
MESH GENERATION AND OPTIMAL TRIANGULATION

MARSHALL BERN

Xerox Palo Alto Research Center, Palo Alto, California 94304, U.S.A.

and

DAVID EPPSTEIN
Dept. of Information and Computer Science, University of California

Irvine, California 92717-3425, U.S.A.

ABSTRACT

We survey the computational geometry relevant to �nite element mesh
generation. We especially focus on optimal triangulations of geometric do-
mains in two- and three-dimensions. An optimal triangulation is a partition
of the domain into triangles or tetrahedra, that is best according to some
criterion that measures the size, shape, or number of triangles. We discuss
algorithms both for the optimization of triangulations on a �xed set of vertices
and for the placement of new vertices (Steiner points). We brie
y survey the
heuristic algorithms used in some practical mesh generators.

1. Introduction

Computational geometry claims the two aims of solving practical problems and
producing beautiful mathematics. There is a natural tension between these goals:
the most elegant formulation of a problem rarely occurs in practice. But surprisingly
often the aims complement each other. This chapter discusses the interplay between
an important practical problem|�nite element mesh generation, and a
ourishing
theoretical area|optimal triangulation algorithms.

Finite element methods have proved indispensable for physical simulation.
These methods discretize the simulated domain|for example, the air around a
wing|by dividing it into many small \elements", typically triangles or quadrilat-
erals in two dimensions and tetrahedra or hexahedra in three. The complex of
elements is the mesh.

A triangulation is a partition of a geometric input, typically the region
de�ned by a point set or a polytope, into simplices that meet only at shared faces.
So in two dimensions, a triangulation consists of triangles that intersect only at

1

shared edges and vertices. An optimal triangulation is one that is best according
to some criterion that measures the size, shape, or number of simplices.

An example illustrates the complementary relationship of mesh generation
and optimal triangulation. Numerical-analysis folklore had long held that �nite
element meshes should avoid elements with sharp angles. Remarkably, Lawson
found that the Delaunay triangulation, a geometric construction with a long his-
tory, maximizes the minimum angle in a two-dimensional mesh [128]. At about
the same time, work by other numerical analysts implicated the
attest|not the
sharpest|angle as the critical factor in convergence [5, 112]. This problem did not
have a solution waiting for it, and in developing an algorithm to minimize the max-
imum angle [78], computational geometers discovered a very interesting algorithmic
paradigm (discussed in Section 2.2.2).

1.1. Background

The di�erential equations arising in physical simulation require numerical solution.
Most numerical methods|there are exceptions|assume that the domain of inter-
est is divided into a mesh of small, simple elements. There are two major types
of meshes: structured and unstructured. This chapter studies only unstructured
meshes, but here we brie
y sketch the larger context.

A structured mesh in two dimensions is most often simply a square grid
deformed by some coordinate transformation. Each vertex of the mesh, except
at the boundaries, has an isomorphic local neighborhood. In three dimensions, a
structured mesh is usually a deformed cubical grid. An unstructured mesh is most
often a triangulation with arbitrarily varying local neighborhoods.

Structured meshes o�er certain advantages over unstructured. They are
simpler, and also more convenient for use in the simpler �nite di�erence methods.
They require less computer memory, as their coordinates can be calculated, rather
than explicitly stored. Finally, structured meshes o�er more direct control over the
sizes and shapes of elements.

The big disadvantage of a structured mesh is its lack of
exibility in �t-
ting a domain with a complicated shape. A number of techniques have been de-
veloped to �nd appropriate coordinate transformations: conformal mapping, al-
gebraic methods, and numerical methods that themselves solve di�erential equa-
tions [39, 213, 214]. Even armed with these techniques, it may be impossible to �nd
a transformation that �ts a complicated domain acceptably well. Faced with this
problem, some practitioners cut out a region of the grid, without any transforma-
tion, to give a \stair-case approximation" to the domain. But then the computed
solution will be quite inaccurate near the boundary of the domain, an area that
is often of special interest. Other practitioners break up the domain into simpler
regions, perhaps overlapping, each of which can be more nearly matched by a de-

2

formed grid. This method and its associated numerical analysis make up \domain
decomposition", a large area of study in its own right.

Because of the need to �t complicated domains, such as aircraft and ma-
chine parts, the trend in simulation has been towards unstructured meshes [8, 144,
212], although both types of meshes will continue to be important for some time to
come. Indeed, there are methods that combine many small structured meshes into
an overall unstructured mesh [221].

As we shall see in this chapter, unstructured meshes can �t arbitrarily
complicated domains. Simply �tting the domain, however, is not enough. A �nite
element mesh must also use elements of appropriate size and shape, and these quan-
tities may vary over the domain. Multiple requirements lead to many interesting
and di�cult triangulation problems; these computational geometry problems de�ne
the subject of this chapter.

1.2. Formulating the problems

In the formulation of triangulation problems, we see the tension between applica-
bility and elegance. This tension pervades the major choices in the formulation:
the type of input assumed, the type of triangulation desired, and the optimality
criteria.

The most theoretically attractive inputs are polygonal regions in two dimen-
sions and polyhedral regions in three, without any auxiliary information. Curved
domains occur in practice, but usually the assumption of a
at-sided domain is not
too limiting. The more severe restriction is the assumption of no auxiliary infor-
mation. In practical mesh generation, some foreknowledge of the solution to the
�nite element computation usually guides the choice of element size, shape, and
orientation.

A major binary choice arises in determining the type of triangulation. The
vertices of the triangulation may be exactly the vertices of the input, or extra
vertices|called Steiner points|may be allowed. In practice, mesh generation in-
variably allows Steiner points, although the placement of Steiner points is often
separate from the subsequent triangulation process. Computational geometers have
traditionally disallowed Steiner points, and thus their theorems have relevance only
for the second stage of practical mesh generation, but recently a small number of
geometers (especially ourselves) have considered problems allowing Steiner points.
Steiner points change the character of optimal triangulation problems. Where pre-
viously the goal was an exact algorithm, it now must be an approximation algorithm
that uses a modest number of Steiner points.

For practitioners, the ultimate optimality criteria are speed and accuracy of
the �nite element computation. These in turn impose a number of somewhat con-

icting criteria on the mesh: element shape (such as bounds on angles), reasonable

3

complexity (not too many elements), and element orientation (such as aligned with

uid
ow). Computational geometers usually work on only one or two optimiza-
tion criteria at a time, although certain triangulation algorithms such as Delaunay
triangulation and quadtree triangulation optimize several criteria simultaneously.
A typical computational geometry problem disallowing Steiner points is one men-
tioned above: triangulate a point set while minimizing the maximum angle [78]
(Section 2.2.2). A typical problem allowing Steiner points is: triangulate an n-
vertex polygonal domain using no angles larger than 90� and only a polynomial (in
n) number of Steiner points [24, 29] (Section 2.3.2).

In the optimal triangulation algorithms we present, watch for a recurring
theme: local versus global optimization. For many problems that disallow Steiner
points, local optimizations can lead to global solutions (Sections 2.2.1 and 2.2.2).
For problems that allow Steiner points, a typical approximation algorithm performs
some initial global steps, such as de�ning a grid on the input, followed by some local
optimizations (Sections 2.3.1, 2.3.2, and 2.3.4).

1.3. Organization

We organized this chapter at the topmost level into sections on two- and three-
dimensional problems, with Section 2.5 serving as a bridge. The major sections
are then subdivided by the type of output desired: triangulation without any opti-
mization criteria, optimal triangulation without Steiner points, and �nally optimal
triangulation with Steiner points. To keep ourselves honest, we include sections
surveying the heuristics devised by practitioners.

1. Introduction
1.1. Background
1.2. Formulating the problems
1.3. Organization

2. Two-dimensional Triangulations
2.1. Triangulation without optimization
2.2. Optimal triangulation

Delaunay triangulation,
ip, edge insertion, dynamic programming.
2.3. Steiner triangulation

No small or large angles, maxmin height, min weight, conforming DT.
2.4. Heuristically generated meshes

Mesh improvement, quadtrees, polygon decomposition, advancing front.
2.5. Two-and-a-half-dimensional problems

Interpolation, surfaces for three-dimensional models.

3. Three-dimensional Triangulations
3.1. Tetrahedralization without optimization
3.2. Optimal tetrahedralization

4

3.3. Steiner tetrahedralization
Reducing Delaunay, nonobtuse dihedrals, bounded aspect ratio.

3.4. Heuristically generated three-dimensional meshes
Mesh improvement, octrees, polyhedron decomposition, advancing front.

4. Conclusions

2. Two-dimensional Triangulations

In this section, we consider triangular meshes in two dimensions. We distinguish
four types of input domains, all of which can be viewed as polygonal regions of
the plane, because their boundaries consist of straight (perhaps degenerate) line
segments. The task is to partition the domain into triangles, that meet edge to
edge, and that may be required to satisfy some other optimality properties. For
all four types of domains, a single parameter n, the number of vertices, su�ces to
measure the input complexity.

� Simple polygon. The domain is a polygonal region of the plane, and its
boundary forms a simple, polygonal, closed curve. The triangulation must
use the edges of the boundary as edges in the triangulation. In a Steiner

triangulation problem, extra vertices may be added to the interior or on the
polygon; hence, the edges of the boundary may be subdivided to form several
collinear edges in the triangulation.

� Polygon with holes. This di�ers from the previous case in that the bound-
ary may form several disjoint polygonal Jordan curves. These curves surround
holes within the polygon.

� Point set. The input is a set of points in the plane. Without Steiner points,
the vertices of the triangulation are exactly the input points, and the boundary
of the triangulation is the convex hull. With Steiner points, the vertices of
the triangulation are a superset of the input points, and the boundary of the
triangulation is a convex region that may be larger than the convex hull.

� Planar straight line graph (PSLG).The input is a set of vertices and non-
crossing (that is, intersecting only at endpoints) line segments in the plane,
which must be used as edges (or for Steiner problems, unions of edges) in the
triangulation. This most general input occurs in practice for \multiple do-
mains", that is, domains that include boundaries between di�erent materials.
One could imagine the segments as holes in a polygon, and for non-Steiner
triangulation this is a correct view of the problem. For Steiner triangulations,
however, the Steiner points must be identical on both sides of a segment, which
would not necessarily happen if we treated each segment as a degenerate hole.

5

Figure 1. Triangulations with (below) and without Steiner points (above) of a polygon,

a polygon with holes, a point set, and a PSLG. Solid lines show input; dotted show

triangulation.

2.1. Triangulation without Optimization

In this section we review triangulation without Steiner points and without optimal-
ity criteria. The most basic question about polygon triangulation asks whether a
triangulation always exists. A diagonal of a simple polygon is a line segment be-
tween two vertices, that lies inside the polygon and does not intersect the polygon's
boundary except at its endpoints.

Lemma 1. Every polygon with more than three sides has a diagonal.

Proof: Let b be the vertex with minimum x-coordinate and ab and bc be its two
incident edges. If ac is not cut by the polygon, then ac is a diagonal. Otherwise
there must be at least one polygon vertex inside triangle abc, as in Figure 2. Let
d be the vertex inside abc furthest from the line through a and c. Now segment bd
cannot be cut by the polygon, since any edge intersecting bdmust have one endpoint
further from line ac.

Once we have found a single diagonal, we can split the polygon in two,
and recursively triangulate each part. The proof of the lemma implies a linear-time
algorithm for �nding a diagonal, so a triangulation can be found in time O(n2).

Now the following question arises: how quickly can we compute a triangu-
lation? This problem attracted more than a decade of intensive research. It is not
di�cult to improve the running time to O(n logn) [93, 174]. For many geometric
problems there are matching
(n logn) lower bounds, but none was known in this
case. There were also many faster special case algorithms [45, 93, 108]. After Tarjan
and Van Wyk [211] broke through to O(n log logn), Chazelle [43] ended the quest
by announcing a linear-time triangulation algorithm for simple polygons.

6

d

c

a

b

Figure 2. Finding a single diagonal.

We now discuss the other types of input domains. It turns out that any
point set can be triangulated in time O(n logn), and conversely a point set triangu-
lation algorithm can sort real numbers, so there is a matching lower bound in the
algebraic decision tree model of computation (see [174]).

Lemma 1 applies to any polygon with holes, and hence to each face in a
PSLG. (A face is a connected component of the plane minus the PSLG.) Hence every
PSLG can be triangulated. It is easy to show by induction that every triangulation
of a given PSLG has the same linear number of triangles, n � 2 in the case of a
simple polygon. Triangulating a PSLG can be accomplished in time O(n logn).
Using Chazelle's algorithm, the time for polygons with holes can be improved to
O(n logh), where h is the number of holes.

In contrast to these positive results, determining whether a straight line
graph (with crossing edges) contains a triangulation is NP-complete [140]. Also
NP-complete is the problem of determining whether a given collection of triangles
includes a triangulation of the triangles' vertex set. (These results tend to rule out
greedy algorithms for optimal triangulation.)

2.2. Optimal Triangulation

We have seen that quite e�cient algorithms exist for constructing a triangular
mesh that covers a given domain. There may, however, be exponentially many
triangulations with widely varying appearance. We now turn to the harder task of
�nding a triangulation that optimizes some measure of quality.

Since all non-Steiner triangulations of a two-dimensional input have the
same number of triangles, reasonable quality measures depend upon the shape of
triangles. Typical measures examine the angles, edge lengths, height, and area of
a triangle. The measure of a triangulation is then taken to be the sum, maximum,
or minimum of the measure over all triangles.

A number of quality measures �nd motivation in �nite element methods.
The numerical condition of matrices in a �nite element computation is related to the
minimum angle in the triangulation. The error of a �nite element approximation is

7

also related to the minimum angle [91, 209], and even more closely related to the
maximum angle [5, 112]. The minimumheight of a triangle relates to the quality of
a curved-surface approximation [98], and to a key step in a new three-dimensional
mesh generation algorithm [157]. Several other optimization criteria �nd application
in interpolation [69, 178].

For a given element shape, approximation error grows with element size,
which can be measured simply by maximum edge length [209] or by more compli-
cated metrics. For some applications|such as modeling di�usion in a nonisotropic
medium|size is appropriately measured by the area of the \min-containment cir-
cle", after the domain has been transformed by an appropriate a�ne map [55].
(Sizes of elements are typically used to weight �nite element residuals in a-posteriori
error estimates, in order to �nd regions of the mesh in need of re�nement [6, 37].)

2.2.1. Delaunay Triangulation and the Flip Algorithm

A well-known construction, called the Delaunay triangulation, simultaneously op-
timizes several of the quality measures mentioned above: maxmin angle, minmax
circumcircle, and minmax min-containment circle.

The Delaunay triangulation (DT) of a point set is the planar dual of the
famous Voronoi diagram. The Voronoi diagram is a partition of the plane into
polygonal cells, one for each input point, so that the cell for input point a consists
of the region of the plane closer to a than to any other input point. So long as
no four points lie on a common circle, then each vertex of the Voronoi diagram
has degree three, and the DT, which has a bounded face for each Voronoi vertex
and vice versa, will indeed be a triangulation. If four or more points do lie on a
common circle, then these points will be the vertices of a larger face, that may then
be triangulated to give a triangulation containing the DT.

Voronoi diagrams and Delaunay triangulations have been generalized in
numerous directions. One important generalization, known as power diagrams and
regular triangulations, replaces the distance to an input point by the squared dis-
tance minus a real-valued weight. For more information on Delaunay triangulations
and Voronoi diagrams, see the surveys by Fortune [88] and Aurenhammer [3].

There is a nice relationship between Delaunay triangulation and three-
dimensional convex hulls [34, 70]. Lift each point of the input to a paraboloid in
three-space by mapping the point with coordinates (x; y) to the point (x; y; x2+y2).
The convex hull of the lifted points can be divided into lower and upper parts; a
face belongs to the lower convex hull if it is supported by a plane that separates the
point set from (0; 0;�1). It can be shown that the DT of the input points is the
projection of the lower convex hull onto the xy-plane, as depicted in Figure 3.

Finally, a direct characterization: if a and b are input points, the DT
contains the edge fa; bg if and only if there is a circle through a and b that intersects

8

TRIANGULATION
DELAUNAY

LOWER CONVEX HULL

UPPER CONVEX HULL

Z

Figure 3. The lifting transformation maps the DT to the lower convex hull.

no other input points and contains no input points in its interior. Moreover, each
circumscribing circle (circumcircle) of a DT triangle contains no input points in its
interior.

Many O(n logn)-time algorithms are known for computing the DT of a
point set, the �rst being Shamos and Hoey's divide-and-conquer algorithm [200].
The relation between Delaunay triangulation and convex hulls allows the use of any
O(n logn)-time three-dimensional convex hull algorithm, such as that of Preparata
and Hong [173]. Fortune [87, 88] invented an elegant sweepline algorithm. Guibas,
Knuth, and Sharir [101] gave a simple, randomized incremental algorithm. (For a
simpler analysis of this algorithm see [162, 199].) Maus [149] gave an algorithm for
random points with expected linear running time; see also [27, 68, 152] for expected
case analyses.

The typical domain for mesh generation, however, is not a point set, but a
polygonal region. In some cases the DT of a nonconvex region's vertices contains
a triangulation of the region, but in general DT edges cross the region's boundary,
creating an invalid mesh. One approach to this problem adds more vertices to the
boundary, so that the boundary edges are covered by the DT of the augmented point
set. We consider this conforming Delaunay triangulation problem in Section 2.3.5.
The alternative approach generalizes the de�nition of the DT in order to force
certain edges (the boundary) into the triangulation. Such a triangulation is known
as a constrained Delaunay triangulation (CDT) [49, 54, 56, 129, 131, 198].

For generality, we allow the domain to be a planar straight line graph. The
CDT of a polygonal region may be obtained by treating the polygon as a PSLG,
and then removing all CDT edges exterior to the polygon. We �rst de�ne the notion
of visibility . Given a PSLG, we say that point a is visible to point b if line segment
ab does not cross any edge of the graph (ab may intersect an edge without crossing
it). Point a is visible to line segment bc if it is visible to some point on bc.

9

b
a

Figure 4. The CDT of a planar straight line graph.

De�nition 1. The constrained Delaunay triangulation (CDT) contains the
edge fa; bg between two input vertices, if and only if a is visible to b, and some
circle through a and b contains no input point c visible to segment ab.

For point sets, this de�nition reduces to the direct characterization of the
DT given above. De�nition 1 also implies that the circumcircle of a triangle abc in
the CDT cannot contain an input point|other than a, b, or c|that is visible from
the interior of abc. We now justify De�nition 1 by showing that|like the DT|the
CDT actually gives a triangulation for inputs in general position. We call the new
edges, de�ned by the empty circle condition above, Delaunay edges.

Lemma 2. If no four input vertices lie on a common circle, the CDT of a PSLG
will be a triangulation.

Proof: By assumption input edges intersect only at endpoints, and since endpoints
of a Delaunay edge must be mutually visible, no Delaunay edge can cross an input
edge. Suppose two Delaunay edges cross. But then all four endpoints are visible
from the crossing point, and it is easy to show that two distinct circles satisfying
the de�nition cannot exist. Therefore the CDT is a PSLG.

We now show that the CDT contains no face with more than three sides.
Suppose that ab and ac are edges in the CDT, but that bc is not. Then the circum-
circle of triangle abc must contain some other input point visible to bc.

Suppose there is an input point inside triangle abc. Such a point is visible
to a unless blocked from view by an edge with an endpoint \closer" to a, meaning
closer when projected onto a line perpendicular to bc. Thus the closest input point
d to a (again measuring distance from bc) must be visible to a. Pass a circle through
a and d, parallel to bc at d. Any input points contained in this circle cannot be
visible to segment ad because they are blocked by ab and ac; hence ad is a Delaunay
edge.

Suppose instead that there is an input point on the other side of bc from a,
visible to bc and lying inside circle abc. Imagine a shrinking circle, that starts
as circle abc, and then shrinks in a way that keeps it tangent to circle abc at a.

10

Figure 5. The CDT (dashed) is not the exact dual of the bounded Voronoi diagram.

Ultimately, only a single input point d visible to bc will lie in the shrunken circle,
and so d must be visible to a. There can be no other input points in the circle that
are visible to ad, so ad is a Delaunay edge.

By these two cases, we have shown that bac cannot be an untriangulated
corner. This proves that every connected component is a triangulation. We now
show by contradiction that the CDT is connected. Let a and b be nearest-neighbor
input points from two di�erent connected components. The diameter circle of ab
cannot contain any other input points, so ab must be a Delaunay edge, giving a
contradiction.

If the input is not in general position, some faces of the CDT may have
more than three vertices, all on a common circle. To avoid this situation, the
input can be slightly perturbed before computing the triangulation; Edelsbrunner
and M�ucke propose symbolic perturbations [72]. Alternatively, the triangulation
may be completed after the computation. Mount and Saalfeld [159] show how to
quickly complete a special-position DT or CDT to maintain the lexicographically
maximum angle property. Dillencourt and Smith [63] prove that most completions
can be realized as the DT of a small perturbation of the input. Unfortunately it is
possible for the angle-maximizing completion to be one of the exceptions.

Just as the DT is dual to the Voronoi diagram, the CDT is related to the
bounded Voronoi diagram [138, 198, 218], a division of the plane into cells, one for
each input vertex, so that the cell for vertex a consists of the region of the plane
for which a is the nearest visible input point. Contrary to several claims in the
literature, the relation is not exact duality: the CDT may have an edge between a
pair of vertices with bounded Voronoi cells that do not meet, but would meet if not
cut o� by an input edge (Figure 5).

The CDT can be computed directly from De�nition 1 by directly testing
each candidate edge, but such an algorithm is very ine�cient. We now describe the

ip algorithm, which computes the CDT of a PSLG using a simple local optimization
technique; it is derived from a similar algorithm for the DT [128]. The worst-case
running time of this algorithm, O(n2), is not optimal, but its ease of programming
makes it quite practical for medium-sized input. Moreover, the algorithm is useful

11

for proving a number of optimality properties.

The
ip algorithm starts with any triangulation. For an edge e, not an input
edge and not on the convex hull, we denote by Qe the quadrilateral formed by the
two triangles on each side of e. We say that Qe is reversed if e is not in the CDT of
the four outside edges of the quadrilateral. Equivalently, Qe is reversed if the angles
at its uncut corners sum to more than 180�, or if e forms a smaller minimum angle
with the outside edges than the other diagonal does. If Qe is reversed, trivially the
triangulation cannot be the CDT, because edge e violates the circle condition. The
converse is also true, giving an example of a local optimization leading to global
optimality.

