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Abstract
We study the performance of the maximum likelihood (ML) method in
population decoding as a function of the population size. Assuming
uncorrelated noise in neural responses, the ML performance, quantified by
the expected square difference between the estimated and the actual quantity,
follows closely the optimal Cramer–Rao bound, provided that the population
size is sufficiently large. However, when the population size decreases below
a certain threshold, the performance of the ML method undergoes a rapid
deterioration, experiencing a large deviation from the optimal bound. We
explain the cause of such threshold behaviour, and present a phenomenological
approach for estimating the threshold population size, which is found to be
linearly proportional to the inverse of the square of the system’s signal-to-noise
ratio. If the ML method is used by neural systems, we expect the number of
neurons involved in population coding to be above this threshold.

1. Introduction

Information in neural systems is often encoded by populations of neurons. By using population
codes, neural systems gain robustness against damage to individual or a small number of
neurons, and reduce errors caused by neuronal noise [1–3].

Examples of population codes exist in a variety of sensory and motor domains, such
as intended movement directions encoded in the primate motor cortex [4], orientations and
directions encoded in the primate visual cortex [5], physical locations encoded in hippocampal
place cells [6, 7] and wind directions encoded in the cricket cercal sensory system [8].

Several approaches have been proposed for a neural system to ‘read out’ the population
encoded information. The most straightforward is the centre of mass approach,which estimates
the encoded information by the weighted sum of the preferred values of individual neurons with
weights specified by neural activities [9, 10]. The second approach is the population vector,
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which estimates the information as the phase of the first Fourier component of the neural
activity [4, 11, 12]. Although they have the appealing properties of being simple and easy to
implement, the above two methods are often not efficient [13]. The maximum likelihood (ML)
method estimates the encoded information as the one with the largest likelihood. In terms of
Bayesian inference, ML is the maximum a posteriori (MAP) method with an uninformative
prior on encoded information [1, 3].

Although it is still a subject of debate whether the ML method is used by neural systems,
there have been suggestions that ML could be implemented by a biologically plausible recurrent
network [12, 14]. The performance of the ML estimator,quantified by the expected square error
between the estimated and the true information,reaches an optimal lower bound asymptotically
when the number of neurons in the population is sufficiently large, provided that noise in neural
responses is uncorrelated [12, 15]. Because of this, the ML method is asymptotically efficient
and widely used in engineering signal estimation problems.

Many studies have been performed on the asymptotic properties of the ML method in
population decoding by assuming a sufficiently large number of neurons. However, in neural
systems the number of neurons involved in one particular encoding scheme is constrained.
How many neurons are necessary to guarantee a good ML estimator performance?

In this paper, we address this question by studying the performance of the ML estimator
as a function of population size. We show that when the number of neurons decreases below
a certain threshold, the performance of the ML estimator deteriorates dramatically. We also
present a phenomenological method to estimate this threshold, and find that it is linearly
proportional to the inverse of the square of the system’s signal-to-noise ratio (SNR).

Although this threshold behaviour has not been described in the context of
population coding, it has long been observed in frequency estimation studies of analogue
communications [16, 17]. Taking advantage of the simplicity of frequency estimation in
the spectrum after Fourier transform, people are able to calculate the distribution of the ML
estimated values directly [17]. However, the methods used are specialized to frequency
estimation and cannot be generalized to population decoding, in which neural activities
typically follow a bell-shaped function on the encoded information. In contrast, we take a
phenomenological approach on the threshold estimation that can be applied to many forms of
encoding.

Next, we first present some simulation results on the threshold behaviour of the ML
method. Then we discuss the cause of such threshold behaviour. Finally, we present an
approach to analytically estimate the threshold number.

