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1 Supplementary Methods

1.1 Probabilistic model of phylogeny

Suppose we are provided with a set of aligned sequences from M species, whose evolutionary

relationship is described by a phylogenetic tree T = (N , E), specified by a collection of nodes N

and edges E (see for example Supp Figure 1). Assume T is a rooted binary tree, in which case the

tree contains N = 2M − 1 nodes with M − 1 being internal (corresponding to ancestral species)

and not directly observable. For simplicity, we index the leaf nodes from 1 to M , and the

ancestral nodes from M + 1 to N , always using N for the root node.

Consider one column of aligned sequences among the M species. Denote the aligned sequence by

(x1, x2, . . . , xM ) with xi representing the sequence from species i, and assume xi is drawn from a

finite set of states, i.e. xi ∈ A = {a1, a2, . . . , aK}. In the context of nucleotide sequence, K = 4

and xi belongs to one of four nucleotides, that is A = {A,C, G, T}.

We assume the M aligned nucleotides are described by a probabilistic model with conditional

dependency specified by the phylogenetic tree T . Denote the state variable at node i by xi for all
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i = 1, · · · , N , of which only the variables (x1, · · · , xM ) at the leaf nodes are directly observable.

Denote the parent of node i by pa(i) and the probability of xi conditioned on its parent by

P (xi|xpa(i)). The joint probability of all variables in the tree is then described by

P (x1, x2, . . . , xN |T ) = P (xN )
N−1∏
i=1

P (xi|xpa(i)) (1)

where P (xN ) represents the prior probability of the root node variable.

1.1.1 Modeling molecular evolution

We use a continuous-time Markov process (CTMP) to model the evolution of nucleotide sequence

from X(0) at time 0 to X(t) at time t. We assume the process is homogeneous and the transition

rate matrix between different states is specified by Q. The probability of observing b at time t

conditioned on the starting state being a is then given by

P (X(t) = b|X(0) = a) =
[
eQt

]
ab

(2)

for all a, b ∈ A. [·]ab represents the entry of the matrix at row I(a) and column I(b), with I(a)

denoting the index of the state a in the alphabet A. Under this model, the conditional probability

in Eq. (1) is specified by P (xi = b|xpa(i) = a) =
[
eQti

]
ab

, where ti is the length of the edge leading

to node i.

The CTMP process is said to be time-reversible if

P (X(t) = b|X(0) = a) = P (X(0) = b|X(t) = a) (3)

for any a, b or t. For reversible CTMP, there exists a vector π such that

πiQij = πjQji (4)

for all i and j. In this case, the vector π is also the stationary distribution of the CTMP, that is,

π′ exp(Qt) = π′ (or π′Q = 0). Furthermore, it can be shown that the CTMP with rate matrix Q

is time-reversible if and only if Q can be decomposed as

Qij = πjRij or written in the matrix form Q = RD(π) (5)
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where R = R′ is symmetric, and D(π) = diag(π) is a diagonal matrix with elements specified by

π. In other words, the evolutionary model (Eq. (19)) we use in the paper is time-reversible.

Calculation of the transitional matrix (Eq. (2)) can be greatly simplified if the matrix Q is

digonalizable. Under this assumption, Q can be factorized as Q = UΛU−1, where U is the

eigenvector matrix and Λ is the diagonal matrix with eigenvalues of Q. Consequently, Eq. (2) can

be expressed as

P (X(t)|X(0)) = exp(Qt) = U exp(Λ)U−1 (6)

In general, the eigenvector U and eigenvalue matrix and Λ may not be real. However, for the

subset of transition rate matrices that are time-reversible (Eq. (5)), both U and Λ are always

real, which greatly simplifies the calculation of the conditional probability Eq. (2).

