Let X_{np} denote the design matrix of the linear model. When $\text{rank}(X) = r < p$, $X^T X$ is singular; in this situation $\hat{\beta} = (X^T X)^{-1} X^T y$ is an LSE, where $(X^T X)^{-1}$ is a generalized inverse of $X^T X$.

In Lemma 2.3 we showed that $X(X^T X)^{-1} X^T Y = X$.

In the proof, we assumed that $[X(X^T X)^{-1} X^T Y]_T = X^T X (X^T X)^{-1} X^T Y$ without proof. Although this is true, it needs to be proved. Here is a complete proof of Lemma 2.3.

Proof: By the definition of g-inverse,

$$X^T X (X^T X)^{-1} X^T Y = X^T Y$$

Take transpose of both sides, we have

$$X^T X [(X^T X)^{-1} X^T Y]_T = X^T Y,$$

indicating that $[(X^T X)^{-1} X^T Y]_T$ is also a g-inverse of $X^T X$.

Let $D = X(X^T X)^{-1} X^T Y - X$.

Then $D^T D = [X^T X (X^T X)^{-1} X^T Y]_T - [X^T X (X^T X)^{-1} X^T Y]_T X^T X (X^T X)^{-1} X^T Y - X^T X [X^T X]_T X^T Y - X^T X (X^T X)^{-1} X^T Y + X^T X$

$$= X^T X (X^T X)^{-1} X^T Y - X^T X + X^T X$$

$$= X^T X$$

Therefore, $D = 0$, which further implies that

$$X(X^T X)^{-1} X^T Y = X$$.

Because $[(X^T X)^{-1} X^T Y]_T$ is also a g-inverse, we have

$$X = X(X^T X)^{-1} X^T Y = X[(X^T X)^{-1} X^T Y]_T X^T Y$$

Take transpose we have

$$X^T = X^T X (X^T X)^{-1} X^T = X^T X [((X^T X)^{-1} X^T Y]_T X^T Y$$
2.3 The fitted values and residuals

Fitted value: \(\hat{\theta} = X\hat{\beta} = \hat{Y} = (Y_1, \ldots, Y_n)^T \)

The uniqueness of the prediction

When \(X \) is less than full rank, there are infinitely many LSEs. Do different LSEs lead to different predictions?

Theorem 2.4 The fitted values, i.e., \(\hat{Y} = X\hat{\beta} \), are unique.

Proof. According to Urquhart (1969), all the LSEs of \(\hat{\beta} \) can be written into \(\hat{\beta} = (X^TX)^{-1}X^TY \).

- Define \(P_X = X(X^TX)^{-1}X^T \). Then \(P_X \) is invariant to the choice of \((X^TX)^{-1} \). The proof is in Appendix B of Seber & Lee.

Proposition 2.6 \(P_X \) is a projection matrix.

Proof.

1. \(P_X^2 = P_XP_X = X(X^TX)^{-1}X^T \cdot X(X^TX)^{-1}X^T = X(X^TX)^{-1}X^T \) \(\stackrel{\text{Lemma 2.3}}{=} P_X \)

This shows that \(P_X \) is idempotent.

2. \(P_X^T = (P_X^2)^T = P_X^T P_X \)

\[
= X[(X^TX)^{-1}X^T \cdot X:]^T \stackrel{\text{Lemma 2.3}}{=} X[X^TX]^T X^T
\]

\[
= X[(X^TX)^{-1}X^T \cdot X]X^T \hspace{0.5cm} (X^TX)^{-1}X^T
\]

\[
= X[(X^TX)^{-1}X^T \cdot X]X^T \hspace{0.5cm} (X^TX)^{-1}X^T
\]

\[
= P_X^2 \equiv P_X
\]

This shows that \(P_X \) is symmetric.

By 1) and 2) and the definition of projection matrix, \(P_X \) is a projection matrix.

Note.

1. \(P_X \) is also called the hat matrix: \(P_X \hat{Y} = \hat{Y} \)

2. Another commonly used notation for the hat matrix is \(H \).
Because P_x is a projection matrix, we have

1. $\text{rank}(P_x) = \text{trace}(P_x)$
2. $I - P_x$ is also a projection matrix.
3. The eigenvalues of P_x are equal to either 0 or 1, and the number of 1's is the same as $\text{rank}(P_x)$.

