Contact Graphs of Circular Arcs

M. J. Alam, **D. Eppstein**, M. Kaufmann, S. G. Kobourov, S. Pupyrev, A. Schulz, and T. Ueckerdt

14th Algorithms and Data Structures Symp. (WADS 2015) Victoria, BC, August 2015

Intersection graphs vs contact graphs

Intersection graph:

Vertices: geometric objects

Edges: overlapping pairs

Contact graph:

Objects cannot overlap

Edges: touching pairs

Examples of contact graphs: disks

Koebe–Andreev–Thurston circle packing theorem:

The contact graphs of disks are exactly the planar graphs

Many applications in graph theory, graph drawing, mesh generation, neuroanatomy, etc.

Another example: Axis-aligned segments

Each contact has one endpoint and one interior point

Realizable graphs are exactly the planar bipartite graphs

Hartman, Newman, and Ziv, "On grid intersection graphs", Disc. Math. 1991

Another example: Non-aligned segments

Each subset of k segments has ≥ 3 non-contact endpoints at the vertices of its convex hull, 2k-3 remaining potential contacts

Realizable graphs are exactly the planar graphs in which every k vertices induce a subgraph with at most 2k-3 edges

Alam et al., "Proportional contact representations of planar graphs", JGAA 2012

Our question: What about circular arcs?

Only allow endpoint-interior contacts (else same as circle packings)

May not have any endpoint non-contacts on convex hull Pairs of arcs may have multiple contacts ⇒ multigraphs

Sparse and tight graphs

(a, b)-sparse: each k-vertex subgraph has $\leq ak - b$ edges (a, b)-tight: (a, b)-sparse and whole graph has exactly an - b edges

For planar graphs:

- ► (2,3)-tight = Laman (minimally rigid)
- ▶ (2,3)-sparse = contact graph of line segments
- ► (2,4)-tight = maximal bipartite
- ► (2,4)-sparse = triangle-free
- For $a \in \{2, 3, 4\}$, dual of (2, a)-tight is always (2, 4 - a)-tight

Henneberg moves

All (2,2)-tight and dual-(2,3)-tight graphs can be constructed by sequences of three moves, starting from simple base cases:

Each move can be performed in any circular arc representation (Proof: messy case analysis)

Corollary: All such graphs can be represented by circular arcs

Arc representations from circle packings

Break circles into arcs turning tangencies into arc contacts

Extra property: each arc has empty convex hull

This method works ←⇒ graph has an edge orientation with

- ▶ Outdegree ≤ 2
- ► When outdegree = 2, both out-edges are adjacent

Which graphs have such orientations?

4-regular graphs have good orientations

Group opposite pairs of edges at each vertex into curves, orient each curve consistently

Orienting (2,0)-tight graphs is NP-hard

Reduction: positive planar 1-in-3 SAT \rightarrow multigraph orientation \rightarrow simple graph orientation

Conclusions and open problems

Simple necessary condition for arc representation: (2,0)-sparse

Simple sufficient conditions: dual (2, a)-tight, $a \in \{2, 3, 4\}$

Related hardness results possibly indicating the actual story may be more complicated...

Do all planar (2,0)-sparse graphs have arc representations? Not true for multigraphs with fixed embeddings:

