this prior network
information versus a network when no information is provided.

We focus on the 49 total genes that are included in the
regulatory networks constructed by Zhou et al. [21] and Kim et al.
[20]. In Figure 5 we show this combined network for three core
transcription factors (Nanog, Oct4 and Sox2) and the genes they
are hypothesized to regulate. While this figure only shows 25
genes, we performed the computational analysis for all 49 genes
(provided in Supplemental Text S1) but restrict our discussion for
clarity to these three core factors. What can be seen from Figure 5

Figure 3. Invalid Edges Does Not Affect Performance. Randomly
selected invalid edges provided as existing network information does
not affect the minimum error for the best fitting model as determined
by cross-validation and averaged for five simulated linear network
models.
doi:10.1371/journal.pone.0006799.g003

Figure 4. Mixture of Valid and Invalid Edges. Randomly selected
valid and invalid edges provided as existing network information still
performs well as determined by cross-validation and averaged for five
simulated linear network models.
doi:10.1371/journal.pone.0006799.g004

Figure 2. Error Decreases with More Valid Edges Provided as
Existing Network Information. Going from zero edges to the fully
correct network, randomly selected valid edges are provided as existing
network information. The cross-validation error for five simulation runs
for five randomly generated linear network models is averaged and
plotted as proportional error versus the number of valid edges
provided. Because we add experimental noise to the observations,
the amount of error varies with the number of observations. Therefore
to cancel this bias we calculate a proportional error, which is the
minimum cross-validation error averaged across the simulation runs
divided by the minimum least-squares error obtained linear regression.
doi:10.1371/journal.pone.0006799.g002
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is that the experimental data suggests cross-regulation between all
three factors, a larger set of genes co-regulated by all three factors,
and a few genes regulated by one or two of the core factors. We
use the gene expression data from Ivanova et al. [48] which
consists of a time course set of expression values, however we
utilize just the final time points which most closely resemble steady
state conditions for a total of 16 observations.
Using leave-one-out cross-validation, we find the values for the a

(sparsity) and b (prior network) parameters for each gene that
minimizes the total testing error. Figure 6 shows the resulting
network inferred by our algorithm when given prior network
information. For all three core factors, the algorithm gave more
weight to the prior network over just the sparsity constraint; Nanog
b~0:03wa~0:001ð Þ, Oct4 b~0:03wa~0:0ð Þ and Sox2
b~0:0078wa~0:001ð Þ. This was not true for all genes, with 23
of the 49 genes having an avalue less than or equal to the bvalue; the
full set of learned parameter values are provided in Supplemental
Text S1. We also used cross-validation to learn a network without
prior information, so only finding the best a parameter to minimize
the testing error. The resultant network is shown in Figure 7.

For both Figure 6 and 7, color is used to illustrate the
comparison between the prior network in Figure 5 with the
inferred network. Black edges indicate the inferred network
predicted the same interaction as in the prior network, red
indicates a prior network interaction not predicted in the inferred
network, and blue edges are new interactions predicted in the
inferred network. While the two inferred networks appear similar,
there are significant differences. Overall the inferred network with
prior information maintained more edges in correspondence with
the prior network keeping 34 edges while the network without
prior information kept only 25 edges. Both networks added about
the same number of new interactions with 33 for the network with
prior information and 32 for the network without prior
information. Most notably the network with prior information
maintained the co-regulatory interactions between the three core
factors while this is lost in the other network.
Closer inspection of the interactions (red edges) present in the

experimental network but not in the inferred networks show that
for some genes all interactions with the core transcription factors
were not predicted. These genes are Rif1, Rybp, Tle4, Tcf7 and