Lemma 3. If no quadrilaterals are reversed, the triangulation is the CDT.

Proof: The idea behind this proof can be traced back to Delaunay [58]. We show
that the circumcircle of each triangle abc contains no vertex d. Therefore each edge
is a correct Delaunay edge. Suppose such a point d does exist for some triangle abc.
The proof of Lemma 2 shows that we may choose d visible to a.

For a circle C with center at coordinates (x; y) and radius r, de�ne the
power distance of point s = (x0; y0) to C, pC(s), to be (x0 � x)2 + (y0 � y)2 � r2.
Then pC(s) is positive, negative, or zero exactly when s is outside, inside, or on the
boundary of C.

Now consider the sequence of triangles t1, t2, : : :, tk crossing line segment
ad, where t1 = abc and tk includes d as a vertex. Construct a corresponding sequence
of circumcircles C1, C2, : : :, Ck. By assumption, each pair titi+1 forms a non-
reversed quadrilateral. From this, it can be shown that for each i, pCi

(d) > pCi+1
(d),

and therefore that pC1(d) > pCk
(d) = 0. But this contradicts the assumption that

d lies inside circle C1.

The
ip algorithmmaintains a queue of edges whose quadrilaterals might be
reversed. In the initial triangulation, the quadrilateral of any non-input edge might
be reversed, so the queue initially contains all such edges. Then we repeatedly
remove the �rst edge e from the queue. If Qe is not reversed, we simply continue to
the next edge. But if Qe is reversed, we remove e from the triangulation, replacing
it with the other diagonal of Qe. This
ip might change the status of some of the
four outside edges of the quadrilateral, so we add the changed ones to the queue if
not there already. When the queue is empty, we stop.

Lemma 4. The
ip algorithm terminates after O(n2)
ips.

Proof: We use the lifting relation between DTs and convex hulls. Under the
mapping that takes (x; y) to (x; y; x2+ y2), the DT of the input vertices lifts to the
lower convex hull, and|due to the input edges|the CDT lifts to a surface above
the lower convex hull. An arbitrary triangulation including the input edges lifts to

12

a surface above the CDT surface. Each
ip of a reversed quadrilateral corresponds
to gluing a tetrahedron over a re
ex edge in this surface. That tetrahedron is never
removed, so the re
ex edge never returns. After O(n2)
ips, all non-CDT edges will
be eliminated.

Coupled with an O(n2)-time algorithm for constructing an initial triangu-
lation (see Section 2.1), we obtain an O(n2)-time algorithm for constructing the
CDT. The
ip algorithm also gives a number of useful optimality properties of the
CDT. The min-containment circle of a triangle t is the smallest circle containing t.

Theorem 1. Of all triangulations of a PSLG, the CDT (1) minimizes the largest
circumcircle; (2) minimizes the largest min-containment circle [55, 176]; and (3)
maximizes the minimum angle in the triangulation [128].

Proof: Each of these properties is improved by
ipping a reversed quadrilateral.
The optimal triangulation cannot be improved, so it has no reversed quadrilaterals,
and hence by Lemma 3 must be the CDT.

Result (3) is sometimes called \equiangularity" and, in fact, a stronger
form holds: the CDT lexicographically maximizes the list of angles, from smallest
to largest [129, 131]. An optimal interpolation property of the CDT appears in
Section 2.5; there the input vertices include elevations. (The DT of a point set has
some further properties. The DT contains the minimum spanning tree; the distance
between vertices in the DT is O(1) times their distance in the plane [48, 65, 122];
and, from any viewpoint, DT triangles are acyclically ordered by distance [57, 71].)

For very complex domains, an O(n2)-time algorithm for computing the
CDT may be too slow. Chew [49] and others [198, 218] have improved this bound
to O(n logn).

Theorem 2 (Chew [49]). The CDT can be constructed in time O(n logn).

Proof Sketch: Chew gives a divide-and-conquer algorithm. Line segment end-
points are sorted by x-coordinates, and split by a vertical line into two subsets, each
with at most dn=2e endpoints. CDTs are computed recursively for each subset and
then merged.

In order to achieve the O(n logn) bound, the work at each level of the
computation tree should be only O(n). Hence the work in a single strip, bounded
by two vertical lines, must be proportional to the number of endpoints in the strip,
rather than to the number of line segments cutting the strip. To achieve this, the
algorithm further divides a strip into regions bounded by segments that cut all the
way across it. The algorithm computes the CDT only for those regions containing
at least one endpoint.

The major remaining di�culty is merging two adjacent strips. This problem
can be reduced to merging adjacent regions. As in some DT algorithms [200], the

13

Figure 6. A local optimum for total edge length may be
(n) times the global optimum.

merger is performed by sweeping a circle along the boundary between the two
regions. The work is proportional to the number of old edges removed and new
ones added; since the sizes of the old and new triangulations are linear, so is the
time bound.

The CDT of a simple polygon, though not of a PSLG, can be constructed
even more quickly. Aggarwal et al. [1] showed that, if the input is a convex polygon,
the DT (which is also the CDT) can be found in linear time. The algorithm is based
on the lifting transformation, and it also solves the problem for certain other types
of point sets. In particular, it can update the DT after the removal of a vertex
or edge. Djidjev and Lingas [64] devised a linear-time algorithm to compute the
DT of a more general special case called a \monotone histogram". Finally, Klein
and Lingas [126] gave a linear-time randomized algorithm for the CDT of a simple
polygon.

2.2.2. Edge Insertion

The
ip algorithmdescribed above provides our �rst example of a local improvement
algorithm. As we showed, the
ip algorithm in fact produces a global optimum: the
resulting triangulation maximizes the minimum angle, and optimizes several other
criteria as well. The success of the
ip algorithm for Delaunay triangulation has led
to the use of edge
ipping (with the appropriate de�nitions of reversed quadrilateral)
for �nding triangulations that approximately optimize other criteria, such as vertex
degree [90], maximumangle [104], total edge length [220], or the ratio of the areas of
inscribed circle and triangle [16]. Edge
ipping to improve these criteria, however,
will not usually compute a global optimum.

The problem is that the algorithm can get stuck in a local optimum, in
which no
ip improves the triangulation. A local optimum can be very far from
a global optimum; for example, it may have total edge length
(n) times the true
optimal length; see Figure 6.

One way to escape local optima is to allow local moves that do not improve
the triangulation, as in simulated annealing [125, 216]. A di�erent approach is to
generalize the local improvement procedure. This reduces the number of local op-
tima, as a triangulation without an edge to
ip may still admit the generalized move.

14

This section describes one such generalization, called edge insertion, introduced by
Edelsbrunner, Tan, and Waupotitsch [78] for the minmax angle problem.

Consider adding a new edge e to some existing triangulation T of a PSLG.
Edge e crosses other edges in T , causing them to be removed. At this point there
will be two simple polygons without diagonals, one on each side of e. Optimal
triangulation problems on simple polygons tend to be tractable; for now we may
assume that these polygons are triangulated optimally using dynamic programming,
as in Section 2.2.3. Edge insertion is the process of adding a candidate edge,
incident to a vertex of a worst triangle (and cutting across that triangle); removing
the crossed edges; and retriangulating the remaining regions. The added edge is
rejected and the triangulation is returned to its previous state if the triangulation
gets worse. Below we explain how to eliminate a possible edge on each insertion, so
that the process terminates.

Notice that an edge insertion is more general than an edge
ip, as a
ip
inserts a diagonal of a convex quadrilateral and removes the single edge it crosses.
In fact, edge insertion is a signi�cant generalization, as there may be
(n) edges
that can be inserted to break a worst triangle, but only one
ip. Because of the
increased number of possibilities, intuitively edge insertion should reach better local
optima than edge
ipping, but take longer to do so.

Edelsbrunner et al. [78] showed that edge insertion can in fact compute a
global optimum that edge
ipping cannot: the triangulation minimizing the max-
imum angle. The correctness of edge insertion for this problem follows from an
abstract property of the maximum angle measure, that also holds for several other
natural quality measures, as shown in a subsequent paper by Bern, Edelsbrunner,
Eppstein, Mitchell, and Tan [23]. Let f be a function measuring the badness of
triangles, and assume that the quality of a triangulation T is de�ned to be the
maximum (that is, worst) value of f over all triangles in T , denoted f(T).
De�nition 2. Let a, b, and c be vertices in some PSLG G. We say that a is an
anchor vertex of triangle abc, if in any triangulation T of G, with f(T) < f(abc),
there is an edge ad crossing bc. In other words, one cannot improve a triangulation
containing triangle abc without cutting abc by an edge incident to the anchor a.

For example, let f(abc) be the measure of the largest angle in triangle abc. Then
if the largest angle is 6 bac, a is an anchor vertex, because in any triangulation of
quality better than f(abc), there must be an edge subdividing 6 bac and crossing bc.
A triangle may have more than one anchor vertex, and all vertices in an optimal
triangulation are anchors.

De�nition 3. Quality measure f has the weak anchor property if, for each
triangulation T , and each triangle abc in T with f(abc) = f(T), there is an anchor
vertex of abc. Similarly, f has the strong anchor property if all triangles of T
(not just worst triangles) have anchors.

15

Ear

c

b

a

e*

e

Figure 7. The ear triangle cut by e
� can be no worse than abc.

Lemma 5 (Bern et al. [23]). Let f be a function with the weak anchor property.
Then edge insertion �nds a triangulation minimizing f .

Proof Sketch: Assume T does not optimize f , abc is a worst triangle in T , and
abc has anchor vertex a. Let T � denote a triangulation optimizing f ; then some
edge e of T � is incident to a cutting bc. We show that inserting e cannot make T
worse, and hence the edge insertion algorithm cannot get stuck. This follows if the
simple polygons on each side of e can be triangulated with triangles of quality no
worse than f(abc). See Figure 7.

Call one of the simple polygons P . If P has more than three sides, some
edges of T � cut across P . It is not hard to see that an edge e� of T � that is
\maximally far" from e must cut o� a corner of P ; that is, the side of e� away from
e supports a triangle in the union of P and T �. We now reduce P by removing the
ear at that corner (the triangle de�ned by the endpoints of the sides of P incident
to the corner). If this ear is worst in a new (nonoptimal) triangulation, its anchor
cannot be the corner vertex, because there is no edge in triangulation T � cutting
from this vertex through the opposite edge. So its anchor must be one of the two
side vertices. But there is no edge in T cutting from such an anchor through the
opposite edge. Hence the ear triangle is either not a worst triangle or it has quality
no worse than f(T). Continuing the process of removing ears triangulates P .

A successful insertion eliminates the crossed edge of the worst triangle in T
(that is, the weak anchor property implies that the crossed edge need not be in an
optimal triangulation); an unsuccessful insertion eliminates the edge inserted. Thus
there are O(n2) insertions. Retriangulating by repeatedly removing ears at least as
good as the worst triangle, rather than by dynamic programming, gives time O(n)
for each insertion. Thus the total time is O(n3). If the strong anchor property
holds and insertions are performed in a certain order, then all crossed edges|not
just the one in the worst triangle|can be eliminated in a successful insertion; then
the running time can be improved to O(n2 logn) [23, 78].

Theorem 3 (Edelsbrunner et al. [78], Bern et al. [23]). A triangulationmin-
imizing the maximum angle, or maximizing the minimum height, can be computed

16

in timeO(n2 logn). A triangulation minimizing the maximumdistance of a triangle
from its circumcenter can be found in time O(n3).

The minmax angle triangulation has direct relevance to mesh generation
due to the error estimate of Babu�ska and Aziz [5]. The distance from the circum-
center, or \eccentricity", is a measure of obtuseness, with larger triangles weighted
more heavily. In Section 2.5, we show that edge insertion also �nds an interpolating
surface with minimum slope. All of these criteria are mentioned in [220].

2.2.3. Dynamic Programming

We have seen that a number of optimal triangulation problems admit e�cient so-
lutions for PSLGs (including polygons as a special case). We next show that many
more such problems can be solved in polynomial time, for simple polygons only,
using a dynamic programming approach usually attributed to Klincsek [127].

Let f be a quality measure of triangulations of simple polygons, that is a
mapping from triangulations to the real numbers. Let P be a simple polygon. An
arbitrary diagonal fa; bg splits P into two simple polygons, P1 and P2. Let T1 and
T2 be triangulations of P1 and P2, and let T be the triangulation of P that is the
union of T1, T2, and edge fa; bg.

De�nition 4. We say f is decomposable if it meets the following conditions:
(1) there is a \combining" function g such that f(T) = g (f(T1); f(T2); a; b), for
all choices of polygon P , diagonal fa; bg, and triangulations T1 and T2; (2) g is
computable in time O(1) and monotonic in its �rst two arguments; and (3) if T is
a single triangle, then f(T) is computable in time O(1).

In other words, the measure of the entire triangulation can be computed
quickly from the measures of the two pieces, together with the knowledge of how
the pieces are glued together.

Lemma 6. The following are decomposable measures: the minimum (maximum)
angle in the triangulation, the minimum (maximum) circumcircle of a triangle,
the minimum (maximum) length of an edge in the triangulation, the minimum
(maximum) area of a triangle, and the sum of edge lengths in the triangulation.

Con�rming this lemma is straightforward. For example, if f(T) measures
the minimum angle, then g (f1; f2; a; b) is simply minff1; f2g. For the sum of edge
lengths, g(f1; f2; a; b) = f1+f2�jabj. This last criterion is especially important, as
minimizing it for point sets (the well-knownminimum weight triangulation problem)
seems to be very di�cult.

17

An example of a nondecomposable measure is the maximum degree of a
vertex, as the maximum degree in T does not depend only on the maximum de-
grees in T1 and T2, but also on the degrees at a and b. A measure that fails the
monotonicity requirement is the di�erence in areas between the largest and smallest
triangles. (Incidentally, both of these measures can be optimized by slightly more
complicated dynamic programming.)

Theorem 4 (Klincsek [127]). A triangulation of a simple polygon optimizing
any decomposable function can be computed in time O(n3).

Proof: Assume we are trying to minimize f(T). Number the vertices of polygon
P by v1, v2, : : :, vn, in order around the perimeter. If vivj is a diagonal of P , we
denote by P (i; j) the polygon formed by points vi, vi+1, : : :, vj . Let F (i; j) be the
minimum value of f on a triangulation of P (i; j). If vivj is not a diagonal, de�ne
F (i; j) = +1. We would like to compute F (1; n).

Note that in any triangulation of P (i; j), vivj must be a side of a triangle,
say vivjvk, with i < k < j. Using the assumption that f is decomposable, we can
compute the measure of the optimal triangulation of P (i; j) by trying all choices
for k.

F (i; j) = min
i<k<j

g (g(f(vivjvk); F (i; k); vi; vk); F (k; j); vk; vj):

We compute these values in increasing order of i, and for each i in increasing order
of j; then each value of F will be computed before it is needed. This computes the
measure of the triangulation; to compute the triangulation itself we maintain back
pointers for each pair (i; j) to the k that supplied the minimum.

Each computation of the recurrence takes constant time per possible value
of k, or O(n) total. Testing whether a pair (i; j) forms a diagonal also takes O(n)
time. There are O(n2) such computations, for a time bound of O(n3).

In general this is the best time bound known. But the bulk of the work
is done for pairs (i; j) that form a diagonal|the other pairs can be quickly ruled
out. A sharper time bound is \input-sensitive", depending only on the number of
diagonals in the polygon.

De�nition 5. The visibility graph of a polygon P has vertex set consisting of
the vertices of P , and an edge between vertices a and b if a is visible to b in P .

Let E be the number of edges in the visibility graph. The visibility graph
can be computed in time O(n2) by traversing the boundary of the polygon once per
vertex, performing a simple stack algorithm in each traversal [79, 116, 120, 130]. A
more complicated algorithm reduces the time to O(n logn+E) [106].

We can easily improve the dynamic programming algorithm from O(n3) to
O(En), but we can even do a little better. The time bound depends on the number

18

of triangles in the polygon; below we show that few edges imply few triangles, a
fact previously observed by Chiba and Nishizeki [52].

Lemma 7. A graph with E edges has at most O(E3=2) triangles.

Proof: Divide the vertices into two classes: heavy vertices with degree at leastp
E, and light vertices with smaller degree. If b is light we enumerate the triangles

containing b by examining each pair of edges ab, bc, and testing if ac is also an edge.
Each edge belongs to O(

p
E) pairs at its two endpoints, so this produces O(E3=2)

triangles overall. If b is heavy we enumerate triangles containing b by examining all
edges ac, and testing if ab and bc are edges. There are O(

p
E) heavy vertices, so

again the total is O(E3=2) triangles.

Theorem 5. A triangulation of a simple polygon optimizing any decomposable
function can be computed in time O(n2 + E3=2), where E is the number of edges
in the visibility graph.

Proof: Recall that the dynamic programming algorithm tests diagonals (i; j) in
order by i, and then for each i in order by j. When we start a new value of i, we
enumerate the triangles containing vi as in Lemma 7, and store for each j the list
of k's that form triangles vivjvk. When we compute F (i; j), we minimize only over
the k's stored on this list.

It is curious that the worst case of this algorithm occurs when the polygon is
convex (so that the visibility graph contains all possible edges). Typically, convexity
makes optimization problems easier. Examples include geometric matching [147]
and greedy triangulation (see below) [134, 135].

In the matching problem, one must connect the vertices in pairs by diago-
nals, minimizing the total edge length. The resulting graph has no crossings, and in
this sense resembles the minimumweight triangulation. Matching can be solved by
the same dynamic programming techniques as above; however, for convex polygons
this can be improved to O(n logn) [147]. Another problem, construction of optimal
binary trees, is also related to triangulation of convex polygons [205], and again
the O(n3) dynamic program solves this problem. Yao [223] improved this to O(n2)
using the quadrangle inequality, a relation that also holds for diagonal lengths in
a convex polygon. In some cases this can be further improved to O(n logn) [110].
These results suggest that, at least for minimum weight triangulation of convex
polygons, O(n3) is too slow.

Open Problem 1. Can the minimum weight triangulation of a convex polygon
be constructed in time o(n3)?

19

2.2.4. Other Optimal Triangulations

A few authors have considered problems of optimizing combinatorial properties of
triangulations such as their degree [113] or connectivity [61]. Most of the remaining
work on optimal triangulation has used edge length as a quality measure. As men-
tioned above, edge length can be used as a simple measure of triangle size, which
in turn a�ects �nite element approximation error.

Edelsbrunner and Tan [75] considered the triangulation minimizing the
maximum edge length. They showed that this triangulation (like the DT) con-
tains the edges of the minimum spanning tree. Therefore it can be found in time
O(n3), by �rst computing the minimum spanning tree and then triangulating each
remaining polygon using dynamic programming. They reduced this time to O(n2).

The greedy triangulation [92, 135] can be found by adding edges one at a
time, always choosing the shortest edge that is not already crossed. This triangu-
lation lexicographically minimizes the sorted vector of edge lengths. For arbitrary
point sets the greedy triangulation can be computed in time O(n2) by dynamic
maintenance of a CDT [135]. For convex polygons [135] or random point sets [62]
the time bound can be improved to O(n).

Eppstein [80] obtained another min-min triangulation result: the farthest-
point Delaunay triangulation of a convex polygon minimizes the minimum angle.
This triangulation can again be constructed in time O(n) [1]. The farthest-point
DT dualizes the farthest-point Voronoi diagram, a data structure for �nding the
farthest input point from a query point. The farthest-point DT can be de�ned for
arbitrary point sets, but in general it is not a valid triangulation, as it only has
edges connecting vertices on the convex hull.

Perhaps the most longstanding open problem in computational geometry
is the complexity of the minimumweight triangulation (MWT) for arbitrary point
sets [67]. (Recall that the MWT asks for the minimum total edge length.) In-
deed, early authors called this the \optimal triangulation" problem. Garey and
Johnson [92] included MWT in their list of famous problems neither known to be
NP-complete nor known to be solvable in polynomial time. If the MWT problem is
generalized slightly, so that the weight of an edge is an arbitrary function unrelated
to its length, minimumweight triangulation becomes NP-complete [140]. Therefore,
authors have concentrated on approximating the MWT.

Any triangulation achieves total edge length O(n) times the minimum[124].
The DT, once claimed to be the MWT, can be as long as
(n) times the opti-
mum [124, 146]. The same is true of the triangulation computed by edge-
ipping
for minimum length. It remains open how well edge insertion approximates the
MWT, but it does not provide an exact solution. The greedy triangulation can be
as bad as
(

p
n) [133, 146]. For convex polygons, however, the greedy triangulation

is an O(1) approximation [134, 135]. The simple ring heuristic, that repeatedly con-
nects every other vertex, gives a triangulation of length O(logn) times the boundary

20

length of a convex polygon [170].

Lingas [137] suggested the following approach to MWT: start by adding
the edges of the convex hull and the minimum spanning tree, and then compute
the optimal triangulation within each polygonal region. Building on this approach,
Plaisted and Hong [170, 165] gave what is currently the best MWT approximation.
Instead of starting with the minimum spanning tree, they partition the convex
hull into convex polygons. Then the optimal triangulation, greedy triangulation,
or ring heuristic can be used to triangulate these polygons, achieving an O(logn)
approximation. The Plaisted-Hong algorithm has recently been implemented with
a running time of O(n2 logn) [207].

Open Problem 2. Is it possible to �nd the MWT (or an O(1) approximation to
the MWT) of a point set in polynomial time? Or is this problem NP-complete?

2.3. Steiner Triangulation

In this section we discuss triangulations using Steiner points. As shown in Figure 1,
a Steiner triangulation of a point set may add points outside the convex hull of
the input. In a Steiner triangulation of a polygonal region or a PSLG, edges may
be subdivided, but they must be covered , that is, each original edge must be a
union of triangulation edges. Input vertices must be covered by triangle vertices;
the remaining triangle vertices are the Steiner points.

Any two-dimensional input can be triangulated without Steiner points, so
Steiner triangulation only makes sense in the context of some optimality criterion.
We consider the following criteria: maxmin angle, minmax angle, maxmin height,
and minimum total edge length. Finally, we discuss the conforming Delaunay tri-
angulation problem.

We must exercise a little care in formulating Steiner versions of optimal
triangulation problems. For both theoretical and practical reasons, we must concern
ourselves with the number of Steiner points. Without any bound on the number of
Steiner points, there may be no optimal triangulation|for example, the minimum
angle in a triangulation of a point set can be brought arbitrarily close to 60�. And
in practice, the number of Steiner points in a mesh directly a�ects the time to solve
a �nite element computation.

One might specify the desired number of Steiner points, and then �nd the
optimal triangulation with that many points. Alternatively, one might specify the
desired quality measure, and then minimize the number of Steiner points. Either
of these formulations, however, results in seemingly intractable problems.

For these reasons, we turn to approximation algorithms. The algorithms we
describe achieve quality that is within a constant of the best possible, while using
a modest number of Steiner points. In some cases, the algorithms actually use a
number of Steiner points that is within a constant factor of the minimum needed

21

for the quality achieved. Allowing approximate optimality o�ers the additional
bene�t that we can sometimes simultaneously guarantee bounds on several di�erent
measures in the same triangulation.

2.3.1. No Small Angles

The �rst problem we consider is maximizing the minimumangle, solved in the non-
Steiner case by Delaunay triangulation. In the Steiner version of this problem, we
demand no small angles: every angle must be greater than some �xed bound.

The smallest angle of a triangle is related to two other quality measures:
aspect ratio and height. If the smallest angle in a triangle is �, the aspect ratio is
between 1= sin � and 2= sin �.

De�nition 6. The height of a triangle is the minimum distance from a vertex to
a side. The aspect ratio is the ratio of the length of the longest side to the height.

If there is any lower bound on the angles, the complexity of a triangulation
of a polygonal domainmay be nonpolynomial; indeed, inputs of constant complexity
may need an unbounded number of triangles. Consider a rectangle with short
side length one and long side length A. Then any bounded-aspect-ratio triangle
contained in the rectangle has area O(1); hence
(A) triangles are necessary to
triangulate the rectangle with no small angles.

This lower bound holds in a di�erent form for point set input. Consider
a bounded-aspect-ratio Steiner triangulation of the vertices of the same rectangle.
There must be an edge incident to the upper left corner of the rectangle that has
length at most one. Now imagine walking from this corner to the most distant
corner along edges of the triangulation. Each successive edge can be only a constant
multiple longer than the previous edge, and the �rst edge must have length O(1).
Therefore there must be
(logA) edges in the walk.

We now turn to upper bounds, meaning algorithms. Baker, Grosse, and
Ra�erty [12] �rst solved the problem of computing no-small-angle triangulations
of polygonal regions and PSLGs. Their algorithm uses only triangles with angles
between 13� and 90�, thereby also solving the nonobtuse triangulation problem
described in the next section. They place a uniform square mesh over the input,
�ne enough that input vertices are several squares apart in the mesh. Using a
number of special cases, they show how input edges may be incorporated into the
mesh, by retriangulating the squares within a small distance of the edges. They also
provide a similar set of special cases to handle the triangulation near each vertex.

Bern, Eppstein, and Gilbert [25] combined a similar approach to mesh
generation with an innovative optimality analysis. Their algorithms use quadtrees,
which had been used in heuristics since the early 80's [224] and suggested by Baker
et al. [12] as a natural enhancement to their algorithm. Unlike a uniform mesh, a

22

Figure 8. Balanced and unbalanced quadtrees.

quadtree can produce elements of widely varying sizes, resulting in greater accuracy
and e�ciency. For example, in
uid
ow simulations small triangles can be used in
turbulent regions for accuracy, and large triangles in smooth regions for e�ciency.

De�nition 7. A quadtree [86, 187, 188] is a recursive partition of a region of the
plane into axis-aligned squares. One square, the root, covers the entire region. A
square can be divided into four child squares, by splitting it with horizontal and
vertical line segments through its center. The collection of squares then forms a
tree, with smaller squares at lower levels of the tree.

Bern et al. also maintain a balance condition in their quadtrees: the squares
sharing a portion of a side with a minimal (\leaf") square B must be at most twice
the size (side length) of B. Equivalently, each side of a leaf square is subdivided
into at most two parts by neighboring squares. See Figure 8.

For simplicity, �rst assume that the input is just a point set. The triangu-
lation algorithm builds a quadtree covering the set of input points. The quadtree
squares are divided into smaller squares, until each input point is well separated
from the other points: it must be in the center of a �ve by �ve grid of squares, all
the same size, none containing another input point. Next the algorithm warps the
quadtree to conform to the input. Each input point chooses its nearest quadtree
vertex. No vertex can be chosen twice, because of the separation of input points. A
chosen vertex is removed from the quadtree, and its incident edges are reconnected
to the input point.

Finally, the quadtree is triangulated. Because of the balance condition, an
unwarped (hence square) region in the quadtree has at most one subdivision point
per side; it is easy to con�rm that such a region can be triangulated into O(1)
triangles with no angles smaller than arctan(:5) � 26:5�. A warped region is a
quadrilateral, with no subdivisions. Three quadrilateral vertices are corners of a
square, and the fourth must be fairly near a corner. A case analysis proves that
such a quadrilateral can be triangulated with no angles smaller than 20� by adding
a single diagonal. See Figure 9.

Along with this angle bound, Bern et al. prove that the number of Steiner
points is small, using the following lemma.

23

Figure 9. A quadtree triangulation of a point set.

Lemma 8. The number of squares produced by the algorithm above is O(n logA),
where A is the maximumaspect ratio of a triangle in the DT of the input point set.

Proof Sketch: The only nonlinear behavior occurs when a quadtree square B is
split into children, and no input point becomes well separated by this split. In this
case we can �nd a Delaunay triangle t connecting the input points in B to the rest
of the DT, and charge the splits of B and its descendants to t. Since a balanced
quadtree successively doubles square sizes, the number of splits charged to a single
triangle is proportional to the logarithm of its aspect ratio.

Theorem 6 (Bern et al. [25]). The quadtree algorithm above uses O(k) trian-
gles, where k is the minimum number of triangles in a triangulation of the input
with no angle smaller than 20�.

Proof Sketch: Let S be the set of input points along with the Steiner points
used in an optimal triangulation with no angle smaller than 20�. The DT of S has
no angle smaller than 20�, and hence no aspect ratio larger than 6. Then by the
lemma above, the quadtree triangulation of S uses O(k) Steiner points. Adding
Steiner points to the input set only increases the complexity of the quadtree, so the
triangulation of the original point set also has no more than O(k) Steiner points.

This theorem holds no matter what smaller constant replaces 20�, but
the constant hidden in the big-O notation increases as the angle bound decreases.
By strengthening the balance condition in the quadtrees, and replacing quadtree
squares by tiles with projections and indentations (Figure 10), Bern et al. can guar-
antee that all angles measure between 36� and 80�. Perhaps bounds of 51� and 72�

are achievable, but any further improvement would force the triangulation to be
topologically equivalent to a mesh of equilateral triangles, which seems to require a
much larger number of Steiner points.

24

Figure 10. (a) Tiles for all acute triangulation. (b) Example triangulation.

A similar, more complicated, algorithm gives a triangulation of a polygon
with holes with no new angles smaller than arctan(1=3) � 18:4�. (A sharp input
angle cannot be erased.) The complications arise primarily in the warping steps.
See Figure 24 in Section 2.4 for an example. Theorem 6 extends to polygon input,
guaranteeing mesh size within a constant of optimality, only the analog of Lemma 8
necessarily becomes slightly weaker, guaranteeing O(nA) quadtree squares where A
is now the maximum aspect ratio in the CDT.

Though not included in the original paper [25], this quadtree-based algo-
rithm can be further extended to PSLGs. For this extension, an idea due to Mitchell
and Vavasis [157] proves useful: duplicate each quadtree square that contains more
than one face of the domain. Melissaratos and Souvaine [151] combine the algo-
rithms of Baker et al. and Bern et al. to guarantee no obtuse angles as well. Bern,
Eppstein, and Teng [26] consider parallel algorithms for quadtree-based meshes.

The algorithms just described are grid-based algorithms. Chew [50, 51]
found a quite di�erent, circle-based approach to no-small-angle triangulation of
PSLGs. The following de�nition facilitates description of the algorithm.

De�nition 8. The input feature size of a point set is the minimum distance
between input points. The input feature size of a PSLG is the minimum distance
between a vertex and an edge not incident to that vertex. For a polygon or a
polygon with holes, we only consider distances interior to the polygon.

In a version of his algorithm that produces uniform meshes, Chew [50]
assumes that all boundary edges have lengths between s and

p
3s, where s is the

input feature size. This condition can be enforced by subdividing edges. Chew
starts with the constrained Delaunay triangulation of the input, since it maximizes
the minimum angle. Then, while there is a triangle with circumcircle of radius
greater than s, he adds a Steiner point at the center of the circle, and recomputes
the CDT. See Figure 11 for an example.

25

Figure 11. A uniform mesh computed by Chew's algorithm (Chew).

Theorem 7 (Chew [50]). The circle-based algorithm computes a Steiner trian-
gulation in which all angles are between 30� and 120�.

Proof Sketch: No point is ever added closer than s to another point. Hence the
procedure terminates, as only a �nite number of points can �t into the polygonal
region. At the end of this procedure, all Delaunay circles have radius at most s,
and all edge lengths are between s and 2s. No triangle with edge lengths in this
range can be more acute than 30� or more obtuse than 120�, without having a
circumcircle radius larger than s.

Recently, Ruppert [183] built upon Chew's approach to give a remarkably
simple PSLG triangulation algorithm with the theoretical guarantee of Theorem 6.
This algorithm starts|as does the polygon algorithm of Bern et al.|by cutting o�
acute vertices of the input with isosceles triangles, to be patched in after the rest
of the triangulation is complete. Then the domain is triangulated by the following
loop: split an arbitrarily chosen skinny triangle (say one with an angle less than 20�)
by adding its circumcenter c, unless c lies within the diameter circle of a boundary
edge e, in which case split e instead by adding its midpoint. Halt when all new
angles are acceptable.

2.3.2. No Large Angles

Many practitioners have suggested largest angle as an important quality measure
for both mesh generation [17, 104] and surface interpolation [98, 100]. Babu�ska
and Aziz [5] (see also [112]) provide theoretical justi�cation by proving convergence
of the �nite element method as triangle sizes diminish, so long as the maximum
angle is bounded away from 180�; they also give an example in which convergence
fails when angles grow arbitrarily
at. An elementary example in which large angles
spoil convergence is Schwarz's paradox [175]. A bound on the smallest angle implies
a bound on the largest angle, but as we have seen, the elimination of small angles

26

Figure 12. A mesh computed by Ruppert's algorithm (Ruppert).

requires a triangulation with complexity dependent not only on the number of input
vertices n, but also on the geometry of the input. In this section, we allow small
angles and achieve polynomial bounds on the number of triangles in a no-large-angle
triangulation.

If the largest angle in a triangle is 90���, then the smallest must be at least
�=2. Thus the strongest bound on the largest angle, that does not imply a bound
on the smallest angle, is 90�; in other words, the triangulation must be nonobtuse.
Nonobtuse triangulation claims a number of motivations. A nonobtuse mesh guar-
antees some desirable numerical properties related to diagonal dominance [12, 217].
Vavasis [217] recently proved that for problems with physical characteristics that
vary enormously over the domain, a nonobtuse mesh implies faster convergence of
a certain numerical method. A second motivation involves planar duality. Each
(closed) triangle in a triangulation contains its circumcenter exactly when all an-
gles measure at most 90�. The planar dual of such a triangulation can be formed
by simply adding perpendicular bisectors of edges (see [28] for more on construct-
ing planar duals). Practitioners use dual meshes in the \�nite volume" method in
which each mesh vertex has an associated control volume; a perpendicular planar
dual de�nes especially convenient control volumes, simplifying the calculation of

ow or forces across element boundaries. Third, nonobtuse triangulation has appli-
cation to computational learning theory [186]. Fourth, a nonobtuse triangulation
simultaneously guarantees some optimality properties, as shown by the following
lemma.

Lemma 9. Any triangulation in which no triangle is obtuse must be a Delau-
nay triangulation or constrained DT. A nonobtuse triangulation also minimizes the
maximum angle, and maximizes the minimum height.

Proof Sketch: By Lemma 3, if a triangulation is not the CDT then some two

27

Figure 13. A polygon cut for nonobtuse triangulation.

adjacent triangles form a reversed quadrilateral. But no quadrilateral in which both
triangles are nonobtuse can be reversed. Nonobtuse triangulations are unique, up
to the choice of diagonal for points forming a rectangle. Any other triangulation
would have to have an obtuse angle, and so could not minimize the maximum
angle. The maxmin height triangulation is discussed below. An examination of
cases shows that, if the triangle with minimum height is nonobtuse, then in any
other triangulation there is an equal or smaller height triangle involving one of the
same three vertices.

As noted above, Baker et al. [12] give an algorithm for nonobtuse triangu-
lation of polygons. Their algorithm also avoids small angles, and hence must have
complexity that depends on geometry, as well as on n. There are also heuristic al-
gorithms of this type [13, 161]. Is it possible to eliminate dependence on geometry?

Bern and Eppstein [24] devised the �rst polynomially bounded algorithm.
The �rst step dices the polygon into rectangles, with nonrectangular portions left
over at the boundaries. Start by passing a vertical line through each input vertex,
stopping the line at the polyon boundary. Add a Steiner point at all intersec-
tions of input edges and vertical lines. This step divides the polygons into slabs|
quadrilaterals with two vertical sides, possibly having subdivision points on the
vertical sides. Next, draw a horizontal line segment through each vertex (input or
Steiner), extending the line segment to the last possible vertical segment. In other
words, each endpoint of a horizontal segment should lie either on a vertical segment,
or on the vertex inducing the horizontal, and each horizontal segment should be as
long as possible with this property. A polygon divided as above by horizontal and
vertical lines is shown in Figure 13.

At this point, the polygon is divided into O(n2) regions of four types:
(1) rectangles with unsubdivided sides; (2) right triangles with hypotenuse on the
boundary of the polygon and vertical leg possibly subdivided; (3) obtuse triangles
with two sides on the boundary of the polygon, and one leg vertical and possi-
bly subdivided; (4) slabs with two sides on the boundary of the polygon, and two
possibly-subdivided vertical sides, that cannot be simultaneously crossed by a hor-
izontal line. The slabs can be divided by a diagonal into two obtuse triangles. The

28

d d

Do Recursively

Do Recursively

c’ b

e

c

a

c
b

a

Figure 14. Reduction steps for nonobtuse triangulation of an obtuse triangle.

nonobtuse triangulation problem has now been reduced to triangulating right and
obtuse triangles, that have subdivision points on one vertical side, while introducing
new subdivisions only on the triangles' longest sides, which lie along the polygon
boundary.

Lemma 10. A right or obtuse triangle withm subdivision points on its two shorter
sides can be triangulated into O(m2) nonobtuse triangles, without adding any new
Steiner points to its shorter sides.

Proof: The basic strategy is to replace the shorter sides by sides that form sharper
angles with the long side. The region between the old and new sides is triangulated
to reduce the number of subdivision points by one.

We prove the lemma inductively, while also showing that the number of
Steiner points added to the base is at most m + 1. An obtuse triangle without
subdivision points can be triangulated simply by dropping a perpendicular to its
hypotenuse. Obtuse triangles with subdivision points are triangulated in two cases
as shown in Figure 14. In the �rst case, the apex c of the triangle (that is, the
vertex with the obtuse angle) has been \merged" with the �rst subdivision point b
by drawing perpendiculars to cd and ab. In the second case, if the meeting point
c0 does not lie inside acd, we split acd by adding a point e to ad, taking care
that triangle bce is nonobtuse. These reduction steps are due to Chew (personal
communication); the original paper included a couple more cases.

Theorem 8 (Bern and Eppstein [24]). The grid-based algorithm above trian-
gulates an n-vertex polygon (with holes) with O(n2) nonobtuse triangles.

Recently, Bern, Mitchell, and Ruppert [29] improved the bound on nonob-
tuse triangulation to O(n) by inventing a more intricate, circle-based, algorithm.
This algorithm packs the domain with O(n) non-overlapping disks, until each re-
gion not covered has at most four sides (line segments or arcs), as shown on the
left in Figure 15. The �rst disks to be added connect holes to the outer boundary,
so that each uncovered region is simply connected, and each generalized Voronoi
diagram de�ned by proximity to sides of an uncovered region has the topology of

29

Figure 15. Steps in the circle-based nonobtuse triangulation algorithm.

a tree. Later disks are centered at vertices of these generalized Voronoi diagrams,
contacting three sides and breaking uncovered regions into three simpler ones.

The disks themselves do not appear in the triangulation, but rather act as
guides for the placement of Steiner points and edges. After the disk-packing stage,
the algorithm adds edges (radii) between centers of disks and points of tangency,
dividing the domain into small polygons as shown in the middle in Figure 15.

Finally, the algorithm triangulates the small polygons using Steiner points
located only interior to the polygons or on the domain boundary, thereby ensuring
that triangulated small polygons �t together, as shown in the rightmost �gure. The
triangulation step depends critically on two properties of tangent disks: (1) a three-
sided uncovered region induces a triangular polygon, whose inscribed circle passes
through the points of tangency, and (2) a four-sided uncovered region induces a
quadrangular polygon that similarly admits a circle passing through the four tan-
gencies. Figure 16 shows two of the patterns used to triangulate small polygons.
There are also patterns for small polygons bounded by sides of the domain. Certain
misshapen four-sided regions|for example, one in which the \inscribed" circle cen-
ter falls on the wrong side of a chord|present more di�cult cases. Luckily these
can be reduced to the illustrated cases by packing in a few more disks, such as the
second disk along the bottom in Figure 15 (middle).

Theorem 9 (Bern et al. [29]). The circle-based algorithm just sketched trian-
gulates an n-vertex polygon (with holes) with O(n) nonobtuse triangles.

We now turn to nonobtuse triangulation of more complicated domains.
Nonobtuse triangulations of PSLGs have application to mesh generation for multiple
domains, such as a domain composed of more than one material. Bern and Eppstein

30

Four-sidedThree-sided

Figure 16. Triangulating the induced small polygons.

extend the grid-based algorithm described above to solve a special case of this
problem; they show how to compute an O(n4)-complexity nonobtuse re�nement of
a given triangulation of a simple polygon. It is currently unknown how to extend
the circle-based algorithm.

An example due to M.S. Paterson (personal communication) shows that

(n2) is a lower bound for this problem. From any vertex in a nonobtuse triangu-
lation, there must be a downwards edge with slope at least 45� from the horizontal
(unless the vertex lies on the bottom boundary of the domain). In Figure 17 the
vertices on top are su�ciently far apart that their downwards paths remain disjoint
through all
(n) skinny triangles. Notice that this example works for any constant
maximum angle bound smaller than 180�.

Figure 17. An
(n2) example for no-large-angle triangulation.

Apparently, neither the grid- nor circle-based algorithms solves a more dif-
�cult special case: nonobtuse triangulation of both the interior and exterior (up
to the convex hull) of a polygon. This problem arises in computational learning
theory [186]. Due to Lemma 9, a solution to this problem would also solve the
conforming Delaunay triangulation problem described below. The hard part of the
problem is getting \exterior" and \interior" Steiner points to match at the polygon

31

Figure 18. The horn of a subdivision point is the union of all possible \curative" paths.

boundary. There are however nonpolynomial algorithms [12, 151], and an
(n2)
lower bound [186], similar to Paterson's lower bound example.

Open Problem 3. Is there an algorithm for polynomial-complexity nonobtuse
triangulation of both the interior and exterior of a polygon? Of a PSLG?

It is also natural to ask about no-large-angle requirements less stringent
than nonobtuse triangulation. Bern, Dobkin, and Eppstein [22] gave a grid-based
algorithm to triangulate simple polygons using O(n logn) triangles|and polygons
with holes using O(n3=2) triangles|so that all angles measure at most 150�; both
of these results are superceded by the linear nonobtuse triangulation result outlined
above. No-large-angle triangulations, however, are known for some types of input
for which nonobtuse triangulation remains open.

Recently, Mitchell [155] showed how to triangulate any planar straight-line
graph using O(n2 logn) triangles with maximum angle 157:5�. Tan [210] improved
the maximumangle bound to 132� and the complexity to the optimalO(n2). These
two results use a similar global approach. Starting from any triangulation of the
PSLG, Mitchell and Tan split over-large angles by dropping perpendiculars to op-
posite sides. This produces a partition into well-shaped triangles, but one in which
triangles do not meet face to face. To re�ne the partition into a triangulation, they
conceptually extend polygonal paths from each subdivision point to a boundary
point or interior vertex. Whenever a path crosses the edge of a triangle, it may
continue at any legal angle away from the edge. The union of all (the in�nite num-
ber of) possible paths thus sweeps out a cone-shaped region of the PSLG, called a
horn. The horn of a subdivision point grows one triangle at a time, until it �rst
encloses a vertex or boundary point (or, in Mitchell's version, intersects itself or
another horn), and a single path can be chosen. See Figure 18.

In Mitchell's version, two intersecting horns produce a new Steiner point,
so O(logn) successive phases of horn-growing are required to cure all Steiner points.
In Tan's improvement, horns act independently of each other, after a preprocessing
stage in which certain obstacles are set up in the PSLG. The obstacles prevent

32

spiraling, so that each of the O(n) horns propagates through only O(n) triangles.
After growing all the horns, Tan erases the path edges|leaving just the Steiner
points|and shows that each original triangle can now be retriangulated with no
large angles.

2.3.3. Maxmin Height

We now consider maximizing the minimumheight of a triangle. This problem arises
in Mitchell and Vavasis's three-dimensional mesh generation algorithm [157].

As we saw above, a minimum-height triangulation without Steiner points
can be computed using the edge-insertion paradigm [23]. It is not immediately
obvious that Steiner points can improve the height. Consider a regular n-gon,
however, with sides of unit length. Any triangulation without Steiner points must
contain an ear, which has height sin(�=n), but a Steiner point at the center allows
all triangles to have nearly unit height. This example is due to Mitchell (personal
communication).

For point set input, the linear-complexity nonobtuse triangulation algo-
rithm described above already solves the maxmin height problem. Notice that the
minimum distance s between two points, that is, the input feature size de�ned in
Section 2.3.1, gives an upper bound on the minimumheight achievable. The nonob-
tuse triangulation algorithm de�nes quadtree squares of side length
(s), and each
triangle has height proportional to the smallest quadtree square it touches.

For polygons, the input feature size s again gives an upper bound on the
minimum height achievable. The no-small-angle quadtree algorithm produces a
triangulation with minimumheight
(s), but with nonpolynomial complexity. The
nonobtuse triangulation algorithms described above do not help, as both the grid-
and circle-based algorithms can produce triangles with small height.

Theorem 10 (Bern et al. [22]). A polygon with holes can be triangulated into
O(n) triangles of height
(s).