Residuals

Def. Residuals $e = y - \hat{y}$

Note: $e = y - \hat{y} = y - X\hat{\beta} = y - Px y = (I - P_x)y$

Def. Residual Sum of Squares: $e^T e$

Note: $e^T e = y^T (I - P_x)^T (I - P_x) y = y^T (I - P_x) (I - P_x) y$

$= y^T (I - P_x) y$ (because $I - P_x$ is a projection matrix)

2.4 The Generalized Least Squares Estimates

Expectations and Covariances

Proposition 2.7 Let Z be a random matrix and A, B, and C be known matrices. Then

$E[AZB + C] = AE[Z]B + C$

Proof. Let $W = AZB + C$, then

$W_{ij} = \sum_k a_{ik} Z_{kl} b_{lj} + c_{ij}$

$\Rightarrow E[W_{ij}] = \sum_k a_{ik} E[Z_{kl}] b_{lj} + c_{ij}$

$= \sum_k a_{ik} (E[Z])_{kl} b_{lj} + c_{ij}$

Proposition 2.8 For random vectors Y and Z, known matrices A and B, and constants c and d

2. $\text{cov}(AY + BZ + c) = A \text{cov}(Y, Z) B^T$
Proof of 2. Let $U = Ay + c$ and $W = Bz + d$. Then
\[E[U] = AE[y] + c \]
\[U - E[U] = A(y - E[y]) \]
\[E[W] = BE[z] + d \]
\[W - E[W] = B(z - E[z]) \]

By the definition of Cov,
\[\text{Cov}(Ay + c, Bz + d) = E[(U - E[U])(W - E[W])^T] \]
\[= E[A(y - E[y])(z - E[z])^T B] \]
\[= AE[(y - E[y])(z - E[z])^T] B \]
\[= A \text{Cov}(y, z) B \]

the generalized LSE

Consider the linear model $y = \beta x + \varepsilon$ with $E[\varepsilon] = 0$ and $\text{Var}[\varepsilon] = \Sigma$, where Σ is positive definite. Let $\Sigma^{1/2}$ be the square root matrix of Σ. Consider $z = \Sigma^{-1/2} y$, we have
\[E[z] = \Sigma^{-1/2} E[y] = \Sigma^{-1/2} \beta \]
\[\text{Var}[z] = \Sigma^{-1/2} \text{Var}[y] \Sigma^{-1/2} = \Sigma \]

Consider a new design matrix $W = \Sigma^{1/2} x$ and the response vector $Z = \Sigma^{1/2} y$. The LSE for β under the new model is
\[(W^T W) \beta = W^T Z \]

Use the original notations, we have the generalized least squares estimate
\[\hat{\beta} = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} y \]
Moments (mean and variance) of LSE

When X is less than full rank, there are infinitely many LSEs of β. Since $\hat{\beta}$ is not unique, β is not estimable.

Is any of the LSEs unbiased for β? NO.

Consider an arbitrary $\hat{\beta}$. If it is unbiased, we have $\beta = E[\hat{\beta}] = E[(X^T)^{-1}X^TY] = (X^T)^{-1}X^T \beta$ for all β. Thus $(X^T)^{-1}X^T = I_p$, contradicting with the fact that X is less than full rank.

Definition. $a^T \beta$ is said to be estimable iff \exists C s.t. $E[C^T \gamma] = a^T \beta$

for any β.

e.g. $X \beta$ is always estimable, as $E[Y\beta] = X \beta$

e.g. $Y_{ij} = U_{ij} + \epsilon_{ij}$, $i=1,2; j=1,2$, $E[\epsilon_{ij}] = 0$

$X \beta_1 = E[Y_{11}]$, so $X \beta_1$ is estimable

$X \beta_1 - X \beta_2 = E[Y_{11} - Y_{12}]$, so $X \beta_1 - X \beta_2$ is estimable

How about U?

Theorem 2.9 $a^T \beta$ is estimable iff any one of the following conditions is true:

1. $a \in C(X^T)$ [Note: $C(X^T) = C(X^T X)$]
2. $a^T (X^T X)^{-1} X = a^T$
3. $E[a^T \hat{\beta}] = a^T \beta$ for all β, where $\hat{\beta}$ is an LSE.

Proof 1. $a^T \beta$ is estimable iff $\exists C$ s.t. $E[C^T \gamma] = a^T \beta$ for all β

But $E[C^T \gamma] = C^T E[\gamma] = C^T \beta$

So $a^T \beta$ is estimable iff $\exists C$ s.t. $C^T \beta = a^T \beta$ for all β, which is true iff $a = X^T C$ \iff $a \in C(X^T)$.