1. Evaluate $\lim_{n \to \infty} \left(1 - \frac{a}{n} \right)^2$ where $a \in \mathbb{R}$.

2. Let $L(\mu) = \frac{1}{\sqrt{2\pi}} \exp \left[-\left(\frac{A - \mu}{2} \right)^2 \right]$ where A is a constant. Derive $L'(\mu) = \frac{\partial}{\partial \mu} L(\mu)$.

3. Consider the function $f(x)$ such that

 $$f(x) = \begin{cases}
 \frac{1}{\lambda} \exp(-\frac{x}{\lambda}), & x > 0 \\
 0, & x \leq 0
 \end{cases}$$

 where λ is some positive-valued constant.

 (a) Evaluate $\int_{-\infty}^{\infty} f(x) dx$.

 (b) Find an expression for $\int_{-\infty}^{\infty} x f(x) dx$ in terms of λ.

 (c) Define $M(t) = \int_{-\infty}^{\infty} \exp(tx) f(x) dx$. Find an expression for $M(t)$ in terms of t and λ.

 Find the range of values of t under which $M(t)$ exists.

4. Recall the binomial theorem: For any $a, b \in \mathbb{R}$ and N a positive-valued integer

 $$\sum_{n=0}^{N} \binom{N}{n} a^n b^{N-n} = (a + b)^N.$$

 Evaluate $\sum_{n=0}^{N} \binom{N}{n} \left(\frac{2}{7} \right)^n \left(\frac{5}{7} \right)^{N-n}$.

5. Find the Taylor series expansion (up to the second order only) for each of the following functions:

 (a) $f(x) = \exp(x)$

 (b) $f(x) = \ln(1 + x)$ where $x > -1$

6. Evaluate $\int_{-\infty}^{\infty} \exp \left[-\frac{1}{2} (x - \mu)^2 \right] dx$. Hint: you may use the polar coordinate transformation.

7. Let X_1 and X_2 be independent random variables with means μ_1 and μ_2 respectively and variances σ_1^2 and σ_2^2 respectively.

 (a) For any constants a_1 and a_2, derive $\mathbb{E}(a_1 X_1 + a_2 X_2)$ and $\text{Var}(a_1 X_1 + a_2 X_2)$.

 (b) Find constants c_1 and c_2 so that $\frac{X_1 - c_1}{c_2}$ will have mean 0 and variance 1.
8. Let X be a Gaussian random variable with mean μ and variance σ^2. Its probability density function (pdf) is given by

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x-\mu)^2}{2\sigma^2} \right) \mathbb{I}_R(x)$$

(a) Let $M(t) = \int_{-\infty}^{\infty} \exp(tx)f(x|\mu, \sigma^2)dx$. Show that $M(t) = \exp(\mu t + \frac{1}{2}\sigma^2 t^2)$.

(b) Let $Y = (X-\mu)^2$. Derive $\mathbb{E} Y$ and $\text{Var} Y$.

9. Let X_1, X_2, \ldots, X_n be independent and identically distributed as Poisson random variables with mean λ. Define $\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_n$.

(a) Suppose that $n = 5$ and $\lambda = 2$. Find $\mathbb{P}(\overline{X}_n > 3)$. Express your final answer in terms of λ.

(b) Suppose that $\lambda = 2$. Use the CLT to approximate the probability $\mathbb{P}(\sum_{i=1}^{100} X_i < 300)$.