2. Performance of the maximum likelihood estimator

Consider a population of N neurons with the activities represented by a vector r =
(r1, r2, . . . , rN ), ri being the activity of the i th neuron. Suppose a static stimulus s is encoded
in such a population, and the population activities can be modelled by the distribution with
probability density specified by p(r|s). Furthermore, assume that for a given stimulus, the
activities among all neurons are conditionally independent, so

p(r|s) =
N∏

i=1

p(ri |s). (1)

An estimator ŝ(r) estimates the value of the true stimulus from the population responses r.
A quantity measuring the performance of the estimator is the expected square error between
the estimated and the true stimulus, denoted by C(s) ≡ E[(ŝ(r) − s)2], where the expectation
is with respect to the density function p(r|s).
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The estimation error C(s) of any estimator has a strict lower bound given by the Cramer–
Rao bound [15],

C(s) � [1 + b′(s)]2

I (s)
+ b2(s), (2)

where b(s) ≡ E[ŝ(r)−s] is the bias of the estimator and I (s) is the Fisher information defined
as

I (s) ≡ E

[
∂

∂s
log p(r|s)

]2

= −
N∑

i=1

E

[
∂2

∂s2
log p(ri |s)

]
, (3)

where the second equality holds provided that p(ri |s) is twice differentiable in s and the neural
activities are conditionally independent. When an estimator is unbiased, the estimation error
C(s) is the variance of the estimator and is lowered bounded by the inverse of the Fisher
information.

The ML method estimates the stimulus to be the one with the largest likelihood, that is,

ŝML ≡ argmax
s

p(r|s) = argmax
s

L(r; s), (4)

where the log likelihood function L(r; s) ≡ log p(r|s) = ∑
i log p(ri |s).

The ML estimator is unbiased and efficient in the large N limit, reaching the Cramer–
Rao bound asymptotically [15, 18]. More precisely, ŝML converges in distribution to the
normal distribution with mean s and variance 1/I (s) when N → +∞ [18]. Since the Fisher
information is an extensive quantity, that is, I (s) ∼ N , the decoding error C(s) ∼ 1/N can be
made arbitrarily small by choosing a sufficiently large population size. In this sense, the ML
estimator is often called asymptotically efficient.

2.1. Threshold behaviour

Despite the desirable properties of the ML method with a large population size, its performance
with small numbers of neurons can be quite different. One way of studying this is to check the
changes in the ML performance as the population size is gradually decreased.

We perform this experiment in the following context. Assume the stimulus s is a
continuous variable with s ∈ [−π, π). An example of such a stimulus is the orientation
of a bar or grating, commonly used in visual physiology studies. Furthermore, assume the
response of a neuron is a nonlinear function of s plus a Gaussian noise with zero mean and
variance σ 2,

ri = fi (s) + ηi (5)

for the i th neuron. Here fi is the tuning curve of this neuron for the stimulus, typically being
bell shaped, and ηi is the Gaussian noise added to neuron i . In the following, we take fi to be
the circular normal distribution function:

fi (s) = rmax exp[−β(1 − cos(s − si ))], (6)

where si is the preferred stimulus of neuron i , rmax is the maximum in the tuning curve, and
β determines the width of the turning curve. Taking fi in the above form enforces a periodic
boundary condition on the stimulus. Throughout this paper, we assume that the preferred
stimuli are uniformly distributed across the whole range of the stimulus. We keep rmax and β

fixed and the same for all neurons, and study the performance of the ML method by varying
noise variance σ 2. Under these considerations, we can define the SNR of an individual neuron
simply as γ ≡ rmax/σ .
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Figure 1. Threshold phenomenon in the performance of the ML estimator. The first panel shows the
mean of the ML estimator as a function on the number of neurons (N ). The error bar is the standard
deviation of the estimator, shown further as a function of N in the second panel, and compared
to the Cramer–Rao bound. When N decreases below a certain threshold, the performance of the
ML estimator as measured by its variance exhibits a rapid deterioration, deviating rapidly from the
Cramer–Rao bound. The tuning function used is circular normal shaped with rmax = 20 and β = 8
for all simulations. The actual stimulus is located at 0. The SNR γ = 1.

