1. Two students A and B are both registered for a certain course. Assume that student A attends 80% of the time, student B attends 60% of the time, and the absences of the two students are independent.

(a) What is the probability that at least one of the two students will be in class on a given day?
(b) If at least one of the two students is in class on a given day, what is the probability that A is in class that day?

2. Suppose that A, B, and C are three independent events such that $P(A) = 1/4$, $P(B) = 1/3$, and $P(C) = 1/2$.

(a) Determine the probability that none of these three events will occur.
(b) Determine the probability that exactly one of these three events will occur.

3. Let A and B be events for which $0 < P(A) < 1$ and $0 < P(B) < 1$.

(a) Prove that if A and B are independent, then $A \cap B \neq \emptyset$.
(b) Prove that if $A \cap B = \emptyset$, then A and B are not independent.

4. Assume that events A and B are independent given D. Show that

\[P((A \cup B)|D) = P(A|D) + P(B|D) - P(A|D)P(B|D). \]