Figure 5. Experiment Transcriptional Network for Mouse Embryonic Stem Cells. Combining the hypothesized interactions obtained
through experiments by Zhou et al. [21] and Kim et al. [20] forms prior network information to be provided to our gene network inference algorithm.
There are a total of 49 genes but only the 25 genes regulated by the three core factors, Nanog, Oct4 and Sox2, are shown here.
doi:10.1371/journal.pone.0006799.g005
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Rail4, and these represent the majority of interactions missing in
the inferred networks. There are several possible explanations.
One is anomalous expression data for the genes, however basic
statistical analysis of the data shows the mean expression values for
each gene is much greater than its standard deviation which
indicates the expression data is not dominated by noise. A second
possibility is that the interaction is sufficiently non-linear so a
linear approximation fails to capture the connection, but an
alternative explanation is that the inferred network failed to
confirm a functional interaction as suggested by the experimental
network. These five genes are new predictions in the experimental
network, and there is little or no experimental confirmation so the
lack of correspondence draws into question the validity of those
interactions. While we have not checked all interactions, it is
encouraging to note that some interactions shared between the
experimental and inferred networks include genes known to be
important for pluripotency such as Sall4 [49] and Esrrb [50] as
well as new inferred interactions such as Oct4 to Yy1 [51]. The
combination of gene network inference coupled with the

incorporation of existing network information provides a stronger
framework for predicting true functional interactions while also
doing a better job of excluding false positives.

Discussion

We have taken the ODE methodology for inferring gene
networks from gene expression data and extended it to incorporate
a priori network information, such that might be obtained from
additional biological data like ChIP-chip or ChIP-seq experiments.
We have devised a general optimization framework and algorithm
that can be applied to gene expression data for a variety of
experiments such as perturbation, null mutant, and heterozygous
knockdown. Though the focus of the presentation has been on
linear ODEs, we have shown that a quadratic approximation of
nonlinear functions can be used in the context of the optimization
framework. While use of regularization parameters to encourage
sparsity in inferred gene networks has been previously reported,
we believe this is the first research that utilizes such regularization

Figure 6. Inferred Network with Prior Information. The gene regulatory network learned through cross-validation with the experimental
network provided as existing information. This figure shows just the interactions predicted for the three core factors, Nanog, Oct4 and Sox2. Black
edges indicate the inferred interaction matches the experimental network, a red edge indicates an interaction in the experimental network not
predicted in the inferred network, and blue edges are new interactions predicted in the inferred network.
doi:10.1371/journal.pone.0006799.g006
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to integrate existing network information into the inference
procedure. We have tested our algorithm on simulated linear
network model data and showed that existing network information
improves performance, can overcome the lack of observations, and
performs well even when some of the existing network information
is incorrect.
The method that we use to incorporate existing network

information does not force edges to be present in the inferred
network model. The penalty actually serves to prevent other edges
from being included in the network, so it very much acts as a soft
constraint. The algorithm is free to pick other edges if they
ultimately fit the data better and cross-validation will insure this by
appropriate computation of the parameter value. Though we do
not describe the specifics, it is possible to force an edge to be
included in the final network. This can be done by removing all of
the L1-norm regularization during the calculation for that specific
edge. The coordinate descent algorithm in our optimization
framework will then perform the standard least-squares calculation
for that edge. Another advantage of our framework for existing

network information is that a ‘‘confidence’’ value can be provided
for each edge, thus penalizing some edges more or less, by using
different values in the W 0 matrix. Furthermore, edges can be
effectively removed from the network just by setting their
W 0

ij~Lmax.
Our presentation of the optimization framework indicates that

there is a single value for the a and b parameters for the whole
network. However, the interaction coefficients for each gene can
be considered independent from the other genes. This means that
it is possible to have a separate a and b for each gene. The
algorithm would still use cross-validation to calculate the
parameter values but it would be done separately for each gene.
This introduces more parameters into the model so it has a greater
chance of overfitting the data but it also has the advantage of
allowing the framework to more selectively utilize existing network
information, especially in the situation where the information is
good for one gene but poor for another gene. With a single
parameter value, the optimization framework has to balance good
and bad information for the whole network. Splitting the