Suppose that the noise added to different neurons is uncorrelated. Then the log likelihood
function can be written as

L(r; s) =
N∑

i=1

[
− (ri − fi (s))2

2σ 2
− 1

2
ln(2πσ 2)

]
. (7)

Finding the argmaxs of the L(r; s) in ML method is equivalent to finding ŝML =
argmaxs V(s), with V(s) defined to be V(s) = ∑N

i=1[2ri fi (s) − f 2
i (s)]/N , obtained after

discarding terms in L that are independent of s. The evaluation of the log-likelihood V(s)
essentially consists of a template matching.

For this model, we simulated the performance of the ML estimator as N changes. The
simulation result is shown in figure 1. Plotted in the top panel is the mean of the ML estimator,
which is approximately unbiased when N is large. The variance of the estimator shown in the
bottom panel keeps a close track of the Cramer–Rao bound when N is large, however, deviates
prominently after N is below a certain threshold.

The threshold number of neurons, above which the ML estimator variance closely tracks
the optimal bound, depends critically on the level of noise added to the population responses.
As expected, smaller SNRs tend to have higher thresholds (figure 2).



Threshold behaviour of the maximum likelihood method in population decoding 451

10
1

10
2

10
3

10
–4

10
–3

10
–2

10
–1

10
0

10
1

Number of Neurons (N)

V
ar

ia
nc

e

Estimator variance
Cramer–Rao bound  

γ=0.6 

γ=2 

γ=1 

Figure 2. The variance of the ML estimator drawn as a function of N for different SNRs γ . When
γ decreases, the threshold number of neurons increases accordingly.

2.2. Origin of the threshold behaviour

Examples ofV(s) using the circular normal shaped tuning function are shown in figures 3(a), (c)
for two different SNRs. When the SNR is high (γ = 2), V is well peaked around the true
stimulus (figure 3(a)). In contrast, when the SNR is small (γ = 0.6), local maxima away
from the actual stimulus can be elevated to a value higher than the one around the stimulus
(figure 3(c)). Identification of those peaks as the actual stimulus by the ML method causes a
significant increase in the estimation error. The failure of the ML method is due to the fact that
the stimulus cannot be reliably detected when the SNR is too small. Such detection failure
and its relation to perception have been studied before [19].

For further illustration, we plot the probability density of the peak of V(s) for the above
two cases, obtained from simulations, in figures 3(b), (d). When the noise is small, the
probability density is well located around the true stimulus. However, in the large noise
case, the probability density distribution includes values across the whole range of stimulus
with nonvanishing probabilities. Consequently, the estimation error deviates from the optimal
bound.

The probability that the peak of V(s) occurs at a local maxima away from the actual
stimulus depends on the shape of the tuning functions. For bell-shaped fi , E[V(s)] is plotted
in the dashed curves presented in figures 3(a), (c). Observe that the flank away from the
stimulus location is almost flat. In contrast, if fi was linear, E[V(s)] would be a quadratic
function, and therefore the probability that the peak occurs decays rapidly as the location
moves away from the actual stimulus. Indeed, the ML method for linear tuning functions is
always unbiased and efficient. The threshold behaviour of the ML method appears only when
the tuning functions are nonlinear.
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Figure 3. ML estimation in two different SNRs. In (a) and (c) we show examples of likelihood
functions V(s) for SNR γ = 2 and 0.6 respectively. N = 80 for both cases. The dashed curves are
expectations ofV(s) with the error bar denoting their standard deviations. The ML estimator values
are indicated by ‘*’. Part (c) demonstrates that a small SNR can produce a peak in the likelihood
functions V(s), far away from the real stimulus, and thus cause a dramatic increase in the estimation
error. In (b) and (d) we plot distributions of the estimated ŝML, obtained from simulations, for these
two SNRs. In (b) we present the distribution with SNR γ = 2, in which case the distribution is
well localized around the true stimulus 0. In contrast, when SNR is small, as shown in (d) with
γ = 0.6, the estimated ŝML are distributed, including values far away from real stimulus.