1.2 Inference

Note that in the probabilistic model Eq. (1), only the variables in the M leaf nodes are directly

observable. All variables in the ancestral nodes have to be inferred. In particular, we are

interested in the following three inference problems:

1) The likelihood of observing the aligned nucleotides, xobs = (x1, x2, · · · , xM ), in the leaf nodes

L(xobs|T ) = P (xobs|T ) =
∑

xM+1,...,xN

P (x1, . . . , xM , xM+1, . . . , xN |T ) (7)

2) Posterior probability of observing b in node i and a in its parent node pa(i)

qi
ab = P (xpa(i) = a, xi = b|xobs, T ) (8)

3) Posterior probability of observing a in node i

qi
a = P (xi = a|xobs, T ) (9)

Because of the inherent tree structure relating them, these variables can be decoupled and the

summation can be done in linear time. This is done using Felsenstein’s pruning and peeling
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algorithm, which uses dynamic programming and is also referred to as sum-product rule or belief

propagation in probabilistic models.

The Felsenstein algorithm first collects message (evidence) from leaf nodes. After this is done, it

then distributes collected messages from the root node to leaf nodes. The two steps are shown in

the following (see details in [1, 2]).

1.2.1 Message collection or upward belief propagation

Denote Tn the substree of node n, which consists of node n and all the descendants of node n. Let

αn(a) be the likelihood of observing the given sequences at the leaf nodes of Tn conditioned on

xn = a, that is,

αn(a) = P ({xi|for all node i that is a leaf node in Tn}|xn = a) (10)

It follows that αn(a) can be calculated recursively starting from leaf nodes:

• If n is a leaf node,

αn(a) = δa,xn
(11)

• If n is an internal node,

αn(a) =
∏

{c|pa(c)=n}

∑
b

P (xc = b|xn = a)αc(b) (12)

1.2.2 Message distribution or downward belief propagation

Denote the complement of the substree Tn by T̄n, which includes the parent of n, T̄pa(n), and the

sister node of n, denoted by s(n). Let βn(a) be the likelihood of observing the given sequences at

the leaf nodes of T̄n in conjunction with xpa(n) = a, that is,

βn(a) = P ({xi|for all node i that is a leaf node in T̄n}, xpa(n) = a) (13)

βn(a) can also be computed recursively, starting from the root node:
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• If pa(n) = N (i.e. pa(n) is the root node),

βn(a) =
∑
xs(n)

P (xs(n)|xpa(n) = a)αs(n)(xs(n))P (xN = a) (14)

• Otherwise,

βn(a) =
∑
xs(n)

P (xs(n)|xpa(n) = a)αs(n)(xs(n))
∑

c

βpa(n)(c)P (xpa(n) = a|xpa(pa(n)) = c) (15)

1.2.3 Likelihood function and posterior probability

Provided with α and β, the inference problems in Eq. (7), Eq. (8) and Eq. (9) can be solved

efficiently. The likelihood of observing M variable in the leaf nodes (aligned nucleotides)

L(xobs) =
∑

a

αN (a)P (xN = a) (16)

The posterior probability of observing b in node i and a in its parent pa(i)

qi
ab = βi(a)P (xi = b|xpa(i) = a)αi(b)/L(xobs) (17)

And the posterior probability of observing b in node i is

qi
b =

∑
a

qi
ab (18)

1.3 Learning

In the paper we used the following instantaneous rate matrix Q for the CTMP

Qab = ωπbRab (19)

for the transition rate from a to b. Assuming the matrix R is given (it can be estimated using

maximum likelihood phylogenetic tools like PAML [3] or the Phast package [4], our goal is to

learn the scaling factor ω and the vector π from the observed sequence alignment
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xobs = (x1, x2, · · · , xM ) in M species. We use the maximum likelihood method to estimate ω and

π , that is, we find ω̂ and π̂ that maximizes the log likelihood function

(ω̂, π̂) = argmax
ω,π

logL(xobs|ω, R, π) (20)

1.3.1 EM-algorithm

We use the EM-algorithm ( [5]) to solve Eq. (20). The algorithm iterates in the following two

steps:

1) E-step: Infer the posterior probability of the ancestral sequences using the the parameters

leaned in the previous step Θ(t−1),

Q(t)(xM+1, . . . , xN ) = P (xM+1, . . . , xN |xobs, Q(t−1)) (21)

2) M-step: Find new parameters that maximize the averaged log likelihood function

Q(t) = argmaxQ

∑
xM+1,...,xN

Q(t)(xM+1, . . . , xN ) log P (x1, x2, · · · , xN |Q) (22)