Proof Sketch: We give a very rough sketch. The �rst step starts by cutting o�
acute corners of the polygon with isosceles triangles; these triangles are triangulated
at the very end without adding any new Steiner points. Then the remaining polygon
P is cut with vertical and horizontal lines. Imagine the plane divided into an in�nite
square grid with spacing s=3. Now erase all of the grid, except portions of lines
bounding squares that either contain|or are adjacent to a square that contains|
an input vertex. See Figure 19.

The second step carefully warps some segments of the horizontal and ver-
tical cutting lines to conform to the boundary of P . A case analysis shows that
all resulting faces can be triangulated with height
(s). At this point, there are
O(n) triangles of height
(s) along the boundary of P , and O(n2) rectangles of

33

Figure 19. A polygon cut for maxmin-height triangulation.

height
(s) interior to P . The third step merges interior rectangles into rectilin-
ear polygons to reduce the complexity. Each rectilinear polygon Q will have input
feature size
(s) and satisfy a certain matching condition: a horizontal or vertical
line extended from a vertex of the polygon across the interior �rst intersects Q at
another vertex.

A sweep algorithm now triangulates such a rectilinear polygon with linear
complexity. First draw in all interior vertical line segments between vertices of Q.
Then sweep from left to right, adding Steiner points to vertical segments. The key
idea is to project only every other vertex from the current vertical line onto the next
vertical line. Horizontal edges are added between corresponding points. When the
left-to-right sweep has ended, perform a similar sweep from right to left. After both
sweeps, each newly-created face interior to Q has at most one subdivision point
on each vertical side; such faces can be triangulated into at most four triangles of
height
(s). The total number of Steiner points added in the sweeps is O(n), as it
is the sum of a geometric series.

This result can be combined with a grid-based no-large-angle triangulation
algorithm [22] to triangulate simple polygons with O(n logn) Steiner points, with
maximum angle at most 150� and minimum height
(s).

2.3.4. Minimum Weight

As in maxmin height triangulation, it is not obvious that adding Steiner points can
reduce the total edge length of a triangulation of a point set. But it is not hard to
make examples (say, n�1 points on an arc that bows towards one distant point) to
show that the minimumweight Steiner triangulation (MWST) can have total edge
length
(n) times smaller than the minimumweight triangulation (MWT).

Lingas [137] suggested approximating the MWT of a point set by �rst
choosing all edges from a minimum spanning tree. This partitions the plane into
polygons, that can be triangulated optimally using dynamic programming. Lin-
gas did not consider using Steiner points, and his algorithm does not yield a good

34

approximation to the MWST. Clarkson [53] extended Lingas's approach, and gave
the �rst nontrivial MWST approximation. (It can be shown that any triangulation
approximates the MWST within a factor of O(n).) Clarkson showed that any poly-
gon has a Steiner triangulation with total edge length O(logn) times the polygon's
perimeter. (The same result can be seen from the quadtree triangulation described
below.) Combining this result with Lingas's use of the minimum spanning tree
produces a Steiner triangulation of a point set with length O(logn) times that of
the MWST.

Clarkson's result was improved by Eppstein [81], who gave a constant-factor
approximation to the MWST. Eppstein showed that the quadtree triangulation al-
gorithm of Bern et al. (Section 2.3.1), which was designed for angle bounds, actually
gives such an approximation.

Eppstein �rst proves that, if T is any triangulation of the input point set,
and B is a quadtree-algorithm square with side length `, then there is an edge in T
with length
(`), that has an endpoint within distance O(`) of B. Therefore we can
charge the length of the triangles associated with B to an edge in T . Each edge is
charged at most proportionally to its own length, and hence the quadtree triangula-
tion approximates the MWT. Then, as in the optimality proof of the no-small-angle
quadtree triangulation, Eppstein notes that adding Steiner points only increases the
total length of the quadtree triangulation. So the quadtree triangulation of the in-
put points has length less than the quadtree triangulation of the input along with
an optimal set of Steiner points, which in turn approximates the MWST. This ar-
gument works both for the no-small-angle quadtree triangulation (Section 2.3.1),
and for the linear-size nonobtuse quadtree triangulation (Section 2.3.2).

The same techniques can be used to construct an approximate MWST of
convex polygons. One simply triangulates the vertices, cuts o� the region of the
triangulation outside the polygon, and adds diagonals to retriangulate cut polygons.
This reduction requires convexity; otherwise the length of the point set triangulation
may not approximate the MWST.

Open Problem 4. Is there an e�cient algorithm for approximating the MWST
of an arbitrary nonconvex polygon?

Using his quadtree characterization of the MWST length, Eppstein also
proves some further properties of the MWST of a point set.

� The MWST has total edge length O(logn) times that of the minimum span-
ning tree [53]. For any n, there exist point sets for which the MWST has edge
length
(logn) times the minimum spanning tree length.

� For any n, there exist point sets for which the MWT has total length
(n)
times the MWST length. As noted above, this is tight.

35

� For any n, there exist convex polygons for which the MWT has total length

(logn) times that of the MWST. Again, this is tight, as both lengths are
within O(logn) of the polygon's perimeter.

� Any convex polygon has a Steiner triangulation in which all Steiner points lie
on the polygon boundary, with total length O(1) times that of the MWST.

The last item suggests the question of whether Steiner points in the interior
of a polygon really help. For nonconvex polygons, they do; otherwise the weight
may be
(n= logn) times the MWST length. But for convex polygons this question
remains open. If we can assume that all Steiner points lie on the boundary, then
it seems likely that a dynamic programming algorithm can compute an optimal
MWST.

2.3.5. Conforming Delaunay Triangulations

In this section, the input is a PSLG. We consider the problem of �nding a set of
Steiner points inducing a Delaunay triangulation that is a Steiner triangulation of
the input. In other words, each input edge must be a union of edges in the DT
of the input vertices and the Steiner points. We call this the conforming Delau-

nay triangulation problem. As noted above, this problem is related to nonobtuse
triangulation of the interior and exterior of a polygon. The
(n2) lower bound
for interior-exterior nonobtuse triangulation can be adapted to the conforming DT
problem.

We �rst consider an approach to the conforming DT problem that uses a
number of Steiner points dependent upon the geometry of the input as well as on
n. The algorithm is a modi�cation of one due to Saalfeld [185], also related to
two previous algorithms [32, 190]. Start with a triangulation of the input, and let
� be the minimum height of any triangle. On each edge, add two Steiner points
at distances �=3 from the endpoints. The diameter circles for the two segments of
length �=3 on each edge will be empty, and hence these outer segments are now
edges in the DT. Let � be the minimum distance between any pair of points in the
now augmented PSLG. No interior segment of any edge is within distance � of any
other edge. Hence if we partition these segments into subsegments of length less
than �, each subsegment will have an empty diameter circle, and the result will be
a Delaunay triangulation that covers the input (Figure 20).

Nackman and Srinivasan [164] describe an alternative for polygons with
holes. It is not necessary to subdivide input edges so �nely that each segment
has an empty diameter circle, as in the previous method; in fact any empty circle
through the endpoints of a segment su�ces. Thus Nackman and Srinivasan cover
edges with a set of disks that do not overlap other edges, and place Steiner points
at the intersections of circles and edges, as in Figure 21. The assumption that the

36

Figure 20. Example of Saalfeld's conforming DT algorithm.

input is a polygon implies the existence of a �nite set of suitable disks, and it is
even possible to minimize the number of disks [164]. But this is no guarantee that
the algorithm uses a minimum number of Steiner points|indeed, Nackman and
Srinivasan give an example of constant complexity for which their method requires
a nonconstant number of Steiner points.

Figure 21. Covering each edge by circles not touching any other edges.

In a theoretical breakthrough, Edelsbrunner and Tan [76] gave an algorithm
that uses only a polynomial number of Steiner points, regardless of the input geom-
etry. Their algorithm places Steiner points in two stages, called the \blocking" and
\propagation" phases. The blocking phase computes a set of O(n) non-overlapping
disks whose union is connected and spans the vertices of the input PSLG. A Steiner
point is added wherever a disk crosses an edge or meets another disk, O(n2) Steiner
points total. The propagation phase treats the segments of input edges that are not
yet covered by empty circles. This phase takes any not-yet-covered segment ab and
attempts to add its diameter circle. If the diameter circle encloses another vertex
c visible to ab, the orthogonal projection of c is added to ab, forming two shorter
segments. See Figure 22.

Theorem 11 (Edelsbrunner and Tan [76]). The algorithm just sketched gives
a set of O(n3) points for which (a completion of) the Delaunay triangulation con-
forms to all input edges.

Proof Sketch: Correctness follows from the fact that each segment of an in-
put edge has a circle with empty interior passing through its endpoints. For the
complexity analysis, notice that the propagation phase does not add Steiner points

37

c’

c

b

a

Propagation Trail

Figure 22. Propagation trails cannot spiral to hit the same edge twice.

inside disks, so a line segment connecting two consecutive vertices around the bound-
ary of a disk will appear in the DT. These segments divide the plane into simple
polygons|including the outer face|that propagation \trails" cannot cross. There
are O(n2) trails each of length O(n).

2.4. Heuristically Generated Meshes

In this section we describe two-dimensional mesh generation in practice. We do
not attempt a thorough literature survey, rather we give informal descriptions of
a few mesh generation approaches, chosen to illustrate some of the main ideas in
the �eld. There are already a number of articles that survey and classify the liter-
ature on automatic mesh generation [109, 189, 202, 208, 212, 221], although we are
not aware of a recent survey of two-dimensional mesh generation with an extensive
bibliography. Overall, two-dimensional mesh generation seems fairly mature, and
a number of di�erent approaches give good results. As we mentioned in the intro-
duction, we restrict our discussion to generation of unstructured triangular meshes;
for structured meshes, such as quadrilateral meshes given by conformal mapping
techniques, see [39, 213, 214].

2.4.1. Mesh Improvement Techniques

Before describing heuristic mesh generation methods, we mention some mesh im-

provement techniques, which can be used as post-processing steps after any of the
heuristics.

One very useful technique, dating to the 1960s [222], is called Laplacian

smoothing because its repositioning formula can be derived from a �nite di�erence
approximation of Laplace's equation [105]. In Laplacian smoothing, a vertex v in
the interior of the mesh is moved to the centroid (center of mass) of its neighbors.

38

Figure 23. Moving a vertex to its neighbors' center of mass.

The vertex should not be moved if the centroid lies outside the polygon formed
by its neighbors. This repositioning usually improves the size and shape of the
triangles around v, but it is not guaranteed to do so. A variation weights neighbor
vertices by the areas of their surrounding elements. Laplacian smoothing is applied
successively to each interior node of the mesh, for several (four or �ve) rounds. See
Figure 23.

A second technique, called mesh relaxation by Frey and Field [90],
ips
edges to regularize degrees. Removing high- and low-degree vertices makes subse-
quent Laplacian smoothing more e�ective. A quadrilateral diagonal is
ipped if the
sum of its endpoints' degrees exceeds the opposing diagonal's sum by more than
two.

We may also view the
ip algorithm for producing a constrained Delau-
nay triangulation (Section 2.2.1) as a mesh improvement technique. Notice that
Delaunay
ipping and mesh relaxation may disagree.

Finally, the problem of re�ning a given mesh occurs quite often in practice,
for example when an initial �nite element computation reveals a region that requires
greater resolution. Re�nement and its reverse|\dere�nement" or coarsening|
assume even greater importance when the solution varies with time, and small
features move across the domain [121]. Bank [13, 14] re�nes by splitting selected
triangles into four similar copies of themselves, and then splitting neighboring tri-
angles into two triangles to correct subdivision points. This algorithm works well
enough in practice{and is especially easy to dere�ne|but obliviously splitting a
triangle and its descendants a number of times may make a neighboring triangle
unacceptably sharp. Smoothing can �x sharp angles, but the resulting mesh will
not then be a strict re�nement of the original mesh.

Addressing this
aw, Rivara [179, 180] proposed the following recursive
algorithm: bisect a triangle in need of re�nement by adding a diagonal from the
opposite vertex to the midpoint of the longest edge, then re�ne its neighbor the
same way. Bisections may propagate for some way across the triangulation, but
this algorithm|now called Rivara re�nement|always terminates, since each bi-
section splits a longer edge. Based on a theorem of Rosenberg and Stenger [182],

39

Figure 24. A mesh derived from a quadtree (S. Mitchell).

Rivara showed that arbitrary repetition of this algorithm never produces an an-
gle smaller than half the minimum original angle. In practice Rivara re�nement
typically improves angles.

2.4.2. Quadtrees

Long before the theoretically good mesh generation methods described in the last
section [25], quadtrees had been used in heuristic methods. Yerry and Shep-
hard [224] construct a quadtree representation of a polygonal or curved domain
by recursively splitting squares intersected by the boundary of the domain, until
squares reach some minimum size bound. Splits may also result from an upper
bound on size (that may vary over the domain) or from a balance condition: no
quadtree square is adjacent to one more than twice its size. After the quadtree is
constructed, each square containing a portion of the boundary is replaced with a
shape chosen from a �xed set of patterns. Triangulating each face then yields a
mesh that approximates the domain.

A more advanced version of the algorithm uses warping and trimmingmeth-
ods to produce a mesh that does not change the shape of the input [7]. The theoret-
ical paper by Bern et al. [25], contributed warping rules guaranteed not to produce
small angles, as well as an analysis of the number of triangles in the mesh. Fig-
ure 24 shows an example mesh computed by Mitchell [157], using a modi�cation
of the algorithm in [25]. This example demonstrates careful selection of quadtree
square sizes around holes and \almost holes".

Quadtrees are the most convenient way to produce graded meshes, that
is, meshes with small elements near complicated parts of the boundary that grade
up to larger elements elsewhere. Another advantage is that the quadtree itself

40

..

.

.

.

............
.
..
.
............

............
...
....
...
....
...
....
...
...........

.............
.
..
.
..
..
....
......
.......
..
.....
..
..
...
..
..
...
.
..
.
..
.
..
..
........
...
...
...
..
.....
....
.....
...
.
..
.
..
.
..
.
.....
........

......
..
.
..
.
...
....
...
....
..
.
..
..
..
.........
..
..
...
..
..
..
..
...
..
..............

................
..............

...
...
...
...
...
...
...
...
...
......
......
.....
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
.......
..........

...............
.....
.....
.....
....
..
..
..
...
..
..
..
...
..
..
...
...
.
..
..
..
..
...
.....
....
....
......
.
..
..
.
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
....
..
..
..
..
..
..
..
..
..
..
....
...
..
...
...
..
...
...
...
....
...
...
...
....
...
......................................

.

..

.

................
...............

.

.

..

..

.

.....................
......

...........
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
.
..
.
..
..
.
..
.
...
.
..
.
.
..
.
.
..
.
..
.
.
..
.......
.
..
..
.
...
..
..
..
.
..
..
..
..
..
.
...
.
..
..
..
....
...
...
..
.....
....
...
....
...
...
..
..
.
..
..
...
..
..
..
.
..
..
..
.
....
.....
...

..

.

.

..

.

.

...

.

..

..

..
.
..
...
..
.
..
..
..
.
..
....
....
...
...
.
.
......................................

......
........
...
..
..
......
..
.
..........
.
.
..
.
..
...........
...
........
.
.
........
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
.......
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
......
......
......
......
......
..

..
...
...
..
...
..
...
..
...
..
.....
.......
...............

.....
..........
...
...
..
..
...
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.....
..
.
...
..
..
............................

.....
....
....
.....
.....
...
.
..
.
..
.....
.......
..
...
.
..
......
..
.
.
...
..
.
..
..
..
.
.
...
.
..
.
..
.
..
.
..
.
..
..
..
.
..
...
.
.
..
..
.
..
.
..
...
..
.
.
.
.
......
..
.
.
.
.
...
.
..
.
.
..
.
..
.
.....
...
.............

.

..

.

..

..

.

...
..
..
.
..
..
..........

............
..
..
..
....
..
..
.
..
..
....
.......

...
...
..
...
.
..
..
.
..
..
.
...
.
..
.
..
.
..
.
..
..
..
.
..
..
..
.
..
..
.
..
...
.
..
.
..
..
..
.
..
..
......

...

.

..

.

..

...
..
...
..
..
..
...
...
...
..
...
..
...
..
..
.
..
..
..
.
..
...
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
...
.
..
..
.
...
..
..
..
..
..
..
...
.
..
.
..

...
..
..
..
...
..
..
...
..
.
..
.
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
...
..
..
..
.
..
..
..
.
..
..
..
..
.
...
.
..
..
.
...........................

.

..

.

.

.

..

.

.....
.....

.....
.......

....
..........

..
...
..
.
.
.
..
.......

..

..
...........................

..
...
..
...
..
..
..
....
...
...
...
....
...
...
...
....
....
...
...
....
.....
......

.......
..
..
..
..
..
..
..
.
..
....
.....
............

....
..
..
....
.
..
.
..
..
.
.
..
.
.
..
.
..
.
.
..
.
.
.................

.

..

.

.

..

.

..

.

..

.

.

..

...

...
...
...
...
...
...
..
...
...
.
..
.
...
....
....
....
............

..

..

.

..

.............
..
..
...
..
.
..
.
...
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
...
.
.
..
.
..
.
..
..
.
..
...
..
..
..
....
......

......
..
..
..
.
..
..
..
..
..
.
...
.
..
.
..
.
..
.
..............

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.......................
..
.
..
..
.
.........
..
.
..
.
..
.
.
..
...
..
.
..
.
..
.
..
..
.
.
..
...
..

....
.....
...
..
.
..
.
.
..
.
..
.
..
.
.
...
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..

..........
...........

...........
...........

...........
...........

.....
.....
.....
.....
.....
.........

...........
...........

...........
..

...
....
...
.

..
...
.
.
.
..
...
..
..
..
...
..
..
...
..
.
..
.....
..
................

.

.

...
........

..

...
..
..
..

..
..
..
....
...
...
...
..
..
....
....
.
..
.
..........

......
..
.
.
..
..
.
..
..
.
.........
.
..
..
.
.
...
..

.

.

..

.

..

...
..
..
..
...
..
...
...
..
...
..
...
...
...
..
...
..
..
......
......
...
..
...
..
..
..
...
..
...
...
...
...
...
...
...
.......
..
...................

..

.

.

...
..
...

...
..
..
..

.

.

.

.

..

.

.

..

.

...
...
..
...
..............................

.......
...
....
...
............

...
.............

....
.............

..

.

..

.

...

.

..

.

.......
..
.
.
..
.
..

....
.....

...

.

..

.

...
...
..
..
....
......
.....
.......................

..

..............................

..

.

.

.

............
.
..
.
............

............
...
....
...
....
...
....
...
...........

.............
.
..
.
..
..
....
......
.......
..
.....
..
..
...
..
..
...
.
..
.
..
.
..
..
........
...
...
...
..
.....
....
.....
...
.
..
.
..
.
..
.
.....
........

......
..
.
..
.
...
....
...
....
..
.
..
..
..
.........
..
..
...
..
..
..
..
...
..
..............

................
..............

...
...
...
...
...
...
...
...
...
......
......
.....
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
.......
..........

...............
.....
.....
.....
....
..
..
..
...
..
..
..
...
..
..
...
...
.
..
..
..
..
...
.....
....
....
......
.
..
..
.
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
....
..
..
..
..
..
..
..
..
..
..
....
...
..
...
...
..
...
...
...
....
...
...
...
....
...
......................................

.

..

.

................
...............

.

.

..

..

.

.....................
......
...........

..

...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
.
..
.
..
..
.
..
.
...
.
..
.
.
..
.
.
..
.
..
.
.
..
.......
.
..
..
.
...
..
..
..
.
..
..
..
..
..
.
...
.
..
..
..
....
...
...
..
.....
....
...
....
...
...
..
..
.
..
..
...
..
..
..
.
..
..
..
.
....
.....
...

..

.

.

..

.

.

...

.

..

..

..

.

..

...

..

.

..

..

..

.

..

....
....
...
...
.
.
......................................

......
........
...
..
..
......
..
.
..........
.
.
..
.
..
...........
...
........
.
.
........
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
.......
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
......
......
......
......
......
..

..
...
...
..
...
..
...
..
...
..
.....
.......
...............

.....
..........
...
...
..
..
...
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.....
..
.
...
..
..
............................

.....
....
....
.....
.....
...
.
..
.
..
.....
.......
..
...
.
..
......
..
.
.
...
..
.
..
..
..
.
.
...
.
..
.
..
.
..
.
..
.
..
..
..
.
..
...
.
.
..
..
.
..
.
..
...
..
.
.
.
.
......
..
.
.
.
.
...
.
..
.
.
..
.
..
.
.....
...
.............
.
..
.
..
..
.
...
..
..
.
..
..
..........

............
..
..
..
....
..
..
.
..
..
....
.......

...
...
..
...
.
..
..
.
..
..
.
...
.
..
.
..
.
..
.
..
..
..
.
..
..
..
.
..
..
.
..
...
.
..
.
..
..
..
.
..
..
......

...

.

..

.

..

...
..
...
..
..
..
...
...
...
..
...
..
...
..
..
.
..
..
..
.
..
...
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
...
.
..
..
.
...
..
..
..
..
..
..
...
.
..
.
..

...
..
..
..
...
..
..
...
..
.
..
.
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
...
..
..
..
.
..
..
..
.
..
..
..
..
.
...
.
..
..
.
...........................

.

..

.

.

.

..

.

.....
.....
.....
.......
....
..........

..
...
..
.
.
.
..
.......
..
..
...........................

..
...
..
...
..
..
..
....
...
...
...
....
...
...
...
....
....
...
...
....
.....
......

.......
..
..
..
..
..
..
..
.
..
....
.....
............

....
..
..
....
.
..
.
..
..
.
.
..
.
.
..
.
..
.
.
..
.
.
.................

.

..

.

.

..

.

..

.

..

.

.

..

...

...
...
...
...
...
...
..
...
...
.
..
.
...
....
....
....
............

..

..

.

..

.............
..
..
...
..
.
..
.
...
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
...
.
.
..
.
..
.
..
..
.
..
...
..
..
..
....
......

......
..
..
..
.
..
..
..
..
..
.
...
.
..
.
..
.
..
.
..............

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.......................
..
.
..
..
.
.........
..
.
..
.
..
.
.
..
...
..
.
..
.
..
.
..
..
.
.
..
...
..

....
.....
...
..
.
..
.
.
..
.
..
.
..
.
.
...
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..

..........
...........

...........
...........

...........
...........

.....
.....
.....
.....
.....
.........

...........
...........

...........
..

...
....
...
.

..
...
.
.
.
..
...
..
..
..
...
..
..
...
..
.
..
.....
..
................