Figure 7. Inferred Network without Prior Information. The gene regulatory network learned through cross-validation with no prior network
information provided. This figure shows just the interactions predicted for the three core factors, Nanog, Oct4 and Sox2. Black edges indicate the
inferred interaction matches the experimental network, a red edge indicates an interaction in the experimental network not predicted in the inferred
network, and blue edges are new interactions predicted in the inferred network.
doi:10.1371/journal.pone.0006799.g007
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calculation also makes the algorithm more amenable to parallel
computation because each gene is optimized independently and
can be performed by separate programs without any synchroni-
zation. The final W matrix is constructed by merging the results of
the individual genes together. Even with single values for a and b,
parallelization can still be utilized either for individual genes and/
or for cross-validation, but synchronization is required at
intermediate steps.
Computationally, a single optimization run is fast and efficient.

For both the simulated and biological networks, a single
optimization finished quickly in just a few seconds. What can
actually take considerable time is cross-validation to learn the best
a and b parameter values. Here one constructs a two-dimensional
grid of parameter values, a lower-triangular matrix as entries
above the diagonal correspond to solutions with W~0. Then for
each grid entry a set of optimizations is run to infer a gene network
for a subset of observations as well as calculate the cross-validation
error. For the biological data with 16 observations, that entails 16
optimization runs per grid entry and with a resolution of 50
intervals for each parameter for a total of 1275 grid entries;
inferring the complete gene network in Figure 6 requires over
20,000 optimization runs. Even so this takes only about 1.5 hours
on a standard desktop Mac computer. Scaling to genome-wide
networks with thousands of genes is certainly a challenge but can
be mitigated by decomposition of the problem and parallel
processing.
A limitation of our framework is also one that is shared by many

other gene network inference procedures. Specifically that the
simple network structure of a gene regulating another gene hides
the true complexity of the transcriptional, translational and
regulatory processes in the underlying biology, and it fails to
provide mechanistic hypotheses for how a gene regulates other
genes. Despite this limitation, this is a long-term goal that we and
others in the field strive to attain by advancing these methods. Of
particular note is that ODE methods have the inherent
extensibility to incorporate more detailed and complex functional
relationships that directly represent physical and causal mecha-
nisms. The challenge is how to efficiently and correctly infer these

functional relationships and associated parameters given the
limited amount of biological data. We have hinted at one
possibility for non-linear functions but considerable work still
remains to improve the robustness and efficacy of these
approaches.
While our framework presents a novel way to incorporate

existing network information into the process of gene network
inference, we believe it offers a more generic mechanism to
incorporate other types of constraints. For example, research has
indicated that different transcription factors have different
occupancy levels in the promoter regions of the genes they
regulate [20]. This might be modeled as constraints in our
framework whereby transcription factors with low occupancy are
given a highW 0

ij value while a high occupancy transcription factor
is given a low W 0

ij value. Of course this makes the assumption,
possibly incorrectly, that the occupancy level has a proportional
effect on transcription rate, but this may be an appropriate
approximation for some systems. In the future, we look forward to
investigating the many ways that we can incorporate the growing
body of biological data into our optimization framework.
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Appendix S1 

Proof of Theorems 

Consider a matrix !  of non-negative entries and a parameter for L1-norm regularization: 

 

 

Ŵ = argmin
W

g(W ) = f (W ) + ! " oW
1
= Wx

j # u j 2

j=1

n

$ + ! " oW
1
 (1.0) 

This equation is equivalent to: 

 
 

Ŵ = argmin
W

g(W ) = tr(WT
W!) " 2tr(WUT ) + # $ oW

1
 (1.1) 

with matrices !  and U  defined to be:  

 ! = x
j
x
j( )
T

j=1

n

" U = x
j
u
j( )
T

j=1

n

"  (1.2) 

Consider the following noise model: 

 u =Wx + !  (1.3) 

where the noise term 
 
! � N(0," 2

I )  follows normal distribution with a fixed variance. 

