Because the samples are independent, the sample variances S_i^2’s are independent; therefore, $SSW/\sigma^2 \sim \chi^2_{I(J-1)}$.

Note
(1) Part I implies that $E(\text{SSW}) = I(J-1)\sigma^2$.
(2) $S_p^2 = MSW = \frac{SSW}{I(J-1)}$ is called the pooled sample variance.

Proof of B.2
Consider the sample with the sample means:

\[\{\bar{Y}_1, \bar{Y}_2, \cdots, \bar{Y}_I\} \]

Since (1) each of them is a linear combination of independent normal random variables and (2) they are calculated from independent samples, they are independent normal random variables. In fact, $\bar{Y}_i \overset{\text{independent}}{\sim} N(\mu + \alpha_i, \sigma^2/J)$. Under the null hypothesis, they have the same population mean and variance. Thus, we can treat

\[\{\bar{Y}_1, \bar{Y}_2, \cdots, \bar{Y}_I\} \]

as a random sample from $N(\mu, \sigma^2/I)$ when the null hypothesis is true.

The corresponding sample mean and sample variances are $\bar{Y} = \frac{\bar{Y}_1 + \cdots + \bar{Y}_I}{I}$ and $S_{TR}^2 = \frac{1}{I-1} \sum_{i=1}^{I} (\bar{Y}_i - \bar{Y})^2$, respectively. Based on the properties of sample variance (see stat120B), we have

\[
\frac{(I-1)S_{TR}^2}{\sigma^2/J} \stackrel{H_0}{\sim} \chi^2_{I-1}
\]

Now return to SSB.

\[
SSB/\sigma^2 = \frac{J}{\sigma^2} \sum_{i=1}^{I} (\bar{Y}_i - \bar{Y})^2
\]

\[
= \frac{(I-1)S_{TR}^2}{\sigma^2/J} \stackrel{H_0}{\sim} \chi^2_{I-1}
\]

Proof of B.3
SSW is a function of $S_i^2, i = 1, \cdots, I$, where $S_i^2 = \frac{1}{J} \sum_{j=1}^{J} (Y_{ij} - \bar{Y}_i)^2$.

SSB is a function of \bar{Y}_i’s (\bar{Y} is also a function of \bar{Y}_i’s).

We claim that $\bar{Y}_1, \cdots, \bar{Y}_I$ and S_1^2, \cdots, S_I^2 are independent with each other.

When $i \neq i'$, S_i^2 and $\bar{Y}_{i'}$ are independent because they are functions of different observations.
When \(i = i' \), by 120statB, \(S_i^2 \) and \(\bar{Y}_{i'} \) are independent. (for a normal random sample, the sample mean and sample variance are independent)

Since \(SSB \) is a function of \(\bar{Y}_1, \ldots, \bar{Y}_I \), and \(SSW \) is a function of \(S_1^2, \ldots, S_I^2 \), \(SSB \) and \(SSW \) are independent from each other.

Summary of the proof:

to prove B.1, we consider samples \(\{Y_{i1}, Y_{i2}, \ldots, Y_{ij}\} \) for each \(i \);
to prove B.2, we consider the sample of means \(\{\bar{Y}_1, \bar{Y}_2, \ldots, \bar{Y}_I\} \).

Finally, we have all the elements for **Theorem C**

Theorem C: The F-test for the One-Way ANOVA Assume that the assumptions of one-way ANOVA hold (normality, independence, and equal variance), when the null hypothesis \(H_0 : \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0 \) (or \(H_0 : \mu_1 = \mu_2 = \cdots = \mu_I \)) is true,

\[
F = \frac{MSB}{MSW} = \frac{SSB/(I-1)}{SSW/(I(J-1))} \sim F_{I-1,I(J-1)}
\]

Proof:

\[
F = \frac{MSB}{MSW} = \frac{SSB/(I-1)}{SSW/(I(J-1))} = \frac{SSB}{\sigma^2/(I-1)} \frac{SSW}{\sigma^2/(I(J-1))}
\]

Since \(SSW / \sigma^2 \sim \chi^2_{I(J-1)} \) and \(SSB / \sigma^2 \sim \chi^2_{I-1} \) and \(SSW \) and \(SSB \) are independent, \(F \sim F_{I-1,I(J-1)} \).

