1. (20) Problem 8.23 in RN.

2. (15) Say whether or not the following pairs of expressions are unifiable, and show the most general unifier for each unifiable pair:

 (a) \(P(x) \) and \(\neg P(A) \)
 (b) \(P(x, B, B) \) and \(P(A, y, z) \)
 (c) \(\text{Ancestor}(x, \text{father}(x)) \) and \(\text{Ancestor}(\text{David}, \text{George}) \)
 (d) \(P(g(f(v)), g(u)) \) and \(P(x, x) \)
 (e) \(P(y, y, B) \) and \(P(z, x, z) \)

3. (20) We are given the following paragraph:

 Tony, Mike, and John belong to the Alpine Club. Every member of the Alpine Club is either a skier or a mountain climber or both. No mountain climber likes rain and all skiers like snow. Mike dislikes whatever John likes and likes whatever John dislikes. John dislikes rain and snow.

 Represent this information by predicate-calculus sentences in such a way that you can represent the question “Who is a member of the Alpine Club and is a mountain climber but not a skier?” as a predicate-calculus expression. Use resolution refutation with answer extraction to answer it.

4. (9) Suppose a knowledge base contains just one sentence, \(\exists x \, \text{AsHighAs}(x, \text{Kilimanjaro}) \).
 Which of the following are legitimate results of applying Existential Instantiation?

 (a) \(\text{AsHighAs}(\text{Everest}, \text{Kilimanjaro}) \).
 (b) \(\text{AsHighAs}(\text{Kilimanjaro}, \text{Kilimanjaro}) \).
 (c) \(\text{AsHighAs}(\text{Everest}, \text{Kilimanjaro}) \land \text{AsHighAs}(\text{BenNevis}, \text{Kilimanjaro}) \) (after two applications).

5. (12) Write down FOL representations for the following sentences, suitable for use with Generalized Modus Ponens:

 (a) Horses, cows, and sheep are mammals.
 (b) An offspring of a pig is a pig.
 (c) Bluebeard is a pig.
 (d) Bluebeard is Charlies parent.
 (e) Offspring and parent are inverse relations.
 (f) Every mammal has a parent.
6. (10) In this exercise, use the sentences you wrote in the previous exercise to answer a question by using a backward-chaining algorithm. Draw the proof tree generated by an exhaustive backward-chaining algorithm for the query \(\exists h \text{Pig}(h) \), where clauses are matched in the order given.

7. (15) Convert the following to CNF form:

 (a) \((\exists x)[P(x) \vee (\exists x)[Q(x)]] \Rightarrow (\exists y)[P(y) \vee Q(y)]\)

 (b) \((\forall x)[P(x)] \Rightarrow (\exists z)[(\forall x)[Q(x, z)] \vee (\forall x)[R(x, y, z)]]\)

 (c) \((\forall x)[P(x) \Rightarrow Q(x, y)] \Rightarrow ((\exists y)[P(y)] \wedge (\exists v)[Q(y, v)])\)

8. (30) Use resolution refutation on a set of clauses to prove that there is a green object if we are given:

 - If pushable objects are blue, then nonpushable ones are green.
 - All objects are either blue or green but not both.
 - If there is a nonpushable object, then all pushable ones are blue.
 - Object 01 is pushable.
 - Object 02 is not pushable.

 (a) Convert these statements to expressions in first-order predicate calculus.

 (b) Convert the preceding predicate-calculus expressions to clause form.

 (c) Combine the preceding clause form expressions with the clause form of the negation of the statement to be proved, and then show the steps used in obtaining a resolution refutation.