Because the likelihood function Eq. (1) in the above equation can be factorized into a product

form, the maximization problem in the M-step can be simplified to the following form

Q(t) = argmaxQ

N−1∑
i=1

Q(t)(xi, xpa(i)) log P (xi|xpa(i)) + Q(t)(xN ) log P (xN ) (23)

where Q(t)(xi, xpa(i)) is the marginal probability of observing xi in node i and xpa(i) in the parent

of node i, and Q(t)(xN ) is the marginal probability of observing xN in the root node. This

suggests that in the E-step we only need to calculate the two sets of conditional probabilities,

both of which can be efficiently calculated using Eq. (17) and Eq. (18) respectively.

1.3.2 Sufficient statistics of CTMP

The gradient of the averaged log likelihood function in Eq. (23) with respect to Q is in general not

easy to calculate because Eq. (2) involves an exponential matrix term. However, the gradient can
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be greatly simplified by using the sufficient statistics to summarize the CTMP at each branch of

the tree T [6, 7].

Consider a CTMP starting from state X(0) = a and ending at state X(t) = b. The transition

probability from a to b is fully specified by the duration of each state T (k|a, b) and the number of

transitions between states, N(k, l|a, b) for the number of transitions from state k to l,

log P (X(t) = b|X(0) = a) ∼
∑

k

T (k|a, b)Qkk +
∑

k

∑
l 6=k

N(k, l|a, b) log Qkl (24)

In general, both T (k|a, b) and N(k, l)|a, b) depend on Q. However, we can treat them as latent

variables and infer their posterior distributions at the E-step of the EM-algorithm. This results in

a reformulation of the averaged log likelihood function in Eq. (23):

L̃(Q) ∼
∑

k

E[T (k)]Qkk +
∑

k

∑
l 6=k

E[N(k, l)] log Qkl +
∑

k

E [log P (xN = k)] (25)

where E[T (k)] is the expected duration of state k summed over all branches of the tree, and

similarly E[N(k, l)] is the expected total number of transitions from k to l.

1.3.3 Expectation of sufficient statistics

Consider a homogeneous CTMP with rate matrix Q that starts with a at time 0 (X(0) = a) and

end with b at time t (X(t) = b). Denote the transition probability from a to b by Mab(t), that is,

Pab(t) ≡ [exp(Qt)]ab (26)

During the time period t, the expected duration for the state variable being k is

T (k|a, b, t) =
∫ t

0

Pak(τ)Pkb(t− τ)dτ/Pab(t) (27)

The expected number of transitions from k to l is

N(k, l|a, b, t) =
∫ t

0

Pak(τ)QklPlb(t− τ)dτ/Pab(t) (28)

After reorganizing terms [7], it follows that

T (k|a, b, t) = Ψ(k, k|a, b, t)/Pab(t) (29)

N(k, l|a, b, t) = Ψ(k, l|a, b, t)Qkl/Pab(t) (30)
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where

Ψ(i, j|a, b, t) ≡
∫ t

0

Pai(τ)Pjb(t− τ)dτ (31)

=
∑

k

UakU−1
ki

∑
l

UjlU
−1
lb Jkl (32)

where U is the eigenvector matrix of the matrix Q (Eq. (6)), and matrix J is defined to be

Jij(t) ≡

{
t exp(λit) if λi = λj ;
exp(λit)−exp(λjt)

λi−λj
o.w. (33)

with λi being the eigenvalue of Q corresponding to eigenvector Ui. We have assumed that

eigenvalues of Q are all real, which is satisfied when Q takes the form of Eq. (5).

Note that the expectations of sufficient statistics in Eqs. (29, 30) depend on the variables in the

internal nodes of the tree. If we treat them as latent variables in the E-step of the EM-algorithm,

we will need to calculate posterior expectations of the two sufficient statistics, using the marginal

probability Eq. (17).