.

.

...
........

..

...
..
..
..

..

..

..

....
...
...
...
..
..
....
....
.
..
.
..........

......
..
.
.
..
..
.
..
..
.
.........
.
..
..
.
.
...
..

.

.

..

.

..

...

..
..
..
...
..
...
...
..
...
..
...
...
...
..
...
..
..
......
......
...
..
...
..
..
..
...
..
...
...
...
...
...
...
...
.......
..
...................

..

.

.

...
..
...

...
..
..
..

.

.

.

.

..

.

.

..

.

...
...
..
...
..............................

.......
...
....
...
............

...
.............

....
.............

..

.

..

.

...

.

..

.

.......
..
.
.
..
.
..

....
.....

...

.

..

.

...
...
..
..
....
......
.....
.......................

..

..............................

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

.

..

..

.

..

..

.

.

.

.

.

.

..

..

..

..

..

..

.

..

..

.

..

.

.

.....
......
.....
......
.....
.....
......
.....
.....
......
.....
.

.

...
...
..

..

..

..

...
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
.

..

..

..

..

..

..

..

..

...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..

..
..
..
..
..
...
..
..
..
..
..
.

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

..

..

.

..

.

..

.

..
.
..
.
..
..
..
.
..
.
.

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

.

..

..

.

........

...
...
..
...
..
..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

.

..

..

..

.

..

.

..

.

..

.

..
..
..
.
..
.
..
.
..
.
..
.
..
..
..
.
..
.
..
.
..
.
..
..
.

...
......
..

.

..

.

.

..

..

..

.

..

..

.

..

.

..

.

..

.

.

..

.

..

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
..
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
.

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

....
....
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
....
....

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

.

....
.....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
....

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..................

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..
...
..
.

....
...
...
....
...
...
...

..
. .

..

..

.

..

..

..
..
..
..
.
..
..
.
..
..
.
..
..
..
..
..
.
..
..
.

..

.

..

..

.

..

..

..

.

..

...
...
...
....
...
....
...
...
...
....
...
...
...
.

.

..

.

.

.

..

.

.

.

..

.

..

..

..

..

.

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

....
.........
...

..
..
...
..
...
..
..
...
..
...
..
..
...
..
..

.

..

..

..

..

.

..
..
..
..
.
.

.

.

..

.

.

.

.

..
..
..
.
...
...

..............
................

...............

..

..

..
..
..
..
..
..
..
.

..

.

.

.

..

.

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

..

.

.

.......
............

............
.......

................................
........

.................................

....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
.

.

......
......
.....
......
......
......
......
.

..

..

..

...
..
...
..
...
..
...
..
..
...
..
...

.

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

.

..

........
..............

.............
..............

.............
..............

..............
.............

..............
.............

..............
.............

..

.

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

.

.......
..........

...

..

..

..

..

.

..

..

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

.

.....
....

....................

.

..

..

..

..

..

..

.

..

..

..

..

..

...
...
...
...
..

.

.

..

..

.
....
.

..

.......
..

......
.
.............

......................................
.
....
....
....

........
...

............

..............

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

.............................. .

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.

............

.

..

...
..
..
...
..
...
..
...
..
...
..
...
.

...

.

.

.

..

.

.
.................

.
.

...
..
..
...

.

..

.

.

..

..

..

..

..

..

..

..

.

..

..

..

.....
.

..
..
..
..
..
..
..
..
...
..
..
..

.

..

..

..

...

..

..

..

..

..

...
..
..
..
..
..
...
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..

.

.

..

..

.

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

...
...
....
..

....
....
.....
....
....
....
....
....
....
....
....
...

.

..

.

..

.

..

.

.

..

.

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

....

........
.......................

...............

.

..

..

.

.

.

..

..

.

..

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

.......
..............

..
...

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..
..
..
..
.
..

.

...
...
..

..

.

.

.

..

.

..

..

.

..

..

..

.

..

.

..

.............................

..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
.

.

..

.

..

.

.

..

.

..

.

..

.

..

..

.

..

..

..
..
..
..
..
..
..
..
..

..

..
..
.
..
..
.

.

.

..

.

..

..

.

..

.

.

.

............
.
..
.
............

............
...
....
...
....
...
....
...
...........

.............
.
..
.
..
..
....
......
.......
..
.....
..
..
...
..
..
...
.
..
.
..
.
..
..
........
...
...
...
..
.....
....
.....
...
.
..
.
..
.
..
.
.....
........

......
..
.
..
.
...
....
...
....
..
.
..
..
..
.........
..
..
...
..
..
..
..
...
..
..............

................
..............

...
...
...
...
...
...
...
...
...
......
......
.....
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
.......
..........

...............
.....
.....
.....
....
..
..
..
...
..
..
..
...
..
..
...
...
.
..
..
..
..
...
.....
....
....
......
.
..
..
.
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
....
..
..
..
..
..
..
..
..
..
..
....
...
..
...
...
..
...
...
...
....
...
...
...
....
...
......................................

.

..

.

................
...............

.

.

..

..

.

.....................
......
...........

..

...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
.
..
.
..
..
.
..
.
...
.
..
.
.
..
.
.
..
.
..
.
.
..
.......
.
..
..
.
...
..
..
..
.
..
..
..
..
..
.
...
.
..
..
..
....
...
...
..
.....
....
...
....
...
...
..
..
.
..
..
...
..
..
..
.
..
..
..
.
....
.....
...

..

.

.

..

.

.

...

.

..

..

..

.

..

...

..

.

..

..

..

.

..

....
....
...
...
.
.
......................................

......
........
...
..
..
......
..
.
..........
.
.
..
.
..
...........
...
........
.
.
........
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
.......
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
......
......
......
......
......
..

..
...
...
..
...
..
...
..
...
..
.....
.......
...............

.....
..........
...
...
..
..
...
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.....
..
.
...
..
..
............................

.....
....
....
.....
.....
...
.
..
.
..
.....
.......
..
...
.
..
......
..
.
.
...
..
.
..
..
..
.
.
...
.
..
.
..
.
..
.
..
.
..
..
..
.
..
...
.
.
..
..
.
..
.
..
...
..
.
.
.
.
......
..
.
.
.
.
...
.
..
.
.
..
.
..
.
.....
...
.............
.
..
.
..
..
.
...
..
..
.
..
..
..........

............
..
..
..
....
..
..
.
..
..
....
.......

...
...
..
...
.
..
..
.
..
..
.
...
.
..
.
..
.
..
.
..
..
..
.
..
..
..
.
..
..
.
..
...
.
..
.
..
..
..
.
..
..
......

...

.

..

.

..

...
..
...
..
..
..
...
...
...
..
...
..
...
..
..
.
..
..
..
.
..
...
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
...
.
..
..
.
...
..
..
..
..
..
..
...
.
..
.
..

...
..
..
..
...
..
..
...
..
.
..
.
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
...
..
..
..
.
..
..
..
.
..
..
..
..
.
...
.
..
..
.
...........................

.

..

.

.

.

..

.

.....
.....
.....
.......
....
..........

..
...
..
.
.
.
..
.......
..
..
...........................

..
...
..
...
..
..
..
....
...
...
...
....
...
...
...
....
....
...
...
....
.....
......

.......
..
..
..
..
..
..
..
.
..
....
.....
............

....
..
..
....
.
..
.
..
..
.
.
..
.
.
..
.
..
.
.
..
.
.
.................

.

..

.

.

..

.

..

.

..

.

.

..

...

...
...
...
...
...
...
..
...
...
.
..
.
...
....
....
....
............

..

..

.

..

.............
..
..
...
..
.
..
.
...
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
...
.
.
..
.
..
.
..
..
.
..
...
..
..
..
....
......

......
..
..
..
.
..
..
..
..
..
.
...
.
..
.
..
.
..
.
..............

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.......................
..
.
..
..
.
.........
..
.
..
.
..
.
.
..
...
..
.
..
.
..
.
..
..
.
.
..
...
..

....
.....
...
..
.
..
.
.
..
.
..
.
..
.
.
...
..
.
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..

..........
...........

...........
...........

...........
...........

.....
.....
.....
.....
.....
.........

...........
...........

...........
..

...
....
...
.

..
...
.
.
.
..
...
..
..
..
...
..
..
...
..
.
..
.....
..
................

.

.

...
........

..

...
..
..
..

..

..

..

....
...
...
...
..
..
....
....
.
..
.
..........

......
..
.
.
..
..
.
..
..
.
.........
.
..
..
.
.
...
..

.

.

..

.

..

...

..
..
..
...
..
...
...
..
...
..
...
...
...
..
...
..
..
......
......
...
..
...
..
..
..
...
..
...
...
...
...
...
...
...
.......
..
...................

..

.

.

...
..
...

...
..
..
..

.

.

.

.

..

.

.

..

.

...
...
..
...
..............................

.......
...
....
...
............

...
.............

....
.............

..

.

..

.

...

.

..

.

.......
..
.
.
..
.
..

....
.....

...

.

..

.

...
...
..
..
....
......
.....
.......................

..

..............................

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

.

..

..

.

..

..

.

.

.

.

.

.

..

..

..

..

..

..

.

..

..

.

..

.

.

.....
......
.....
......
.....
.....
......
.....
.....
......
.....
.

.

...
...
..

..

..

..

...
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
.

..

..

..

..

..

..

..

..

...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..

..
..
..
..
..
...
..
..
..
..
..
.

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

..

..

.

..

.

..

.

..
.
..
.
..
..
..
.
..
.
.

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

.

..

..

.

........

...
...
..
...
..
..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

.

..

..

..

.

..

.

..

.

..

.

..
..
..
.
..
.
..
.
..
.
..
.
..
..
..
.
..
.
..
.
..
.
..
..
.

...
......
..

.

..

.

.

..

..

..

.

..

..

.

..

.

..

.

..

.

.

..

.

..

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
..
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
.

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

....
....
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
....
....

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

.

....
.....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
....

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..................

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..
...
..
.

....
...
...
....
...
...
...

..
. .

..

..

.

..

..

..
..
..
..
.
..
..
.
..
..
.
..
..
..
..
..
.
..
..
.

..

.

..

..

.

..

..

..

.

..

...
...
...
....
...
....
...
...
...
....
...
...
...
.

.

..

.

.

.

..

.

.

.

..

.

..

..

..

..

.

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

....
.........
...

..
..
...
..
...
..
..
...
..
...
..
..
...
..
..

.

..

..

..

..

.

..
..
..
..
.
.

.

.

..

.

.

.

.

..
..
..
.
...
...

..............
................

...............

..

..

..
..
..
..
..
..
..
.

..

.

.

.

..

.

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

..

.

.

.......
............

............
.......

................................
........

.................................

....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
.

.

......
......
.....
......
......
......
......
.

..

..

..

...
..
...
..
...
..
...
..
..
...
..
...

.

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

.

..

........
..............

.............
..............

.............
..............

..............
.............

..............
.............

..............
.............

..

.

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

.

.......
..........

...

..

..

..

..

.

..

..

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

.

.....
....

....................

.

..

..

..

..

..

..

.

..

..

..

..

..

...
...
...
...
..

.

.

..

..

.
....
.

..

.......
..

......
.
.............

......................................
.
....
....
....

........
...

............

..............

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

.............................. .

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.

............

.

..

...
..
..
...
..
...
..
...
..
...
..
...
.

...

.

.

.

..

.

.
.................

.
.

...
..
..
...

.

..

.

.

..

..

..

..

..

..

..

..

.

..

..

..

.....
.

..
..
..
..
..
..
..
..
...
..
..
..

.

..

..

..

...

..

..

..

..

..

...
..
..
..
..
..
...
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..

.

.

..

..

.

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

...
...
....
..

....
....
.....
....
....
....
....
....
....
....
....
...

.

..

.

..

.

..

.

.

..

.

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

....

........
.......................

...............

.

..

..

.

.

.

..

..

.

..

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

.......
..............

..
...

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..
..
..
..
.
..

.

...
...
..

..

.

.

.

..

.

..

..

.

..

..

..

.

..

.

..

.............................

..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
.

.

..

.

..

.

.

..

.

..

.

..

.

..

..

.

..

..

..
..
..
..
..
..
..
..
..

..

..
..
.
..
..
.

.

.

..

.

..

..

.

....
.

............

...
..
...
...
...
...
...
...
..
.

.................................

................................

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

..

.

..

.

...
..
..
...
..
...
..
...
..
..
...
..
...
..
...
..
.

..
...
..
...
..
...
..
...
..
...
..
...
..
..
...
..

....................................

.....
.........
........
........
.........
.

.

..

.

.

..

.

..

.

..

.

.

.

..

........................

..

..
..
..
.
..
..
..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

...
...
..
.

..

.

..

.

.

..

.

..

.

..

..........
.
.
..
.
.
.
.
.

....
.....
....
.....
....
....
.....
....
.....
....
.....
....
....
.....
....
.....
..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..........................

.......................................

...................

.................

...
......

......
.....

..

..

...

..

...
..
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
..
...
..
.

..
.
..
..
.
..
..
..
..
.
..

..

.....
....
.....
.....
....
.....
.....
....
.....
.....
....
.....
.....
....
.....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....

.

..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
.

..

...
...
...
...
..
...
...
...
...
...
..
...
.

..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.

..

.

..

.

.

..

.

..

.

.

.

.

..

..

..

..

.

..

..

..

..

.

..

.

..

.

..

..

..
.
..
..
..
.
..
..
..

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..
.

..
...
...
...
...
...
..
...
..

...
....
.....
....
....
....
....
.....
....
.

...
.........

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

..

..

.

..

..........
.............

..........

.......................

.............................

.

...
...
...
..
...
...
...
..

.....
......

.....
......

.....
......

......
.....
......

.....
..

...
..
...
...
..
...
...
..
...
..
...
...
..
...
...
..
...
..
.

...

.

..

.

..

.

..

..

.

.

.............
...

.............................

..
..
.
..
..
..
.

.

..

.

..

.

.

..
..
..
..
..

.....................

............

....
.....
......
.....
....

.

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.........
..........

........

.............................

..

..

..

..

..

..

.

..

..

..

..

..

..

..

...
....
...
....
....
...
....
.

...
...
...
...
...
...
...
.

.

..
..
..
..
..
..

..

..

..

..

..

..

..

.

..............

.

.

..

..

.

..

..

..

..

..

..

.

..

..
..
..
..
..
..
.
..
..
..
..
..
..
.
.

..

....
...
....
...
...
....
...
....
.

.......................

....
....
...
.

..

..

..

.

..

..

..

.

..

.

..
..
..
.
..
.
..
..
..
.
..
.
..
..
..
.
..
.
..
..
..
.
..
.
..
..
..
.
..

.

..

.

..

..

..

..

.

..

..

..

.

..

..

..

.

..

..

.

.

..

..

.

..

..

..

..

.

..

..

.......
........

.......
........

.......
.

..............
................

....
......
......
......
.

..

..
..
..
..
..
..
..
..
..
..
.
..
..
..
.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.............
...............

.........

.....................................

....
....
....
....
....
....
....
....
....
....
....

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.......................

.

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

.

.

...

..

..

.

..

..

.

..

..

.

..

..

..

.

..

.

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

..............

.................

...

.....
........
........
........
.........
........
........
........
........
........
........
........
........
.

...
..
...
..
..
...
..
...
..
..

..
..
..
..
..
..
..
.
..

.

.....
.

...........

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

..
....
...
....
....
...
....
...
....
...
....
....
...
....
...
....
....
...
....
...
....
..

....
......
......
......
....

...
...
....
....
....
....
....
....
....
...
....
..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.......
.........
.........
.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

..
..
..
.
..
..
..
..
.
..
..
.
..
..
.
..
..
.
..
.

..

.

.

..

.

..

.

..

.

.

...
...
...
...
..
...
...
...
..
...
...
.

..

.......
......

...

............................

..............................

.

..

.

.

..

.

..

.

.

..........................

...

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

..

.

..

..

..

.

..

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.....
...
....
....
....
....
.

Figure 25. Lake Superior (Joe) (a) input, (b) decomposition, (c) re�nement, (d) mesh.

may be computed entirely in integer arithemetic, so that
oating-point operations
are carried out only within small squares containing simple parts of the domain
boundary.

Quadtree methods, however, have been criticized for occasionally producing
poorly-shaped boundary elements, and for introducing arti�cial preferred directions
(namely parallel to the x- or y-axes) [208]. The problem of poorly-shaped elements
can be solved by the warping methods of Bern et al. [25]. The second problem
may be more inherent, although non-square quadtree tiles, as used in [25, 158],
or some sort of randomization procedure, coupled with Laplacian smoothing, may
su�ciently break up the directionality.

2.4.3. Polygon Decomposition

The polygon decomposition approach also initially divides the domain (most gener-
ally a PSLG) into simple regions. This approach, however, attempts to �nd intrinsic
dividing lines, rather than dividing lines from a rectilinear grid.

Joe and Simpson [119, 114] �rst divide the domain into convex polygons
by cutting along lines extending from re
ex vertices (that is, vertices at which the
interior angle measures more than 180�). The resulting convex polygons are further
subdivided into convex polygons with boundary edge lengths that do not vary too
much. Cutting lines are chosen heuristically, attempting to avoid small angles.
Finally each convex polygon is triangulated using triangles of approximately equal
size, taking care to match Steiner points at the cutting lines. See Figure 25.

41

Figure 26. The steps in meshing a multiple domain (Srinivasan et al.).

In Joe and Simpson's method, two input parameters control the mesh: a
target number of triangles (typically exceeded by a small amount), and a \smooth-
ing parameter" that controls the allowable variation in size between two neighboring
polygons. These parameters are combined with something dependent on local fea-

ture size to yield a \mesh distribution function", that gives a target triangle size at
each point within the domain.

The concept of local feature size recurs in mostmesh generation approaches.
We may de�ne the local feature size at point a to be the size of the quadtree box
that contains a, as produced by the polygon version of the algorithm of Bern et
al. [25], described in Section 2.3.2. This sets the local feature size at a vertex v
of the polygonal boundary P to be proportional to the minimum distance (within
the domain) to an edge of P not incident to v. Local feature size then varies
fairly smoothly between vertices. Most of the mesh generators described in this
section de�ne their own versions of local feature size, but the de�nition just given
is su�cient for understanding. Many of the mesh generators also allow the user to
control the local feature size in some way, perhaps through input parameters. This
extra control is important in applications in which the solution to the �nite element
computation is expected to show features smaller than the features of the domain.

42

Figure 27. A Delaunay triangulation of points placed in layers (Barth and Jespersen).

Srinivasan et al. [208] recently developed an interesting polygon decompo-
sition mesh generator, using the symmetric axis transform. The symmetric axis is
the set of all centers of disks contained in P that contact P at two or more points;
it consists of straight lines and parabolic arcs.

Figure 26 shows the operation of this mesh generator on a multiple domain.
The input is shown in (a), with di�erent materials shown by di�erent shades. The
�rst step computes the Voronoi diagram of the edges and vertices of the domain;
this contains each face's symmetric axis. Parabolic arcs in each symmetric axis are
then replaced by one or two straight edges (chords of the arc), as shown in (b).
Each vertex on a symmetric axis is then joined to two or more points on the do-
main boundary by the touching radii of the disk centered at the vertex, resulting
in a PSLG in which each face is a triangle or trapezoid, as shown in (c). A \sliver
processing" step then removes or breaks up faces with bad aspect ratio (see (d)).
Boundary edges and touching radii are then used to extract local feature size values.
These values induce a node spacing at each vertex in the PSLG, and interpolation
then gives a node spacing function over the entire domain. The node spacing func-
tion guides an iterative process that adds and deletes more Steiner points. Final
triangulation is accomplished by the constrained Delaunay triangulation (shown in
(e) and in a zoom in (f)).

2.4.4. Advancing Front

The advancing front approach to mesh generation [136, 141] is especially well-suited
to
uid dynamics problems. In this approach, the domain's boundary P is �rst
subdivided appropriately, and then Steiner points are placed in successive layers
around each connected component of P . This yields triangles oriented with the
ow
�eld. Figure 27 shows a mesh computed by Barth and Jespersen [19]; this mesh is
the Delaunay triangulation of vertices placed by the advancing front method.

Lo [143] has developed a mesh generator that places Steiner points along

43

Figure 28. Input and output of a re�nement-based generator (Shaw).

prede�ned contour lines, that need not follow the domain boundary. This gener-
alization allows the output of an initial �nite element computation to control the
generation of the next mesh.

Mavriplis [150] has computed meshes for high Reynolds number
ows us-
ing an idea related to contour lines. His method identi�es \stretching" lines and
places the �rst Steiner points along these curves. Local, structured meshes gener-
ate interior Steiner points. The method then computes Delaunay triangulations in
locally transformed regions in order to generate long, thin|but not overly obtuse|
triangles oriented with the
ow. Such a triangulation is an especially e�cient mesh
for laminar
ows. (See [55, 171] for other stretched triangulations.)

2.4.5. Mesh Re�nement

A number of researchers have taken mesh re�nement as the central step in mesh
generation itself [14, 89, 179]. For example, the algorithms of Chew [49] and Rup-
pert [183], discussed in the last section, re�ne the constrained Delaunay triangula-
tion by adding centers of circumcircles.

An earlier, somewhat related, heuristic method is due to Frey [89]. In
Frey's method, Steiner points are initially added to the boundary according to a
\spacing function" that approximates local feature size. After this step, for most
practical inputs, a Delaunay triangulation of the input vertices and the Steiner
points includes the domain boundary. (Using the recent results of [164, 185], this
step can be made exact; see Section 2.3.5 above.) Next interior Steiner points
are added. Satisfactory results were obtained by the following method: (1) �nd a
triangle t containing its circumcenter; (2) generate a prospective Steiner point a
partway between the incenter and circumcenter of t; (3) if a is not too close to the
vertices of t (where close is de�ned by the local feature size), then add a and rebuild
the Delaunay triangulation.

Shaw [201] has recently developed a simple, re�nement-based mesh gen-
erator. The user inputs a very rough, triangular, initial mesh, with the correct
number of boundary components in roughly correct locations. The user assigns a

44

local feature size to each node of the initial mesh.

Triangles larger than their vertices' smallest feature size are then split as
in [13, 14] into four similar copies of themselves by adding Steiner points at the
midpoints of sides. A midpoint is assigned the average feature size of the end-
points. Neighboring faces are split in two to correct subdivision points. Splitting
is followed by a few cycles of Delaunay
ipping and weighted Laplacian smoothing,
and the re�nement cycle repeats. (Field [83] also interleaves Laplacian smoothing
and Delaunay
ipping.) As the boundary triangles re�ne, they are parametrically
\pulled" to the correct geometry (which may include spline curves), thereby com-
puting a valid boundary element mesh at the same time as the rest of the mesh.
See Figure 28 for an example of an input mesh and the resulting re�ned mesh; the
three nontriangular faces in the input mesh correspond to the holes in the domain.
Final aspect ratios are quite insensitive to the quality of the input mesh.

