1. Let $X_{n \times p}$ be a design matrix. Suppose that $\text{rank}(X) = r < p$. Consider the normal equation

$$X^T X \beta = X^T Y$$

(a) In class we showed that $\hat{\beta} = (X^T X)^{-1} X^T Y$ is a solution to the normal equation, where $(X^T X)^{-1}$ is a generalized inverse. Show that

$$\tilde{\beta} = \hat{\beta} + (I - (X^T X)^{-1}(X^T X))z$$

where z is an arbitrary $p \times 1$ vector, is also a solution to the normal equation.

(b) Without loss of generality, assume $X = (X_1, X_2)$ where $\text{rank}(X_1) = r$. Prove the following.

i. There exists a $r \times (p - r)$ matrix C such that $X_2 = X_1 C$.

ii. $\hat{\beta} = \left((X_1^T X_1)^{-1} X_1^T Y \right) 0$ is a solution to the normal equation.

2. Consider the model

$$Y_{ij} = \alpha_i + \beta_j + \epsilon_{ij}$$

where $i = 1, \ldots, a ; j = 1, \ldots, b$ and $\epsilon_{ij} \sim (0, \sigma^2)$. Derive the necessary condition that I gave in class for $\sum c_i \alpha_i + \sum d_j \beta_j$ to be estimable.

3. Consider a full rank $n \times p$ design matrix $X = (1, x_1, \cdots, x_{p-1})$. In design matrix X, the first column is a vector of 1’s, and x_i is the $(i+1)th$ column, for $i = 1, \cdots, p-1$. Let $Z = (1, c_1 x_1, \cdots, c_{p-1} x_{p-1})$ be a linear transformation of X. Here c_1, \cdots, c_{p-1} are non-zero scalars. Let $\hat{\beta}$ be the LSE when regressing Y on X, and $\tilde{\beta}$ be the LSE when regressing Y on Z. Show that $X \hat{\beta} = Z \tilde{\beta}$. (This result implies that the predicated value \hat{Y} is invariant to a full-rank linear transformation on the design matrix.)

4. Consider the model $Y = X \beta + \epsilon$ where

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$$

with $\epsilon \sim (0, \sigma^2 I_4)$. The observed values are $Y_1 = 1, Y_2 = 3, Y_3 = -2, Y_4 = 2$.

(a) Use each of the three methods we introduced in class to find LSEs of β. Compare the three LSEs and examine whether or not they are identical to each other? In R, you can use the function "solve" to obtain the inverse of a nonsingular matrix, and the function "ginv" (in the library(MASS)) to obtain a generalized inverse of a singular matrix. Be sure to attach your R code at the end of your homework.
(b) Prove that β_2 and $\beta_1 + \beta_3$ are estimable but β_1 is not estimable.

(c) For the three parameters in (c), namely β_2, $\beta_1 + \beta_3$, and β_1, can you obtain the BLUE for each of them? For those you can obtain BLUE, calculate their BLUEs and compute their variances.