1. Do question 4.1 in RN.

2. Do question 4.2 in RN. (Note that "objective function" means "evaluation function")

3. (Question 9.2 in Nilsson) This exercise assumes you have already completed question 2 in homework 1. Refer to your solution to that exercise. Propose an admissible h function for this problem that is better than $h \equiv 0$.

4. (Question 9.3 in Nilsson) Algorithm A^* does not terminate until a goal node is selected for expansion. However, a path to a goal node might be reached long before that node is selected for expansion. Why not terminate as soon as a goal node has been found? Illustrate your answer with an example.

5. For the sliding block puzzle (see hw1), specify a heuristic function h, and show the search tree produced by algorithm A^* using this function. Show the first 10 nodes expanded.

6. Prove the following properties on algorithm A^*.

 (a) A heuristic function is monotone if for every node n and its child node n'

 $$ h(n) \leq h(n') + c(n, n') $$

 Prove that if h_1 and h_2 are both monotone, so also is $h = \max(h_1, h_2)$.

 (b) Prove that if h is monotone then it is also admissible.

 (c) Prove that if the heuristic function is monotone then A^* will never reopen any nodes.

 (d) Prove or give a counter example: if for every node n, $h_1(n) \geq h_2(n)$, then A^* with h_1 always expands less nodes than A^* with h_2.

 1
(e) Let h be an admissible function and let $f(n) = w \cdot g(n) + (1 - w)h(n)$, $0 \leq w \leq 1$. Will $A*$ with f find an optimal solution when $w = 1/4$? $w = 1/2$? $w = 3/4$? Can you provide a general rule? (note, that f here denotes an arbitrary evaluation function, not necessarily an exact one).

7. (Extra Credit: Question 9.4 in Nilson) The monotone condition on the heuristic function requires that $h(n_i) \leq h(n_j) + c(n_i, n_j)$ for all node-successor pairs (n_i, n_j), where $c(n_i, n_j)$ is the cost on the arc from n_i to n_j. It has been suggested that when the monotone condition is not satisfied, this fact can be discovered and h adjusted during search so that the condition is satisfied. The idea is that whenever a node n_i is expanded, with successor node n_j, we can increment $h(n_j)$ by whatever amount is needed to satisfy the monotone condition. Construct an example to show that even with this scheme, when a node is expanded we have not necessarily found a least costly path to it.

8. Question 4.9 in RN.