2.5. Two-and-a-half-dimensional Problems

A 2.5-dimensional problem asks for a triangulated surface embedded in three di-
mensions. We �rst discuss interpolating surfaces for point set data with elevations,
and then triangulated surfaces for three-dimensional models.

2.5.1. Interpolation of Bivariate Functions

The input is a set of points S in the plane, along with a real-valued elevation f(a) at
each point a 2 S. Any two-dimensional triangulation T of the input points induces
a piecewise-linear function fT de�ned on the region R bounded by the convex hull of
S. For each point d, fT (d) is the weighted average of the elevations at the vertices,
a, b, and c, of the triangle abc in T that contains d. Writing d as c1a + c2b + c3c,
with c1 + c2 + c3 = 1 and c1; c2; c3 � 0, we have fT (d) = c1f(a) + c2f(b) + c3f(c).
We say that fT interpolates S.

The question arises: which triangulations are good for interpolation? This
question has been discussed in the literature [16, 56, 66, 128, 195]. Rippa [177]
recently proved a surprising result. Regardless of the input elevations, the Delaunay
triangulation gives an interpolating surface, or elevated triangulation, optimal in a
certain least energy sense.

Theorem 12 (Rippa [177]). Let fT be a piecewise-linear function interpolating
S induced by a triangulation T . The piecewise-linear function fDT induced by the
Delaunay triangulation satis�es

Z Z
R

(rfDT)2 �
Z Z

R

(rfT)2:

45

We now explain the integrals above in terms more familiar to computational
geometers. Let abc be a triangle of triangulation T . Let the plane passing through
f(a), f(b), and f(c) have the equation z = Ax+By + C in Cartesian coordinates.
Then over abc, the gradient squared (rfT)2 is simply the constant A2 + B2, and
the contribution of abc is its area times this constant. Rippa's theorem states
that the sum of these contributions over all triangles is minimized by the Delaunay
triangulation. The proof of Rippa's theorem is an intricate calculation showing that
the
ip procedure cannot increase the integral. Hence the CDT is also an optimal
interpolating surface. (De Floriani et al. [56] had previously proposed the use of
the CDT for this purpose.)

Rippa and Schi� [178] show that the minimization above corresponds to
the energy functional associated with the nonhomogeneous Laplace equation. We
may think of the DT as giving the stretched membrane (a \drumhead") with least
potential energy, among all elevated-triangulationmembranes. Rippa and Schi� also
discuss other energy functionals, and use the
ip algorithm as a heuristic for their
minimization. See [16, 69] for heuristic solutions to other interpolation problems.

Bern et al. [23] recently considered the problem of �nding the minimum

slope interpolating surface for input points with elevations (an optimization criterion
mentioned in [220]). The slope of an elevated triangle is the slope in the direction of
steepest descent, and the slope of an elevated triangulation is the maximum slope
of any of its elevated triangles. Bern et al. showed that this problem can be solved
in time O(n3) using the edge-insertion paradigm, discussed in Section 2.2.2. The
following lemma shows that the \weak anchor property" holds, thus establishing
the applicability of edge insertion.

Lemma 11. Assume abc is a maximum-slope triangle in elevated triangulation T .
Assume the line of steepest descent on abc passes through a (either ascending or
descending from a). Assume elevated triangulation T 0 has smaller slope than T .
Then there is an edge of T 0 incident to a that crosses bc (in the projection onto the
plane).

Proof: Assume without loss of generality that the line of steepest descent `
descends from a to bc. If the lemma is false, then T 0 must contain an elevated
triangle ade, with de intersecting both ab and ac in the projection onto the plane
containing the input. (Edge de does not necessarily cross both ab and ac, so e could
be identical to c.) A vertical plane V` through ` must cut de above `, since T 0 has
smaller slope than T . So at least one of d and e, say d, must lie strictly above the
plane containing abc. See Figure 29.

Now consider the elevated triangle adb (which is not necessarily a triangle
of T or T 0). Because d lies above the plane containing abc, the slope of adb must be
greater than the slope of abc. (Here notice that V` intersects the plane containing
adb in a line with steeper slope than `.) Let `0 be the line of steepest descent on adb.
If `0 connects d with ab, we consider the triangles of T that intersect V`0 , a vertical

46

l
l’

e

d

c b

a

Figure 29. The weak anchor property holds for minmax slope.

plane through `0. These triangles intersect V`0 in a polygonal path from d down to
ab; at least one edge of this path must have slope at least that of `0, a contradiction
to the assumption that abc is a maximum-slope triangle in T . Contradictions also
follow in the other two cases: when `0 connects b with ad or a with bd.

This lemma also holds for constrained triangulations, giving an O(n3) algo-
rithm for �nding a least-slope interpolating surface for polygonal inputs with holes
and elevations. There are a host of open questions on optimal interpolation; we
list three. Many interpolation problems, including the second one listed below, also
make sense when Steiner points are allowed.

Open Problem 5. For point set data with elevations, can a triangulation max-
imizing the minimum angle on an elevated triangle be computed in polynomial
time?

Open Problem 6. For point set data with elevations, can a triangulation ap-
proximately minimizing the total surface area be computed in polynomial time?
(An intriguing result [163] shows that for any such point set there exists a \
atten-
ing coe�cient" � > 0, such that if all z-coordinates are multiplied by �, Delaunay
triangulation minimizes area.)

Open Problem 7. For point set data with elevations, can a triangulation with
least-sharp sharpest dihedral angle be computed in polynomial time? (See [69].)

2.5.2. Surfaces for three-dimensional models

Here the input is a \solid model" and the output is a triangulated surface. This
step often precedes three-dimensional mesh generation, especially in advancing-front
mesh generators.

Solid models take a number of rather varied forms, which complicates even
the de�nition of problems. Constructive solid geometry (CSG) de�nes a polyhedron

47

Figure 30. Surface triangulation of a Boeing 747-200 (Baker).

as the intersection and union of primitive polyhedra, such as half-spaces. (One may
also allow sphere and cylinder primitives, in order to construct curved solids.) A
polyhedron can also be more explicitly de�ned by a \boundary representation".
Solids can be approximately de�ned by point sets, either all interior to the solid, or
labeled \interior" and \exterior". Such inputs occur in scienti�c visualization, learn-
ing theory, and computer graphics. Inputs in medical and aerospace applications
often take the form of regularly spaced planar cross-sections [11, 15, 31]. Finally,
curved surfaces in design and graphics may be de�ned by spline patches [18], or by
\implicit surfaces"|level sets of functions of three variables.

Triangulating the surface of a polyhedron reduces to triangulating a PSLG;
Lindholm [136] uses an advancing-front generator within each face. Solids de�ned
by point sets, however, present some fresh problems. One may want to represent
such an input with an enclosing or interpolating polyhedron. The convex hull (the
intersection of all half-spaces containing the point set) is an enclosing polyhedron,
but it does not usually give a good representation of the \shape" of the point set.
Roughly speaking, an �-shape generalizes the convex hull by replacing half-spaces
with balls or complements of balls, with radius 1=� [70, 74]. This generalization
allows more faithful shape representation, but may have complexity
(n2). An-
other approach to shape representation, about which little is known, is to �nd an
enclosing or interpolating polyhedron (without Steiner points) that is optimal for
some criterion. The following problem is an example.

Open Problem 8. For points in three dimensions, can an approximate min-
surface-area enclosing polyhedron be found in polynomial time?

A number of authors (see [15, 102, 196] for surveys) have considered the

48

Figure 31. Surface triangulation of the U.S. Space Shuttle (Baker).

problem of computing a triangulated surface interpolating a number of parallel pla-
nar cross-sections. Boissonat [31] takes each adjacent pair of cross-sections and uses
planar conforming Delaunay triangulations to help compute a three-dimensional
tetrahedralization spanning the pair. Baker [11] uses a related heuristic to compute
a surface triangulation of an aircraft. He places points interior to each polygonal
cross-section, roughly one point for each of the polygon's vertices, and then com-
putes the three-dimensional DT of all input and interior vertices. Each interior
tetrahedron has at least two Steiner vertices, so that the union of the tetrahedra
with three or four input vertices contains a surface triangulation of the aircraft. See
Figures 30 and 31. For this algorithm to succeed, input vertices must be closely
spaced relative to the thickness and separation of aircraft parts.

Barequet and Sharir [15] propose a di�erent heuristic for this same problem.
They take two adjacent cross-sections and project them onto the same parallel
plane. Matching sections of polygons are \stitched" together with a back-and-
forth triangulation. Also stitched together are short stretches on either side of each
intersection, where a polygon from one cross-section crosses one from the other. At
this point, remaining regions in the projection are all bounded by simple polygons;
these are �lled in by triangulations minimizing total lifted area (when cross-sections
are separated again), using dynamic programming as in Section 2.2.3. This last step
may use triangles contained in the cross-sectional planes; indeed this capability is
necessary in order to form a surface that does not intersect itself [97].

A number of researchers [51, 84, 103, 191] have worked on meshing curved
surfaces. Chew [51] has extended his two-dimensionalmesh generator (Section 2.3.1)
to curved surfaces by generalizing planar Delaunay triangulation. He de�nes the
circumcircle of a triangle to be the intersection of the curved surface with a sphere
that has its center on the surface and passes through the triangle's vertices. If the
surface is not too curved relative to the size of the triangle, there is a unique such
sphere. This de�nition has the advantage that circumcenters lie on the surface,
facilitating the extension of the mesh generator. As before, the resulting mesh has
all angles greater than 30�, but now triangle sizes are controlled locally by deviation

49

Figure 32. Surface triangulation of a wing (Chew).

from the curved surface. See Figure 32.

Edelsbrunner and Shah [74] recently gave a more formal development of
Delaunay triangulation restricted to a subspace such as a curved surface. In their
scheme, the restricted DT is the dual of the diagram obtained by intersecting the
Voronoi diagram with the subspace. In general, their method produces a simplicial
complex rather than a triangulation, meaning that lower-dimensional faces (vertices
and edges) need not be contained in triangles. Finally, Bloomenthal [30] uses octrees
to polygonize implicit surfaces; these surfaces can then be triangulated if desired.
Octrees have been applied to polygonizing spline surfaces as well.

3. Three dimensional triangulations

Triangulation in three dimensions is called tetrahedralization (or sometimes tetra-
hedrization). A tetrahedralization is a partition of the input domain, point set or
polyhedron, into a collection of tetrahedra, that meet only at shared faces (ver-
tices, edges, or triangles). Tetrahedralization turns out to be signi�cantly more
complicated than triangulation.

As in two dimensions, n represents the number of vertices of the input
domain, and we distinguish several di�erent types of domains.

� Simple polyhedron. A simple polyhedron is topologically equivalent to a
sphere; it does not meet itself in a handle, or touch itself at a point or an
edge. The boundary of such a polyhedron forms a connected planar graph.
In triangulations without Steiner points, each tetrahedron's vertices must be
vertices of the polyhedron.

� Nonsimple polyhedron. A nonsimple polyhedron may be multiply con-
nected, topologically equivalent to a torus or a higher-genus surface. It may
also have cavities, meaning that its boundary is not connected.

� Point set. As in two dimensions, a triangulation of a point set �lls the convex
hull. If Steiner points are allowed, then the boundary of the triangulation may
be a larger convex polytope.

50

Figure 33. Sch�onhardt's untetrahedralizable polyhedron.

3.1. Tetrahedralization without Optimization

In this section, we concentrate on existence and construction of tetrahedralizations,
without concern for optimality. Existence and construction are already interesting,
since many two-dimensional triangulation properties break down in three dimen-
sions.

The �rst surprise is that di�erent triangulations of the very same input
may contain di�erent numbers of tetrahedra. For example, choose n points vi =
(i; i2; i3) on the moment curve. It is not hard to show that their convex hull can
be triangulated with the

�
n�2
2

�
tetrahedra of the form vivi+1vjvj+1. (In fact this

is the Delaunay triangulation of these points.) A generalization of Euler's formula
shows that any tetrahedralization of an n-vertex polyhedron has at most this many
tetrahedra. If we choose the tetrahedralization carefully, however, we can achieve
linear, rather than quadratic, complexity for this same input. In fact, any strictly
convex polyhedron can be tetrahedralized with at most 2n � 7 tetrahedra: choose
a vertex v, triangulate each face of the polyhedron that is not adjacent to v, and
then connect v to each triangle. This bound is within a factor of two of optimal, as
any tetrahedralization of a simple polyhedron has at least n� 3 tetrahedra.

Edelsbrunner, Preparata, and West [77] show how to construct a linear-
complexity tetrahedralization of point sets in general position. After tetrahedraliz-
ing the convex hull with only linear complexity as above, interior points are added
one at a time. When a point is added, the tetrahedron containing it is replaced
by four smaller tetrahedra. In contrast, linear complexity is not always possible for
points in special position [4].

When we try to extend these results to nonconvex polyhedra, we meet
a second surprise: not all polyhedra are tetrahedralizable [132]. The following
counterexample is due to Sch�onhardt [193]. Start with a triangular prism, and
twist one triangle relative to the other so that each rectangular face of the prism
folds into two triangles with a re
ex edge between them (Figure 33). Any set of
four vertices must include a pair that face each other across such a re
ex edge. So
the polyhedron contains no tetrahedron, and tetrahedralization is impossible.

51

Figure 34. Chazelle's lower bound example.

Sch�onhardt's polyhedron can be tetrahedralized if we add one Steiner point.
This leads to the question of how many Steiner points may be required for tetrahe-
dralization. Chazelle [42] found a simple polyhedron in which
(n2) Steiner points
are needed even to partition the polyhedron into convex regions. Clearly, this is
also a lower bound for tetrahedralization.

Chazelle's polyhedron (Figure 34) can be built from a cube by removing
numerous thin wedges. Wedges parallel to the y-axis are removed from the top face
of the cube, and wedges parallel to the x-axis are removed from the bottom face.
The re
ex edges at the tips of the wedges form two sets of lines, that almost meet
at the center of the polyhedron, near the hyperbolic surface z = xy. Viewed from
above, the lines partition this surface into
(n2) small squares. The centers of the
squares can be connected by lines that lie on the doubly-ruled hyperbolic surface,
but by slightly turning the grid of centers we can �nd a set of
(n2) points, no pair of
which are mutually visible. Lines nearly parallel to the x-axis (respectively, y-axis)
are blocked from above (below) by wedges. Hence no pair of points can lie in the
same convex region, so there must be
(n2) regions in any convex decomposition,
and a fortiori
(n2) tetrahedra in any tetrahedralization. As we now show, this
bound is tight.

Theorem 13. Any polyhedron can be triangulated with O(n2) Steiner points and
O(n2) tetrahedra.

Proof: Extend a vertical \wall" from each edge of the polyhedron boundary,
up and down from that edge until it reaches some other part of the boundary.
These walls divide the polygon into generalized cylinders. Triangulating the top
and bottom faces of the cylinders partitions the polygon into O(n2) triangular
prisms. Each vertical prism side is crossed at most once by a polyhedron edge,
so the prisms are polyhedra with at most twelve vertices. Triangulate the faces of
these polyhedra, making sure that tetrahedra from di�erent prisms will meet face
to face, and then triangulate each prism with at most 20 tetrahedra incident to a
single interior Steiner point. (We need the Steiner point as the edges crossing the
vertical faces make the prisms not strictly convex.)

52

Figure 35. Extending a vertical wall from a re
ex edge.

As we have seen, convex polyhedra can be triangulated with only O(n)
tetrahedra, while Chazelle's polyhedron requires
(n2). This suggests the possibil-
ity that an appropriate measure of nonconvexity would interpolate these bounds and
achieve o(n2) tetrahedra for \slightly nonconvex" polyhedra. One natural measure
is r, the number of re
ex edges. Chazelle and Palios [46] developed a triangulation
algorithm sensitive to this measure.

Let N (v) be the set of neighbors of vertex v, and de�ne the cap of v to be
the star-shaped polyhedron formed by removing the convex hull of N (v) from the
convex hull of N (v) [fvg. See Figure 36. Since the boundary of the polyhedron
forms a planar graph, one can always �nd a vertex v with a cap with at most �ve
other vertices. One would like to remove such a cap from the polyhedron, replacing
it with at most three tetrahedra, and continue until the polyhedron is triangulated.
This would be analogous to triangulating a polygon in the plane by removing a single
ear triangle at a time. Since not all polyhedra are tetrahedralizable, this approach
does not work|the di�culty is that the rest of the polyhedron might penetrate
into the cap, so that it could not be removed without causing the polyhedron to
intersect itself.

v

Figure 36. The cap of vertex v.

Lemma 12. Let S be a set of vertices of a simple polyhedron with triangular
faces, such that no vertex of S is adjacent to another vertex of S or to a re
ex
edge. Then at most 2r caps of vertices in S are penetrated by other portions of the
polyhedron.

53

Proof Sketch: Suppose the cap of vertex v is penetrated. The faces touching v are
boundaries of the polyhedron, so the penetration must occur through the remaining
faces of the cap. Moreover, since no edge can completely cross the cap without
crossing a face adjacent to v, there must be a polyhedron vertex interior to the cap.

Project all interior vertices onto a line extending from v through the cap,
and let w be the vertex with projection closest to v. Then w cannot be in any
other cap penetrating the cap of v, and|it is not hard to show|w can be chosen
as closest by at most two other caps not penetrating the cap of v. Line segment
vw must be entirely contained in the polyhedron; otherwise it would cross a face,
one vertex of which would be closer to v. And �nally w must be an endpoint of
at least three re
ex edges; otherwise, one of the faces incident to w would have a
vertex closer to v. So we can charge penetrated caps one-for-one to endpoints of
re
ex edges.

Theorem 14 (Chazelle and Palios [46]). Any simple polyhedron with n ver-
tices and r re
ex edges can be partitioned into O(n+r2) tetrahedra using O(n+r2)
Steiner points.

Proof: Start by triangulating the faces of the polyhedron. As in any planar graph,
we can �nd
(n) nonadjacent vertices, all with degree at most six. By Lemma 12,
unless n is O(r), one of these vertices has a low-degree cap that is not penetrated.
Remove this cap, leaving a smaller polyhedron. The cap itself can be split into O(1)
tetrahedra. After we remove all but O(r) vertices, the remaining polyhedron can
be triangulated by the vertical wall method.

The resulting partition is not yet a triangulation, because the vertical walls
subdivide the faces of the reduced polyhedron without matching the caps removed
from those faces. If m wall edges occur on the faces of the cap of vertex v, then
v's cap can be triangulated with O(m) tetrahedra with apex v, and this subdivi-
sion does not propagate into other caps. The complexity of the triangulation may
grow if an edge of the reduced polyhedron is shared by many removed caps. This
complication can be handled by surrounding each such edge with a narrow prism-
shaped polyhedron before doing the vertical wall construction. Now vertical walls
subdivide the faces of the prism, rather than the edge itself; the prism can be trian-
gulated with a single Steiner point. We omit the details of handling the tips of the
prisms where they meet at vertices of the reduced polyhedron. The �nal product
is a triangulation with O(n+ r2) tetrahedra, that with careful implementation can
be constructed in time O((n+ r2) log r) [46].

The algorithm just given does not use the assumption that the polyhedron
is simple in any essential way, only in the analysis of the number of tetrahedra.
Recently, Chazelle and Shouraboura [47] used the Gauss-Bonnet formula to show
that the genus of a polyhedron is bounded by the number of re
ex edges, thereby
extending the same O(n+ r2) bound to non-simple polyhedra.

54

Dey [59] and Hershberger and Snoeyink [107] analyze another algorithm|
called notch cutting [42]|for convex partition and tetrahedralization of non-simple
polyhedra. This algorithm incrementally bisects re
ex dihedrals with planes, ex-
tending the plane in all directions away from the re
ex edge until it �rst hits the
polyhedron boundary. Hershberger and Snoeyink prove a tight worst-case bound of
O(nr + r7=3) tetrahedra.

These results reveal that nearly convex polyhedra require few Steiner points.
The question arises: can we �nd an e�cient algorithm that uses the minimum
number of Steiner points? Ruppert and Seidel [184] give a negative answer to this
question. They show that testing whether Steiner points are necessary to triangulate
a given polyhedron is NP-complete (see [92]), even for star-shaped polyhedra (which
can trivially be triangulated with a single Steiner point). They similarly prove that,
for any k, it is NP-hard to test whether k Steiner points su�ce. The following open
question asks for an approximation algorithm.

Open Problem 9. Is there an e�cient algorithm for triangulating any n-vertex
polyhedron into O(m) tetrahedra, where m is the minimum possible number?

Certain very special polyhedra can be triangulated without Steiner points.
Goodman and Pach [99] prove that the region between two convex polyhedra (the
convex hull of the union, minus the polyhedra) can be tetrahedralized into O(n2)
tetrahedra by lifting the polyhedra onto a folded plane in four dimensions. (This re-
sult generalizes to arbitrary dimension.) Bern [20] improves this bound to O(n logn)
for the region between two nested convex polyhedra. He also shows that even for
general polyhedra, only interior Steiner points are necessary. This result may have
application to multiple domains (see also [156]); it follows from \fattening" each
face into a roughly prism-shaped solid. Toussaint et al. [215] prove that the union
of three convex polyhedra can be tetrahedralized without Steiner points.

Chazelle and Shouraboura [47] improve Bern's O(n logn) bound to linear
by reintroducing Steiner points. They also prove that the region between a convex
polyhedron and a terrain (a polyhedral surface intersected once by each vertical
line) can be triangulated with O(n logn) tetrahedra, and|remarkably|this bound
is tight. Their �rst result raises the following question.

Open Problem 10. Can the region between c convex polyhedra (the convex hull
of the union, minus the polyhedra) be triangulated with O(n+ c2) tetrahedra?

3.2. Optimal Tetrahedralization

In this section, we consider three-dimensional optimal triangulation without Steiner
points. Since Steiner points are required simply to tetrahedralize nonconvex poly-
hedra, this section treats only point sets (and as a special case, convex polyhedra).
Even for point sets very little is known.

55

Since a single input has tetrahedralizations of di�erent complexity, a natural
optimization question is the following. A more general open question asks for a
minimum-complexity tetrahedralization of a point set.

