1. Suppose you are given an unsorted array $A[1..n]$, which contains all but one of the $n + 1$ integers in the range $0, \ldots, n$ (so exactly one of these elements is missing from A). To simplify the problem somewhat, we will assume that $n = 2^k − 1$ for some integer k. Hence each array element has a binary representation using k bits.

You want to determine the missing integer. You are not allowed to access an entire integer in A with a single operation. The only way to access the elements of A is by calling the function $\text{bitvalue}(i, j)$, which returns the value of the jth bit of $A[i]$. Give a divide-and-conquer algorithm that finds the missing integer and makes only $O(n)$ calls to the function $\text{bitvalue}()$.

Note: There are $(n − 1) \log n$ bits, so you cannot afford to look at every bit.

2. Give asymptotic solutions (using $\Theta()$ notation) for each of the following recurrence equations.

 (a) $T(n) = 6T(n/4) + n \log n$
 (b) $T(n) = 2T(n/4) + \sqrt{n}$
 (c) $T(n) = 6T(n/3) + n^2$
 (d) $T(n) = \sqrt{n}T(\sqrt{n}) + n$, and $T(1) = T(2) = 1$