These results are simulated with a population of 80 neurons. We expect the threshold
number of neurons for γ = 2 to be less than 80, and the threshold number for γ = 0.6 to be
larger. Indeed, using a threshold estimation method that we introduce in the next section, we
find the threshold number for γ = 2 is around 50, and for γ = 0.6 it is roughly 650.

If the ML method is used by neural systems in population decoding, the number of neurons
involved in stimulus encoding should be above the threshold number. Therefore, it is important
to find a general method to estimate this threshold.

3. Estimation of the threshold

We first present a general threshold estimation method and then apply it to the additive Gaussian
noise case discussed above.

Since the ML method estimates ŝML to be the one with the largest likelihood, that is,
ŝML = argmaxs L(r; s), at the maximum, ∂L(r; ŝML)/∂s = 0, which can be rewritten, using
the mean value theorem, as

∂L(r, ŝML)

∂s
= ∂L(r; s)

∂s
+

∂2L(r; s)

∂s2
(ŝML − s) +

1

2

∂3L(r; s∗)
∂s3

(ŝML − s)2, (8)

for some s∗ between s and ŝML, and s is the real stimulus.
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The expansion coefficients in equation (8) are all sums of uncorrelated random variables.
According to the central limit theorem, when N is large, they fall into the normal distributions
under some very general conditions. In particular, ∂L(r, s)/∂s ∼ N (0, I (s)), where the
variance I (s) is the Fisher information.

When N is sufficiently large, the quadratic term in equation (8) is relatively small and can
be neglected. In this case, the estimator ŝML converges in distribution to the normal distribution,
i.e. ŝML − s ∼ N (0, 1/I (s)).

However, when N is small, the quadratic term in equation (8) cannot be neglected, and
contributes to the deviations of the ML estimator from the Cramer–Rao bound. Since when N
is above the threshold number, the performance of the ML estimator closely tracks the optimal
bound, we should have∣∣∣∣1

2

∂3L(r, s∗)
∂s3

(ŝML − s)2

∣∣∣∣ �
∣∣∣∣∂

2L(r, s)

∂s2
(ŝML − s)

∣∣∣∣, (9)

which implies that

|s − ŝML| �
∣∣∣∣2∂2L(r, s)

∂s2

(
∂3L(r, s∗)

∂s3

)−1∣∣∣∣ (10)

≈ 2 Ĩ (s)

M̃(s∗)
, (11)

where the approximation is performed using the expected values of the two terms, with
Ĩ (s) = I (s)/N being the averaged Fisher information and M defined as

M̃(s∗) = 1

N

N∑
i=1

E

[
∂3

∂s3
L(ri; s∗)

]
. (12)

When N is above threshold, the variance of ŝML can be approximated by

|s − ŝML| ∼ 1
/√

N Ĩ (s). (13)

Therefore, for the ML estimator to closely follow the optimal bound, the following has to
be satisfied:

N 
 [M̃(s∗)]2

4[ Ĩ (s)]3
, (14)

which is derived by substituting equation (13) into (11).

3.1. Uncorrelated additive Gaussian noise

Next we apply our threshold estimation method to the simulation context discussed in
section 2.1, with the neural activities given by equation (5).

Since the tuning functions are taken to be of the form fi (s) = f (s − si ), where
f (s) ≡ rmax exp[−β(1 − cos(s))], and the preferred stimuli si are uniformly distributed,
we can approximate the summation of variables in Ĩ (s) and M̃(s) by their integrals.

Therefore, the averaged Fisher information Ĩ (s) can be derived as

Ĩ (s) = 1

Nσ 2

N∑
i=1

f ′
i (s)

2 ≈ 1

σ 2

∫
�

f ′(s − s ′)2 ds′, (15)

with the integration domain � = [−π, π).
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Similarly, M̃(s∗) can be calculated using

M̃(s∗) = 1

Nσ 2

N∑
i=1

{[ fi(s) − fi (s
∗)] fi

′′′(s∗) − 3 f ′
i (s) f ′′

i (s∗)} (16)

≈ 1

σ 2

∫
�

{[ f (s − s′) − f (s∗ − s′)] f ′′′(s∗ − s ′) − 3 f ′(s − s ′) f ′′(s∗ − s′)} ds′.

(17)

Thus far, we have left s∗ in the above calculation undetermined. The exact value of s∗
depends on the realization of random variables r. To find an approximate estimation of the
threshold number of neurons, we take the largest value of M(s∗) among all possible values of
s∗, and express the threshold number of neurons as

Nth ≈ k
max{M(s∗)}2

4[ Ĩ (s)]3
∝ 1

γ 2
, (18)

where k is a constant scale estimating the contributions from the quadratic term compared to
the linear term in equation (9). In an approximation, we choose k = 1/10. Note that the exact
value of k is not important, since the threshold estimation is only correct in order.

As indicated by equation (6), the threshold number Nth is linearly proportional to the
inverse of γ 2. To test the quality of this prediction, we run the simulation to numerically find
the threshold numbers under different SNRs, and compared the results with the theoretical
predictions in equation (18). The results are plotted in figure 4,which shows a good consistency
between our theoretical estimations and the numerical simulation results.

The relationship between Nth and γ can also be understood in the following way. The
evaluation of the log-likelihood function essentially consists of a template matching. The
mean response of such template is proportional to Nrmax, whereas the standard deviation of
the response is proportional to

√
Nσ . For reliable estimation of the stimulus, the mean should

be a few times larger than the standard deviation. Hence, the threshold number Nth for reliable
estimation should be inversely proportional to γ 2.

The threshold estimation method does not rely on information about specific forms of
the tuning functions, except that they need to be smooth and three times differentiable.
Therefore, this method is applicable to other forms of bell-shaped or even non-bell-shaped
tuning functions. This is possible because we estimate the threshold by examining the
consequences of the ML estimation through equation (8), without touching the detailed causes
as discussed in section 2.2.

4. Discussion

We have shown that population decoding using ML estimation performs poorly for bell-shaped
tuning functions fi , when the number of neurons is small. When the number of neurons crosses
some threshold, the performance improves to nearly optimal, according to the Cramer–Rao
bound. We show that this threshold is closely related to the SNR of the system and present a
simple method to estimate this threshold.

ML is essentially a template matching method, with the template being the tuning
functions, as compared to the population vector approach where the template is sinusoid
functions. It is possible for the template matching to be achieved through some mechanism
of gradient dynamics implemented in recurrent networks, as suggested by Deneve et al [14].
From another perspective, there have been many examples indicating that the brain tends to
take optimal or near optimal approaches. In this sense, it is also reasonable to conjecture the
utilization of ML estimation by neural systems.
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Figure 4. Estimation of the threshold number of neurons Nth . The estimated Nth are drawn as a
function of SNR γ . The solid line is the theoretical prediction; the dashed curve is from simulation.
The threshold number from simulation for a particular SNR γ is obtained by measuring the ML
estimation variances for 50 population sizes uniformly distributed in a logarithmic scale between
10 and 104. Ordering the variances in decreasing order of N , we estimate the threshold number to
be the first one after which the ML estimator variance is four times larger than the inverse of the
Fisher information.

In this paper, we have assumed that the noise in neural responses is uncorrelated. The
correlations may have various different effects on the Fisher information of population codes,
depending on the exact forms [20–24]. In general, for correlated noise in neural activities, the
ML method is not asymptotically efficient any more, except when the correlation is uniform
or local, or the noise is sufficiently small [25]. An interesting open question is how the
performance of the ML method depends on the population size when the noise is correlated.

Tuning curves and SNRs usually can be measured experimentally. Suppose the ML
method is indeed used by neural systems. The methods presented here give a rough estimate
of the minimum number of neurons involved in coding a specific stimulus. Knowing the
threshold number is also helpful in practice for the reconstruction of the stimulus from the
neuron responses. It sets a limit on how many neurons need to be recorded from experiments
in order to get an accurate estimation.
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