Open Problem 11. Is there a polynomial-time algorithm for triangulating an
arbitrary convex polyhedron with the minimum number of tetrahedra?

The Delaunay triangulation (DT) in IR3 contains each tetrahedron with
vertices from the input point set, whose circumsphere contains no other input points
on its surface or in its interior. Assuming general position, no �ve points lie on a
single sphere, so this de�nes a triangulation. The complexity of the DT may be as
high as
(n2), as shown by the moment curve example (Section 3.1). There does
not seem to be a reasonable de�nition of constrained DT in three dimensions.

The lifting transformation de�ned in Section 2.2.1 generalizes to three (and
higher) dimensions. We map an input point with Cartesian coordinates (x; y; z) to
the point (x; y; z; x2 + y2 + z2). The image points all lie on a paraboloid in four
dimensions; the projection of the lower convex hull back onto the xyz-hyperplane
gives the DT. Coupled with an algorithm for computing four-dimensional convex
hulls [197], this gives a worst-case optimal, quadratic-time algorithm to compute
the DT.

There are also direct algorithms. Bowyer [33] and Watson [219, 82] gave
incremental algorithms that are quite popular in practice. Watson's algorithm in-
serts points in sorted order by one coordinate, testing all old circumspheres that
intersect the current sweep plane. Bowyer includes evidence that his algorithm runs
in time O(n4=3) for a random point set. Dwyer [68] gives a linear-expected-time
algorithm for random points in the unit ball.

Joe [115] and Rajan [176] generalize the
ip algorithm for DT construction.
In three dimensions,
ips involve sets of �ve points, forming a tetrahedral bipyramid.
Such a �gure can be tetrahedralized in two ways: either as a pair of tetrahedra
separated by a face, or as three tetrahedra surrounding an interior diagonal. Thus

ips trade two tetrahedra for three, or vice versa. See Figure 37. Starting from
an arbitrary tetrahedralization, however, the
ip algorithm can get stuck in a local
optimum and fail to produce the DT [115].

Joe [117] showed that, if we start with the DT of some point set, and add
a single point (dividing the tetrahedron containing it into four, or if the new point
is outside the convex hull, adding tetrahedra connecting it to the triangles it can
see), then
ipping from the resulting triangulation never gets stuck. All tetrahe-
dra involved in
ips are neighbors of the new vertex, so in some sense this
ipping
procedure becomes two- rather than three-dimensional. This result gives another
O(n2)-time algorithm for computing the DT: add points one by one (say, in sorted
order by x-coordinate) and, after each addition,
ip until the DT is reached. Ra-
jan [176] described a similar procedure for incrementally adding points and
ipping

56

Figure 37. Two ways of tetrahedralizing �ve points.

tetrahedra to �nd the DT. His procedure
ips tetrahedra in the order correspond-
ing to the changes in the convex hull of the lifted points as the new point is moved
vertically down onto the paraboloid. Thus, Rajan's algorithm generalizes to higher-
dimensional DT construction. Edelsbrunner and Shah [73] extended Joe's algorithm
to higher dimensions and to regular triangulations of weighted points.

Though the worst-case time bound for computing the three-dimensional
DT must be
(n2), an \output-sensitive" algorithm runs much more quickly on
simple input instances. Techniques recently developed by Matou�sek [148] for half-
space range queries give an algorithm with running time O(n4=3+�+k logn), where
k is the complexity of the DT. See Fortune's survey [88] for more details on three-
dimensional DT algorithms, including some important implementation issues.

Because the DT possesses so many optimality properties in two dimensions,
geometers long suspected that it should optimize something in three dimensions.
Recently, Rajan [176] discovered the �rst such result. (His result actually holds in
all dimensions.) The min-containment sphere of a simplex t is the smallest sphere
containing t. If t contains its circumcenter, then the min-containment sphere is
identical to the circumsphere. Otherwise, the min-containment sphere circumscribes
a lower-dimensional face of t. For example, in two dimensions, the min-containment
sphere is either the circumcircle or the diameter circle of the longest edge. Rajan
proved the following, which generalizes a result of D'Azevedo and Simpson for the
planar case [55].

Theorem 15 (Rajan [176]). The Delaunay triangulation is the triangulation that
minimizes the maximum radius of a min-containment sphere.

Proof Sketch: Lift the points to the paraboloid (x; y; z; x2+y2+z2). Any sphere
in IR3 corresponds to a hyperplane in four dimensions cutting this paraboloid. Let
T be any triangulation, and for any tetrahedron t in T , de�ne H(t) to be the half-
space above the hyperplane corresponding to the circumsphere of t. If S is the min-
containment sphere of t, the radius of S corresponds to the vertical distance between
the lifted center of S and H(t). Now form a polytope P (T) as the intersection
of all such halfspaces. (This projects to a power diagram|see Section 2.2.1|in
the original space.) Then the largest min-containment sphere corresponds to the

57

Figure 38. The DT (left) contains a very
at \sliver" tetrahedron.

largest distance between this polytope and the portion of the paraboloid to which
the convex hull of the input can be lifted. The DT is the convex hull of the lifted
points, so it is lower than any other possible polytope P (T), and hence minimizes
this distance.

Dey (personal communication) observed that for cospherical points, all tri-
angulations have the same maximum min-containment radius, so any completion
of the Delaunay triangulation solves the degenerate case. Figure 38 gives a coun-
terexample to the plausible conjecture that the DT also minimizes the radius of the
largest circumsphere.

Recently, Schmitt and Spehner [192] proved a second optimality theorem
that holds in arbitrary dimension. We describe the result for IR3. De�ne the co-
angle of a triangle in a tetrahedron t to be half the angle of the cone with apex
at t's circumcenter and base equal to the triangle's circumcircle. Using a lifting
argument as above, Schmitt and Spehner prove that each interior face in a DT has
a sum of co-angles (one from each side) at most 180�, while any other triangulation
has a face that exceeds 180�. This result is the three-dimensional analog of the fact
that a reversed quadrilateral has unsplit angles summing to more than 180�.

3.3. Steiner Tetrahedralization

We have already touched on the subject of Steiner tetrahedralization in Section 3.1,
because tetrahedralizing a nonconvex polyhedron may require Steiner points. We
now discuss problems in which Steiner points are used to improve the quality of the
solution.

3.3.1. Reducing Delaunay Triangulations

The Delaunay triangulation of a set of n points in IR3 may have
(n2) tetrahedra,
though a \typical" point set has only O(n) [68]. This raises the question of whether
Steiner points can be used to reduce the complexity of the DT.

58

Chazelle et al. [44] answered this question a�rmatively by showing that for
any point set, there exists a set of O(n1=2 log3 n) points, such that the Delaunay
triangulation of the union of the two point sets has O(n3=2 log3 n) tetrahedra. Their
method repeatedly �nds a point that lies inside a large number of Delaunay circum-
spheres; the addition of such a point removes all the corresponding tetrahedra and
replaces them by O(n) new tetrahedra.

The success of this method follows from a combinatorial lemma of indepen-
dent interest that holds in arbitrary �xed dimension d. If there are m spheres, each
passing through a pair of points, then some point of space (not necessarily one of
the n input points) is interior to
(m2=(n2 log2d(n2=m))) spheres. Results stronger
by log factors hold for diameter spheres and rectangular boxes.

Bern, Eppstein, and Gilbert [25] showed how to use more Steiner points,
and reduce the complexity of a Delaunay triangulation to O(n). Their technique
is completely di�erent, and it works for any �xed dimension. The algorithm �rst
computes a balanced octree (in general, a 2d-ary tree) such that each point is alone
in a cube surrounded by empty cubes the same size. The closest cube vertex to
each input point is then replaced by that input point.

To reduce the size of the tree, the algorithm identi�es long chains of cubes,
say more than 2d levels, in which each cube has only one nonempty child cube. Next
it removes the middle-sized cubes of these chains, leaving small cubes
oating inside
large cubes; then the algorithm surrounds each small cube with a constant number
of layers of cubes its own size. This guarantees that every d-sphere that contains
input points from both inside and outside a small
oating cube, also contains at least
one vertex from these layers. Now every point is incident on O(1) maximal empty
spheres, so using the vertices of cubes as Steiner points gives a linear-size Delaunay
triangulation. As just explained, the running time of this algorithm depends on the
size of the initial tree, but long chains can be identi�ed without actually computing
them to give a time bound of O(n logn).

3.3.2. Nonobtuse Triangulation

There is more than one way to generalize nonobtuse triangulation to three di-
mensions. For a convergence bound on a certain numerical method, Vavasis [217]
assumes that no dihedral angle is obtuse. Nonobtuse dihedrals, however, do not
imply that the mesh is a Delaunay triangulation. For this implication we need a
di�erent generalization: each tetrahedron is self-centered , meaning that it contains
its circumcenter [176]. Finally, in order to generalize perpendicular duals, we need a
stronger condition than self-centered that we shall call fully self-centered : triangles
and tetrahedra are all self-centered.

In a recent paper, Bern, Chew, Eppstein, and Mitchell [21] give an algorithm
that solves all these generalizations for point sets in arbitrary dimension d. They

59

show how to Steiner-triangulate n input points with O(ndd=2e) path simplices. A
path simplex contains a path of d pairwise orthogonal edges; it is fully self-centered
and all its dihedral angles (angles between (d�1)-dimensional faces) are nonobtuse.

The algorithm successively projects the point set onto two-dimensional
planes, and solves bd=2c planar problems using a linear-complexity all-right-triangle
algorithm for point sets [25, 29]. Back in IRd, the products of right triangles form
solids|right-triangular prisms in IR3|that can be triangulated with path simplices.

Bern et al. [21] also give a lower bound result. To explain this result, we
require some preliminaries. Any set of k < d vertices|a (k � 1)-simplex|in a
d-dimensional simplex de�nes a (d + 1 � k)-dimensional angle. The angle can be
measured by placing a small perpendicular sphere (that is, lying in a perpendicular
(d+ 1 � k)-
at) around the (k � 1)-simplex, and determining what fraction of the
sphere is subtended by the (d + 1 � k)-simplex opposite the (k � 1)-simplex. For
example, there are two kinds of angles in three dimensions: solid angles which are
measured by subtended area on a sphere around a vertex, and dihedral angles which
are measured by subtended arc length on a circle around an edge.

We can now de�ne 2(d � 1) di�erent no-bad-angle problems. For each k,
we can forbid either small or large (d + 1 � k)-angles. To forbid small angles, we
require that all angles be bounded away from zero; to forbid large angles, we require
that all angles be bounded away from half a sphere. No-small-angle and no-large-
angle problems are each linearly ordered by di�culty. No small d-angles implies no
bad angles (small or large) of any kind. No small (d � 1)-angles implies no small
(d�2)-angles, and so forth down to no small 2-angles (dihedrals). For large angles,
the dimensions reverse, with no large dihedrals �rst, then no large 3-angles, on
down to no large d-angles. A large solid (that, is d-) angle implies bad angles of all
types. The hardest problem that can be solved with polynomial complexity is the
no-large-dihedral problem, and the most stringent bound on dihedral angles is 90�.

Still open is the question of whether O(ndd=2e) is the best possible bound for
the no-large-dihedral problem. And, getting back to more realistic mesh generation
questions, no algorithms are known for nonobtuse tetrahedralization of polyhedra.

3.3.3. Bounded-Aspect-Ratio Mesh Generation

The most commonly used de�nition of the aspect ratio of a simplex is the ratio of
the radii of the circumscribed sphere to the inscribed sphere [82]. Bounded aspect
ratio is equivalent to no small d-angles. We now give descriptive names to the six
di�erent types of three-dimensional simplices, classi�ed according to the types of
bad angles allowed. (See [10, 60] for similar classi�cations.)

� Round. A round tetrahedron has no bad angles of any kind.

� Needle. A needle has one small solid angle, but no small or large dihedrals.

60

Sliver
Cap

Needle

Round

Spindle

Wedge

Figure 39. The six types of tetrahedra.

� Wedge. A wedge has small but not large dihedrals and no large angles of any
kind. An example is a tetrahedron that is the convex hull of two far-apart,
short perpendicular edges.

� Spindle. A spindle has small but not large solid angles, and large but not
small dihedrals.

� Sliver. A sliver has small and large dihedrals, but no large solid angle. An
example is a tetrahedron formed by four nearly coplanar points, fairly evenly
spaced around a great circle of the circumsphere. Slivers are distinguished
from the other bad tetrahedra by a low ratio of circumsphere radius to shortest
edge length.

� Cap. A cap has a large|nearly
at|solid angle. The circumsphere's radius
is hence much larger than the longest edge.

What is known on bounded-aspect-ratio triangulation in three dimensions?
Bern et al. [25] use octrees (or in general 2d-ary trees) to triangulate point set input,
using only a constant times the minimum number of bounded-aspect-ratio tetrahe-
dra. Dey, Bajaj, and Sugihara [60] generalize Chew's mesh generation algorithm to
three dimensions. For point sets or convex polyhedra with point holes, this method
avoids all bad tetrahedra except slivers.

Mitchell and Vavasis [157] have recently generalized the quadtree polygon
mesh generation of Bern et al. [25] to three dimensions, avoiding all types of bad
tetrahedra. The generalization is not straightforward, primarily because vertices of
polyhedra may have arbitrary degree.

Their algorithm �rst computes a balanced octree that safely separates|
that is, by some constant number of cubes|faces of the input polyhedron D. The
octree is re�ned in three phases: �rst, vertices are separated from nonincident edges
and faces; second, boxes away from vertices are split to separate edges from other
edges and facets; and �nally, boxes away from both vertices and edges are split to

61

separate facets from other facets. Cubes are duplicated in Riemann sheets for faces
close together in space, but far apart by geodesic distance.

Next the boxes around vertices are merged in order to approximately center
each vertex in its box. The intersection of the boundary ofD and the surface of a box
must be triangulated with triangles of height a constant fraction of the maximum
possible (as in Section 2.3.3). A complicated set of warping rules conforms the octree
to the edges and facets of D. Finally, warped boxes are triangulated by adding
Steiner points near their centers, with tetrahedra radiating from these points.

Let A be the minimum aspect ratio of a Steiner triangulation of domain
D. (Here the aspect ratio of a triangulation is the maximum aspect ratio of its
tetrahedra.) The algorithm just sketched gives a triangulation with aspect ratio
at most cA (where c is a constant), that uses at most a constant factor times the
minimum number of tetrahedra needed to achieve cA. The proof of this theorem
also requires a new idea beyond [25]. Because no analog of the CDT is known in
three dimensions, Mitchell and Vavasis must compare their tetrahedralization to an
optimal tetrahedralization, showing that at each point in D the tetrahedron chosen
by their algorithm is no more than a constant times smaller than the largest possible
tetrahedron at that point.

Theorem 16 (Mitchell and Vavasis [157]). There is an algorithm, based on
octrees, that computes an approximate optimal-aspect-ratio tetrahedralization of
an arbitrary polyhedral domain, using no more than a constant times the optimal
number of tetrahedra.

The theorem has special importance because the edge skeleton of a bounded-
aspect-ratio tetrahedralization has a \separator" of complexity O(n2=3) [153, 154].
(A separator is a set of vertices whose removal disconnects the graph into two pieces
of roughly equal size.) Nested dissection then saves a factor of O(n) in the asymp-
totic time to solve the linear equations that arise in the �nite element method [139].

3.4. Heuristically Generated Three-Dimensional Meshes

Most of the techniques for generating and improving two-dimensional meshes can
be generalized to three dimensions, though not without some di�culties. See [9,
95, 144] for surveys discussing both structured and unstructured meshes primarily
for
uid
ow problems. Overall, three-dimensional unstructured mesh generation
is still in its early stages of development.

3.4.1. Mesh improvement

Laplacian smoothing (see Section 2.4.1) generalizes to three dimensions [41, 225],
but the improvement it o�ers may not be as signi�cant as in two dimensions.

62

There are local tranformations that trade two tetrahedra for three, and
three tetrahedra for two, as discussed above (Section 3.2.1). These transformations
represent the analog of the
ip procedure in two dimensions, and may be used to
improve a triangulation according to some criterion, such as the Delaunay empty
circumsphere condition. In three dimensions, however, the
ip procedure may get
stuck in a local optimum that is not a global optimum [115]. Joe [117], Rajan [176],
and Edelsbrunner and Shah [73] have shown that, for the Delaunay criterion, special
starting triangulations always lead to a global optimum. Joe has also used the
ip
procedure to locally maximize the minimum solid angle [118]. Starting from the
Delaunay triangulation, he signi�cantly improved aspect ratios, while also slightly
decreasing the number of tetrahedra.

Rivara re�nement generalizes as follows: split a tetrahedron by adding
a triangle with apex equal to the midpoint of the longest edge and base equal
to the opposite edge. Recursively split all tetrahedra sharing the bisected edge.
This algorithm performs quite well in practice [181], but the generalization of the
minimum angle bound is currently open.

Open Problem 12. Does repeated application of three-dimensional Rivara re-
�nement keep the minimum solid angle bounded away from zero?

3.4.2. Octrees

Yerry and Shephard generalized their quadtree algorithm to a three-dimensional
algorithm using balanced octrees [225]. They kept the number of \patterns" for
boundary cubes manageable by assuming that each cube was cut by at most three
facets of the input polyhedron. In the �nal steps, patterns are warped to approxi-
mate the actual boundary of the input, and Laplacian smoothing is applied. Further
progress on their octree algorithm is reported by Shephard et al. [203]. Perucchio
et al. [169, 189] have also advanced the octree approach with a di�erent way of
handling boundary cubes.

Buratynski [35] uses rectangular octrees, that is, noncubical boxes, and a
hierarchical set of warping rules. Boxes are �rst warped to input corners, then input
edges, and �nally input faces. The rules are somewhat simpli�ed by the fact that
the octree is initially re�ned so that input edges intersect boxes of only one size.
(Hence, this method does not come with the theoretical size guarantee of Mitchell
and Vavasis's method [157].) Empirically, Buratynski's method seems to give no
tetrahedra with bad aspect ratio.

Field and Smith [85] and others [158, 166] suggest the use of a tetrahedral
octree, built by recursively cutting a \bcc tetrahedron" (body-centered cubic) into
eight copies of itself. Tetrahedra spawn fewer boundary patterns than hexahedra.

63

3.4.3. Polyhedron Decomposition

Cavendish, Field, and Frey [41] developed one of the �rst three-dimensional mesh
generators. Their approach cuts the polyhedron into polygonal cross-sections, adds
randomly chosen Steiner points with average spacing determined by a measure of
local feature size [40], and then computes the Delaunay triangulation. (See [27, 152]
for analyses of DTs of random points.) If Steiner points are su�ciently closely
spaced on the boundaries of the polygonal cross-sections, the DT will be conforming.
A �nal improvement step merges tetrahedra or moves Steiner points to remove
slivers (very
at tetrahedra). Joe [118] is currently working on a generalization of
his two-dimensional convex-decomposition generator [119].

3.4.4. Advancing Front

L�ohner [144, 145], Baker [8, 9], Jameson et al. [111], Peraire et al. [168], and others
have generated tetrahedral meshes for entire aircraft. Typically, something akin to
the advancing front method places Steiner points in layers around the aircraft.

Jameson et al. [111] use a number of overlapping structured grids to place
Steiner points, and then produce an unstructured tetrahedral grid with the Delau-
nay triangulation.

Baker's method [8] starts with a surface triangulation, as described in Sec-
tion 2.5 above. Steiner points are then added exterior to the aircraft. Regular
lattices of Steiner points surround the aircraft, with the density of Steiner points
decreasing away from the surface. A shell of closer-in Steiner points is created by
adding a few points along a normal to each surface point. A Delaunay triangulation
is computed incrementally, but with violations allowed where the DT would pierce
the surface. A �nal improvement step removes slivers. Empirically, the only re-
maining tetrahedra of poor aspect ratio are needles near junctures of aircraft parts,
such as where the wing joins the fuselage.

4. Conclusions

We have described work in computational geometry motivated by �nite element
mesh generation. This material spans a spectrum from purely theoretical results (for
example, Chazelle's linear-time triangulation algorithm), through a middle ground
(our own work on Steiner triangulations), to practical heuristics devised by numer-
ical analysts.

We believe that worthwhile research is spread throughout this spectrum.
We have attempted to gather together these scattered results, and hope this com-
pilation proves useful to both theorists and practitioners.

64

Acknowledgments

We would like to thank Tim Baker, Paul Chew, Mike Dillencourt, David Dobkin,
Herbert Edelsbrunner, David Field, John Gilbert, David Goldberg, Barry Joe, Scott
Mitchell, Lee Nackman, John Shaw, Shang-Hua Teng, Steve Vavasis, and Frances
Yao for various helpful suggestions.

65

References

[1] A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor. A linear time algorithm for
computing the Voronoi diagram of a convex polygon. Disc. and Comp. Geometry 4
(1989) 591{604.

[2] E. Anagnostou and D. Corneil. Polynomial-time instances of the minimum weight
triangulation problem. Comp. Geometry Theory and Applications 3 (1992) 247{259.

[3] F. Aurenhammer. Voronoi diagrams|a survey of a fundamental geometric data
structure. ACM Computing Surveys 23 (1991) 345{405.

[4] D. Avis and H. ElGindy. Triangulating point sets in space. Disc. and Comp. Geom-
etry 2 (1987) 99{111.

[5] I. Babu�ska and A. Aziz. On the angle condition in the �nite element method, SIAM
J. Numer. Analysis 13 (1976) 214{227.

[6] I. Babu�ska and W.C. Rheinboldt. A-posteriori error estimates for the �nite element
method. Int. J. Numer. Meth. Eng. 12 (1978) 1597{1615.

[7] P.L. Baehmann, S.L. Wittchen, M.S. Shepard, K.R. Grice, and M.A. Yerry. Robust
geometrically-based automatic two-dimensional generation, Int. J. Numer. Meth.

Eng. 24 (1987) 1043{1078.

[8] T.J. Baker. Automatic mesh generation for complex three-dimensional regions using
a constrained Delaunay triangulation. Eng. with Computers 5 (1989) 161{175.

[9] T.J. Baker. Developments and trends in three-dimensional mesh generation. Appl.
Numer. Math. 5 (1989) 275{304.

[10] T.J. Baker. Element quality in tetrahedral meshes. 7th Int. Conf. on Finite Element

Models in Flow Problems, Huntsville, Alabama, 1989.

[11] T.J. Baker. Unstructured meshes and surface �delity for complex shapes. In Proc.

10th AIAA Comp. Fluid Dynamics Conf., Hawaii, 1991.