Consider the edge between node k and its parent node pa(k). The posterior expected number of

transitions from i to j that have occurred at the edge is

Nk(i, j) =
∑
a,b

P (xpa(k) = a, xk = b)Ψ(i, j|a, b, tk)Qij/Pab(tk) (34)

and the posterior expected number of during for the state variable being i is

T k(i) = Nk(i, i)/Qii (35)

Summing over all edges of the tree, we obtain

E[N(i, j)] =
∑

k

Nk(i, j) E[T (i)] =
∑

k

T k(i) (36)

based on which the averaged log likelihood function Eq. (25) can then be calculated.
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1.3.4 Derivation of the update rules in M-step

The derivative of the averaged log likelihood function Eq. (25) with respective to a parameter θ in

Q is

∂L̃(Q)
∂θ

=
∑

k

E[T (k)]
∂

∂θ
Qkk +

∑
k

∑
l 6=k

E[N(k, l)]
∂

∂θ
log(Qkl) +

∑
k

qN
k

∂

∂θ
log P (xN = k) (37)

The form of the Q matrix in Eq. (19) leads to the following derivatives:

∂Qaa

∂ω
= −

∑
b

πbRab(1− δab) (38)

∂Qaa

∂πb
= −(1− δab)Rabω (39)

∂ log(Qab)
∂ω

=
1
ω

(40)

∂ log(Qab)
∂πb

=
1
πb

(41)

We assume the prior distribution of the variable in the root node is specified by π, i.e.

P (xN = a) = πa. Substituting the above derivatives into Eq. (37) and setting the equation to 0

leads to the following update rules for π and ω,

ω =

∑
a

∑
b 6=a N(a, b)∑

a T (a)
∑

b 6=a Rabπb
(42)

πb =

∑
a6=b N(a, b) + qN

b∑
a6=b T (a)Rabω + γ

(43)

where γ is a Lagrange multiplier and can be found by solving
∑

b πb = 1. This completes M-step

of the EM-algorithm. Note that both ω and π are obstained in one step without using

gradient-based methods. This significantly improves the speed of the algorithm.

2 Neutral model

As described in the Methods of the paper we used PAML [3] to estimate branch lengths of the

placental phylogeny using a combined ancestral repeat alignment. The estimated tree (Figure 1)

had a total branch length of 2.72 substitutions/site, stationary base distribution
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π0 = (0.295631, 0.205573, 0.202829, 0.295967) and rate matrix
−0.8578 0.1607 0.5538 0.1432

0.2312 −1.1958 0.1630 0.8015
0.8072 0.1652 −1.2095 0.2371
0.1430 0.5567 0.1625 −0.8623


To estimate regional variation we also used PAML to estimate branch lengths for each regions

separately and also computed the mean ω for each of the regions. Both quantities are very well

correlated (r2 = 0.83) and although there is a two fold difference between the shortest and and

longest total branch length, predictions based on either using regional models for each region or

one combined model for all regions did not alter any of the results in the main text.
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Tables

Table 1 - Genomic locations of the elements uniquely identified by SiPhy

First two columns show the comparison between SiPhy and PhastCons, whereas the last two

columns show the comparison between SiPhy and GERP. Each column shows the distribution of

the elements uniquely found by the corresponding method, in terms of the number of bases in

different functional regions. Estimated FDR for the SiPhy elements using ancestral repeats (not

shuffled) as a control is 5%.

Region SiPhy PhastCons SiPhy GERP
Coding Exons 36, 856(9.3%) 11, 139(2.0%) 34,584(9.2%) 15,495(3.8%)

Intronic 164, 110(41.6%) 277,239 (49.1%) 153,644(40.9%) 204,935(49.6%)
5′ UTR 6, 981(1.8%) 329(0.0%) 5,732(1.5%) 1,305(0.3%)
3′ UTR 16, 322(4.1%) 12,812(2.2%) 13,547(3.6%) 16,828(4.1%)

5kb from TSS 41, 772(10.6%) 16, 313(2.9%) 36,949(9.8%) 13,324(3.2%)
5kb downstream 17, 205(4, 4%) 9,205(1.6%) 16,886(4.5%) 14,610(3.5%)

Intergenic 111, 649(28.3%) 237, 373(38.7%) 114,525(30.5%) 147,969(35.8%)
Total 394,894 564,410 375,867 413,161
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Figure 1: The neutral tree constructed from ancestral repeats in the ENCODE regions is shown. The
scale, in substitutions per site, is indicated in the legend.

12