Theorem 1 

If ! n" !
0
# 0, $ = O(1) , and 

 C = lim
n!"

1

n
x
i
x
i

T

i=1

n

#
$

%&
'

()
 (1.4) 

is non-singular, then when n!" , 

 n Ŵ !W( )"
D

argmin(V )  (1.5) 

where 

 
 
V (Z ) = tr(ZT

ZC) ! 2tr(Z"T
) + #0tr I(W $ 0) o sgn(W ) o Z + I(W = 0) o Z%& '()

T{ } (1.6) 



and !  is a random matrix with normal distribution of mean 0 and covariance 

E ! ij!kl
"# $% = &ik' jl(

2
 for all i, j, k, l. 

Proof.  Let !Ŵ = Ŵ "W .  Then it follows from Eq. (1.1) that !Ŵ  is the solution of 

 
 

!Ŵ = argming(!W )
!W

= n tr !WT
!W"( ) # 2 ntr !W$

T( ) + % & o (W + !W )
1
 (1.7) 

where 

 ! =
1

n
"
i
x
i

T

i=1

n

#  (1.8) 

is a random matrix with mean 0 and covariance E !
ab
!

cd[ ] = Cbd

m"
ac
# 2  for all a, b, c, d.  

Here C
m
= x

i
x
i

T

i=1

n

! / n  is the empirical covariance matrix of the input data.  As 

n!", C
m
! C and # ! n#

0
.  Consequently, we must have !Ŵ " 0  in Eq. (1.7) 

almost surely when C is non-singular.  When !W " 0 , the last term in the RHS of Eq. 

(1.7) can be rewritten as 

 
 
! o (W + "W )

1
= tr I(W # 0) o sgn(W ) o"W + I(W = 0) o "W$% &'!

T{ }  (1.9) 

Now define Z = n!W .  Then as n!", n Ŵ #W( )  minimizes 

 
 
tr Z

T
ZC( ) ! 2tr Z"T( ) + #0tr I(W $ 0) o sgn(W ) o%W + I(W = 0) o %W&' ()*

T{ } (1.10) 

 �  

 

Given a matrix !  of non-negative entries and a single non-negative parameter ! , we can 

formulate the following minimization problem: 

 
 

!̂ = argmin
!f0

f (!) = "
n

2
logdet(!) +

n

2
tr(S!) + # $ o!

1
 (1.11) 

where  ! o"  is the component-wise product of the two matrices. 



 

Theorem 2 

If ! n" !
0
# 0, $ = O(1) , and !  is non-singular, then 

 n !̂ " !( )#
D

argmin(V )  (1.12) 

where 
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2
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and Z is a random matrix with normal distribution of mean 0 and covariance 

E ZijZkl
!" #$ = %ij% jl + %il% jk  for all i, j, k, l. 

Proof.  Let Ŷ = !̂ " ! .  Then from Eq. (1.11) we have: 
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n

2
logdet(" +Y ) +

n

2
tr(SY ) + # $ o (" +Y )
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 (1.14) 

S = x
j
x
j( )
T

j=1

n

! / n  is a random variable.  When n!" , S follows normal distribution 

and converges in distribution to: 

 S = ! +
1

n
Z  (1.15) 

where Z follows normal distribution with mean 0 and covariance 

E ZijZkl
!" #$ = %ij% jl + %il% jk  for all i, j,k,l ![1, p] .  Hence, we have: 

 n tr(SY ) = n tr(!Y ) + tr( nYZ )  (1.16) 

When n!",Y ! 0  almost surely.  Thus, we can perform Taylor expansion on 

logdet(! +Y )  around !  which leads to: 
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When Y is small, the term 
 
! o " +Y( )  can be rewritten as: 
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Substituting Eqs. (1.16), (1.17) and (1.18) into Eq. (1.14) and ignoring terms independent 

of Y, we have: 
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If we define ! = nY = n "̂ # "( ) , then we have !̂ = argmin
!

V !( ) . 
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