We reject \(H_0 \) at a significance level \(\alpha \) if the test statistic \(F \) is greater than \(F_{I-1,I(J-1),1-\alpha} \). Here \(F_{I-1,I(J-1),1-\alpha} \) is the upper \(\alpha \) point of \(F_{I-1,I(J-1)} \).

The ANOVA table:

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>(SSB = \sum_{i=1}^I J(Y_{i1} - \bar{Y}_{i \cdot})^2)</td>
<td>(I - 1)</td>
<td>(MSB = \frac{SSB}{I-1})</td>
<td>(MSB/MSW)</td>
</tr>
<tr>
<td>Error</td>
<td>(SSW = \sum_{i=1}^I \sum_{j=1}^J (Y_{ij} - \bar{Y}_{i \cdot})^2)</td>
<td>(I(J-1))</td>
<td>(MSW = SSW/(I(J-1)))</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(SSTO = \sum_{i=1}^I \sum_{j=1}^J (Y_{ij} - \bar{Y}_{\cdot \cdot})^2)</td>
<td>(IJ - 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The ANOVA table for the example
\[
\begin{array}{c|ccccc}
\text{Source} & SS & df & MS & F \\
\hline
\text{Labs} & .125 & 6 & .021 & 5.66 \\
\text{Error} & .231 & 63 & .0037 & \\
\text{Total} & .356 & 69 & & \\
\end{array}
\]

\(F = 5.66 > F_{6.63.0.95} = 2.246408 \). And the p-value is much smaller than 0.01. So we conclude that the levels of the chemical compound are different across different labs.

Another useful result based on **Theorem B**

\[
\frac{(\bar{Y}_{i_1} - \bar{Y}_{i_2}) - (\alpha_{i_1} - \alpha_{i_2})}{S_p \sqrt{\frac{1}{J} + \frac{1}{J}}} \sim t_{I(J-1)}
\]

for \(i_1 \neq i_2 \). Here \(S_p^2 = MSW \).

Proof: \(\bar{Y}_{i_1} \sim N(\mu + \alpha_{i_1}, \sigma^2/J), \bar{Y}_{i_2} \sim N(\mu + \alpha_{i_2}, \sigma^2/J) \).

For different \(i_1, i_2, \bar{Y}_{i_1} \) and \(\bar{Y}_{i_2} \) are also independent. Therefore

\[
\frac{(\bar{Y}_{i_1} - \bar{Y}_{i_2}) - (\alpha_{i_1} - \alpha_{i_2})}{S_p \sqrt{\frac{1}{J} + \frac{1}{J}}} \sim N(0, 1)
\]

Based on B.2, we have \(SSW/\sigma^2 = I(J-1)MSW/\sigma^2 = I(J-1)S_p^2/\sigma^2 \sim \chi^2_{I(J-1)} \).

Also, in the proof of B.3, we have shown that the two vectors are independent. So \(\bar{Y}_{i_1} - \bar{Y}_{i_2} \) are independent of \(S_p^2 \).

Based on the above facts, we have

\[
\frac{(\bar{Y}_{i_1} - \bar{Y}_{i_2}) - (\alpha_{i_1} - \alpha_{i_2})}{\sqrt{I(J-1)S_p^2/\sigma^2I(J-1)}} \sim t_{I(J-1)}
\]

Simplify the left hand side,

\[
\frac{(\bar{Y}_{i_1} - \bar{Y}_{i_2}) - (\alpha_{i_1} - \alpha_{i_2})}{S_p \sqrt{\frac{1}{J} + \frac{1}{J}}} \sim t_{I(J-1)}
\]

A special case:

When \(I = 2 \), the two-sample t-test statistic \(t \sim t_{J-1} \). In the homework you have shown that \(F = t^2 \sim F_{1,J-1} \). This agrees with the fact that \(Z \sim t_n \Rightarrow Z^2 \sim F_{1,n} \).