[12] B.S. Baker, E. Grosse, and C.S. Ra�erty. Nonobtuse triangulation of polygons. Disc.
and Comp. Geometry 3 (1988) 147{168.

[13] R.E. Bank. PLTMG User's Guide. SIAM, 1990.

[14] R.E. Bank, A.H. Sherman, and A. Weiser. Re�nement algorithms and data struc-
tures for regular local mesh re�nement. In R. Stepleman et al., Scienti�c Computing.
IMACS/North-Holland, 1983, 3{17.

[15] G. Barequet and M. Sharir. Piecewise-linear interpolation between polygonal slices.
In Proc. 10th ACM Symp. Comp. Geometry (1994) 93{102.

[16] R.E. Barnhill. Representation and approximation of surfaces. Math. Software III,
J.R. Rice, ed., Academic Press, 1977, 69{120.

[17] R.E. Barnhill. Computer aided surface representation and design, Surfaces in Com-

puter Aided Geometric Design, R. Barnhill and W. Boehm, eds., North-Holland,
Amsterdam, 1983, 1{24.

66

[18] R.H. Bartels, J.C. Beatty, and B.A. Barsky. An Introduction to Splines for Use in

Computer Graphics and Modeling, Morgan Kaufmann, 1987.

[19] T.J. Barth and D.C. Jespersen. The design and application of upwind schemes on
unstructured meshes. In Proc. AIAA 27th Aerospace Sciences Meeting, Reno, 1989.

[20] M. Bern. Compatible tetrahedralizations. In Proc. 9th ACM Symp. Comp. Geometry

(1993) 281{288.

[21] M. Bern, L.P. Chew, D. Eppstein, and J. Ruppert. Dihedral bounds for mesh gen-
eration in high dimensions. Manuscript, 1994.

[22] M. Bern, D. Dobkin, and D. Eppstein. Triangulating polygons without large angles.
In Proc. 8th ACM Symp. Comp. Geometry (1992) 222{231.

[23] M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, and T.S. Tan. Edge-insertion
for optimal triangulations. Disc. and Comp. Geometry 10 (1993) 47{65. Also in
Proc. Latin American Theoretical Informatics, Springer-Verlag LNCS 583 (1992)
46{60.

[24] M. Bern and D. Eppstein. Polynomial-size nonobtuse triangulation of polygons. Int.
J. Comp. Geometry and Applications 2 (1992) 241{255.

[25] M. Bern, D. Eppstein, and J.R. Gilbert. Provably good mesh generation. In Proc.

31st IEEE Symp. Foundations of Computer Science (1990) 231{241. To appear in
J. Comp. System Science.

[26] M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees and quality
triangulations. In Proc. 3rd Workshop on Algorithms and Data Structures, Springer-
Verlag LNCS 709 (1993) 188{199.

[27] M. Bern, D. Eppstein, and F. Yao. The expected extremes in a Delaunay triangu-
lation. Int. J. Comp. Geometry and Applications 1 (1991) 79{92.

[28] M. Bern and J.R. Gilbert. Drawing the planar dual. Inform. Process. Lett. 43 (1992)
7{13.

[29] M. Bern, S. Mitchell, and J. Ruppert. Linear-size nonobtuse triangulation of poly-
gons. In Proc. 10th ACM Symp. Comp. Geometry (1994) 221{230.

[30] J. Bloomenthal. Polygonization of implicit surfaces. CAGD 5 (1988) 341{355.

[31] J.D. Boissonat. Shape reconstruction from planar cross sections. Comp. Vision,
Graphics, and Image Processing 44 (1988) 1{29.

[32] J.D. Boissonat, O.D. Faugeras, and E. Le Bras-Mehlman. Representing stereo data
with the Delaunay triangulation. Tech. Rep. 788, INRIA, France, 1988.

[33] A. Bowyer. Computing Dirichlet tessellations. Computer J. 24 (1981) 162{166.

[34] K.Q. Brown. Voronoi diagrams from convex hulls. Inform. Process. Lett. 9 (1979)
223{228.

[35] E.K. Buratynski. A fully automatic three-dimensional mesh generator for complex
geometries. Int. J. Numer. Meth. Eng. 30 (1990) 931{952.

67

[36] A. Bykat. Design of a recursive, shape controlling mesh generator. Int. J. Numer.
Meth. Eng. 19 (1983) 1375{1390.

[37] G.F. Carey and J.T. Oden. Finite Elements: Computational Aspects. Prentice-Hall,
1984.

[38] G.F. Carey, M. Sharma, and K.C. Wang. A class of data structures for 2-d and 3-d
adaptive mesh re�nement. Int. J. Numer. Meth. Eng. 26 (1988) 2607{2622.

[39] J.E. Castillo, ed.Mathematical Aspects of Numerical Grid Generation.SIAM , 1991.

[40] J.C. Cavendish. Automatic triangulation of arbitrary planar domains for the �nite
element method. Int. J. Numer. Meth. Eng. 8 (1974) 679{696.

[41] J.C. Cavendish, D.A. Field, and W.H. Frey. An approach to automatic three-
dimensional �nite element mesh generation. Int. J. Numer. Meth. Eng. 21 (1985)
329{347.

[42] B. Chazelle. Convex partitions of polyhedra: a lower bound and worst-case optimal
algorithm. SIAM J. Comput. 13 (1984) 488{507.

[43] B. Chazelle. Triangulating a simple polygon in linear time. Disc. and Comp. Geom-
etry 6 (1991), 485{524.

[44] B. Chazelle, H. Edelsbrunner, L.J. Guibas, J.E. Hershberger, R. Seidel, and M.
Sharir. Selecting multiply covered points and reducing the size of Delaunay trian-
gulations. In Proc. 6th ACM Symp. Comp. Geometry (1990) 116{127.

[45] B. Chazelle and J. Incerpi. Triangulation and shape complexity. ACM Trans. on

Graphics 3 (1984) 135{152.

[46] B. Chazelle and L. Palios. Triangulating a nonconvex polytope. Disc. and Comp.

Geometry 5 (1990), 505{526.

[47] B. Chazelle and N. Shouraboura. Bounds on the size of tetrahedralizations. In Proc.
10th ACM Symp. Comp. Geometry (1994) 231{239.

[48] L.P. Chew. There are planar graphs almost as good as the complete graph. J. Comp.
System Science 39 (1989) 205{219.

[49] L.P. Chew. Constrained Delaunay triangulations. Algorithmica 4 (1989) 97{108.

[50] L.P. Chew. Guaranteed-quality triangular meshes. Tech. Rep. TR-89-983, Comp.
Science Dept., Cornell University, 1989.

[51] L.P. Chew. Guaranteed-quality mesh generation for curved surfaces. In Proc. 9th

ACM Symp. Comp. Geometry (1993) 274{280.

[52] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.

Computing 14 (1985) 210{223.

[53] K. Clarkson. Approximation algorithms for planar traveling salesman tours and
minimum-length triangulations. In Proc. 2nd ACM-SIAM Symp. Disc. Algorithms

(1991) 17{23.

68

[54] A.K. Cline and R.J. Renka. A constrained two-dimensional triangulation and the so-
lution of closest node problems in the presence of barriers. SIAM J. Numer. Analysis

27 (1990) 1305{1321.

[55] E.F. D'Azevedo and R.B. Simpson. On optimal interpolation triangle incidences.
SIAM J. Sci. Stat. Comput. 10 (1989) 1063{1075.

[56] L. De Floriani, B. Falcidieno, and C. Pienovi. Delaunay-based representation of
surfaces de�ned over arbitrarily shaped domains. Computer Vision, Graphics, and
Image Processing 32 (1985) 127{140.

[57] L. De Floriani, B. Falcidieno, C. Pienovi, and G. Nagy. On sorting triangles in a
Delaunay tessellation. Algorithmica 6 (1991) 522{532.

[58] B. Delaunay. Sur la sph�ere vide. Izvestia Akademia Nauk SSSR, VII Seria, Otdelenie
Matematicheskii i Estestvennyka Nauk 7 (1934) 793{800.

[59] T. Dey. Triangulation and CSG representation of polyhedra with arbitrary genus.
In Proc. 7th ACM Symp. Comp. Geometry (1991) 364{372.

[60] T. Dey, C. Bajaj, and K. Sugihara. On good triangulations in three dimensions. Int.
J. Comp. Geometry and Applications 2 (1992) 75{95.

[61] T. Dey, M.B. Dillencourt, and S.K. Ghosh. Triangulating with high connectivity.
Tech. Report 94-24, Dept. of Inform. and Comp. Science, UC-Irvine, 1994. To appear
in 6th Canad. Conf. Comp. Geometry.

[62] M.T. Dickerson, R.L.S. Drysdale, S.A. McElfresh, E. Welzl. Fast greedy triangula-
tion algorithms. In Proc. 10th ACM Symp. Comp. Geometry (1994) 211{220.

[63] M.B. Dillencourt and W.D. Smith. A simple method for resolving degeneracies in
Delaunay triangulations. In Proc. 20th Int. Colloq.| Automata, Languages, and

Programming. (1993) Springer-Verlag LNCS 700, 177{188.

[64] H. Djidjev and A. Lingas. On computing the Voronoi diagram for restricted pla-
nar �gures. In Proc. 2nd Worksh. Algorithms and Data Structures. Springer-Verlag
LNCS 519 (1991) 54{64.

[65] D. Dobkin, S. Friedman, and K. Supowit. Delaunay graphs are almost as good as
complete graphs. Disc. and Comp. Geometry 5 (1990) 399{407.

[66] D. Dobkin, S. Levy, W. Thurston, and A. Wilks. Contour tracing by piecewise linear
approximations. ACM Trans. on Graphics 9 (1990) 389{423.

[67] R.D. D�uppe and H.J. Gottschalk. Automatische Interpolation von Isolinien bei
willk�urlichen St�utzpunkten. Allgemeine Vermessungsnachrichten 77 (1970) 423{426.

[68] R.A. Dwyer. Higher-dimensional Voronoi diagrams in linear expected time. Disc.
and Comp. Geometry 6 (1991) 343{367.

[69] N. Dyn, D. Levin, and S. Rippa. Data dependent triangulations for piecewise linear
interpolation. IMA J. Numer. Analysis 10 (1990) 137{154.

[70] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

69

[71] H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimensions. Combi-
natorica 18 (1990) 251{260.

[72] H. Edelsbrunner and E.P. M�ucke. Simulation of simplicity, a technique to cope with
degenerate cases in geometric computations. ACM Trans. Graphics 9 (1990) 66{104.

[73] H. Edelsbrunner and N.R. Shah. Incremental topological
ipping works for regular
triangulations. In Proc. 8th ACM Symp. Comp. Geometry (1992) 43{52.

[74] H. Edelsbrunner and N.R. Shah. Triangulating topological spaces. In Proc. 10th

ACM Symp. Comp. Geometry (1994) 285{292.

[75] H. Edelsbrunner and T.S. Tan. A quadratic time algorithm for the minmax length
triangulation. In Proc. 32nd IEEE Symp. Foundations of Comp. Science (1991)
414{423.

[76] H. Edelsbrunner and T.S. Tan. An upper bound for conforming Delaunay triangu-
lations. Disc. and Comp. Geometry 10 (1993) 197{213.

[77] H. Edelsbrunner, F.P. Preparata, and D.B. West. Tetrahedrizing point sets in three
dimensions. J. Symbolic Comp. 10 (1990) 335-347.

[78] H. Edelsbrunner, T.S. Tan, and R. Waupotitsch. A polynomial time algorithm for
the minmax angle triangulation. SIAM J. Sci. Stat. Comp. 13 (1992) 994{1008.

[79] H. ElGindy and D. Avis. A linear algorithm for computing the visibility polygon
from a point. J. Algorithms 2 (1981) 186{197.

[80] D. Eppstein. The farthest point Delaunay triangulation minimizes angles. Comp.
Geometry Theory and Applications 1 (1992) 143{148.

[81] D. Eppstein. Approximating the minimum weight triangulation. Disc. and Comp.

Geometry 11 (1994) 163{191.

[82] D.A. Field. Implementing Watson's algorithm in three dimensions. In Proc. 2nd

ACM Symp. Comp. Geometry (1986) 246{259.

[83] D.A. Field. Laplacian smoothing and Delaunay triangulations. Comm. in Applied

Numer. Analysis 4 (1988) 709{712.

[84] D.A. Field. Delaunay criteria for triangulating surfaces. In Curves and Surfaces in

Comp. Vision and Graphics III. Proc. SPIE 1830 (1992) 237{246.

[85] D.A. Field and W.D. Smith. Graded tetrahedral �nite element meshes. Int. J. Nu-
mer. Meth. Eng. 31 (1991) 413{425.

[86] R.A. Finkel and J.L. Bentley. Quad trees: a data structure for retrieval on composite
keys. Acta Inform. 4 (1974) 1{9.

[87] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica 2 (1987) 153{
174.

[88] S. Fortune. Voronoi diagrams and Delaunay triangulations. In Computing in Eu-

clidean Geometry, F.K. Hwang and D.Z. Du, eds., World Scienti�c, 1992.

[89] W.H. Frey. Selective re�nement: a new strategy for automatic node placement in
graded triangular meshes. Int. J. Numer. Meth. Eng. 24 (1987) 2183{2200.

70

[90] W.H. Frey and D.A. Field. Mesh relaxation: a new technique for improving trian-
gulations. Int. J. Numer. Meth. Eng. 31 (1991) 1121{1133.

[91] I. Fried. Condition of �nite element matrices generated from nonuniform meshes.
AIAA J. 10 (1972) 219{221.

[92] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman, 1979.

[93] M.R. Garey, D.S. Johnson, F.P. Preparata, and R.E. Tarjan. Triangulating a simple
polygon. Inform. Process. Lett. 7 (1978) 175{179.

[94] P.L. George, F. Hecht, and E. Saltel. Constraint of the boundary and automatic
mesh generation. In Proc. 2nd Int. Conf. on Numer. Grid Generation in Comp.

Fluid Mechanics (1988).

[95] P.L. George, F. Hecht, and E. Saltel. Fully automatic mesh generator for 3D domains
of any shape. Impact of Com. in Sci. and Eng. 2 (1990) 187{218.

[96] P.D. Gilbert. New results in planar triangulations. Report R{850, Univ. Illinois
Coordinated Science Lab (1979).

[97] C. Gitlin, J. O'Rourke, and V. Subramanian. On reconstructing polyhedra from
parallel slices. Tech. Report 025, Dept. of Computer Science, Smith College, 1993.

[98] C. Gold, T. Charters, and J. Ramsden. Automated contour mapping using triangular
element data structures and an interpolant over each irregular triangular domain,
In Proc. Siggraph, 1977, 170{175.

[99] J.E. Goodman and J. Pach. Cell decomposition of polytopes by bending. Israel J.
of Math. 64 (1988) 129{138.

[100] J. Gregory. Error bounds for linear interpolation on triangles, The Mathematics of

Finite Elements and Application II , J. R. Whiteman, ed., Academic Press, London,
1975, 163{170.

[101] L.J. Guibas, D.E. Knuth, and M. Sharir. Randomized incremental construction of
Delaunay and Voronoi diagrams. Algorithmica 7 (1992) 381{413. Also in Proc. 17th

Int. Colloq.| Automata, Languages, and Programming. Springer-Verlag LNCS 443
(1990) 414{431.

[102] H. Hagen, M. M�uller, and G.M. Nielson. Focus on Scienti�c Visualization, Springer-
Verlag, 1993.

[103] B. Hamann. A data reduction scheme for triangulated surface. CAGD 11 (1994)
197{214.

[104] D. Hansford. The neutral case for the min-max triangulation. CAGD 7 (1990) 431{
438.

[105] L.R. Hermann. Laplacian-isoparametric grid generation scheme. J. of the Eng. Me-

chanics Div. of the American Soc. of Civil Engineers 102 (October 1976) 749{756.

[106] J. Hershberger. Finding the visibility graph of a polygon in time proportional to its
size. Algorithmica 4 (1989) 141{155.

71

[107] J. Hershberger and J. Snoeyink. Convex polygons made from few lines and convex
decompositions of polyhedra. In Proc. 3rd Scand. Workshop on Algorithm Theory,
Springer-Verlag LNCS 621 (1992) 376{387.

[108] S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. 4th Conf. Foun-
dations of Computation Theory . Springer-Verlag LNCS 158 (1983) 207{218.

[109] K. Ho-Le. Finite element mesh generation methods: a review and classi�cation.
Computer-Aided Design 20 (1988) 27{38.

[110] T.C. Hu and A.C. Tucker. Optimal computer search trees and variable length al-
phabetic codes. SIAM J. Applied Math. 21 (1971) 514{532.

[111] A. Jameson, T.J. Baker, and N.P. Weatherill. Calculation of inviscid transonic
ow
over a complete aircraft. In Proc. AIAA 24th Aerospace Sciences Meeting, Reno,
1986.

[112] P. Jamet. Estimations d'erreur pour des elements �nis droits presque degeneres.
Tech. Report CRM-447, Centre d'Etudes de Limeil.

[113] K. Jansen. One strike against the min-max degree triangulation problem. Comp.
Geometry Theory and Applications 3 (1993) 107{120.

[114] B. Joe. Delaunay triangular meshes in convex polygons. SIAM J. Sci. Stat. Comput.

7 (1986) 514{539.

[115] B. Joe. Three-dimensional triangulations from local transformations. SIAM J. Sci.

Stat. Comput. 10 (1989) 718{741.

[116] B. Joe. On the correctness of a linear-time visibility polygon algorithm. Intern. J.
Computer Math. 32 (1990) 155-172.

[117] B. Joe. Construction of three-dimensional Delaunay triangulations using local trans-
formations. CAGD 8 (1991) 123{142.

[118] B. Joe. Delaunay versus max-min solid angle triangulations for three-dimensional
mesh generation. Int. J. Numer. Meth. Eng. 31 (1991) 987{997.

[119] B. Joe and R.B. Simpson. Triangular meshes for regions of complicated shape. Int.
J. Numer. Meth. Eng. 23 (1986) 751{778.

[120] B. Joe and R.B. Simpson. Corrections to Lee's visibility polygon algorithm. BIT 27
(1987) 458{473.

[121] M.T. Jones and P.E. Plassmann. Parallel algorithms for adaptive mesh re�nement.
Tech. Report MCS-P421-0394, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 1994.

[122] J.M. Keil and C.A. Gutwin. The Delaunay triangulation closely approximates
the complete Euclidean graph. 1st Worksh. on Algorithms and Data Structures.
Springer-Verlag LNCS 382 (1989) 47{56.

[123] J.M. Keil and C.A. Gutwin. Classes of graphs which approximate the complete
Euclidean graph. Disc. and Comp. Geometry 7 (1992) 13{28.

72

[124] D.G. Kirkpatrick. A note on Delaunay and optimal triangulations. Inform. Process.
Lett. 10 (1980) 127{128.

[125] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science 220 (1983) 671{680.

[126] R. Klein and A. Lingas. A linear-time randomized algorithm for the bounded Voronoi
diagram of a simple polygon. In Proc. 9th ACM Symp. on Comp. Geometry (1993)
124{132.

[127] G.T. Klincsek. Minimal triangulations of polygonal domains. Ann. Disc. Math. 9
(1980) 121{123.

[128] C.L. Lawson. Software for C1 surface interpolation. in J. Rice, ed., Mathematical

Software III, Academic Press (1977) 161{194.

[129] D.T. Lee. Proximity and reachability in the plane. Tech. Rep. R{831, Coordinated
Science Laboratory, Univ. Illinois, 1978.

[130] D.T. Lee. Visibility of a simple polygon. Comput. Vision, Graphics, and Image Proc.
22 (1983) 207{221.

[131] D.T. Lee and A. Lin. Generalized Delaunay triangulation for planar graphs. Disc.
and Comp. Geometry 1 (1986) 201{217.

[132] N.J. Lennes. Theorems on the simple �nite polygon and polyhedron. Am. J. Math.

33 (1911) 37{62.

[133] C. Levcopoulos. An
(
p
n) lower bound for non-optimality of the greedy triangula-

tion. Inform. Process. Lett. 25 (1987) 247{251.

[134] C. Levcopoulos and A. Lingas. On approximation behavior of the greedy triangula-
tion for convex polygons. Algorithmica 2 (1987) 175{193.

[135] C. Levcopoulos and A. Lingas. Fast algorithms for greedy triangulation. BIT 32
(1992) 280{296. Also in Proc. 2nd Scand. Worksh. Algorithm Theory, Springer-
Verlag LNCS 447 (1990) 238{250.

[136] D.A. Lindholm. Automatic triangular mesh generation on surfaces of polyhedra.
IEEE Trans. Magnetics MAG-19 (1983) 2539{2542.

[137] A. Lingas. Advances in minimum weight triangulation. Ph.D. thesis, Link�oping
Univ., 1983.

[138] A. Lingas. Voronoi diagrams with barriers and their applications. Inform. Process.
Lett. 32 (1989) 191{198.

[139] R.J. Lipton, D.J. Rose, and R.E. Tarjan. Generalized nested dissection. SIAM J.

Numer. Analysis 16 (1979) 346{358.

[140] E.L. Lloyd. On triangulations of a set of points in the plane. In Proc. 18th IEEE

Symp. Found. Comp. Sci. (1977) 228{240.

[141] S.H. Lo. A new mesh generation scheme for arbitrary planar domains. Int. J. Numer.
Meth. Eng. 21 (1985) 1403{1426.

73

[142] S.H. Lo. Delaunay triangulation of nonconvex planar domains. Int. J. Numer. Meth.

Eng. 28 (1989) 2695{2707.

[143] S.H. Lo. Automatic mesh generation and adaptation by using contours. Int. J. Nu-
mer. Meth. Eng. 31 (1991) 689{707.

[144] R. L�ohner. Finite elements in CFD: what lies ahead. Int. J. Numer. Meth. Eng. 24
(1987) 1741{1756.

[145] R. L�ohner. Generation of three-dimensional unstructured grids by the advancing-
front method. In Proc. AIAA 26th Aerospace Sciences Meeting, Reno, 1988.

[146] G.K. Manacher and A.L. Zobrist. Neither the greedy nor the Delaunay triangulation
approximates the optimum. Inform. Process. Lett. 9 (1979) 31{34.

[147] O. Marcotte and S. Suri. Fast matching algorithms for points on a polygon. SIAM
J. Comput. 20 (1991) 405{422.

[148] J. Matou�sek. Reporting points in halfspaces. In Proc. 32nd IEEE Symp. Foundations

of Comp. Science (1991) 207{215.

[149] A. Maus. Delaunay triangulation and the convex hull of n points in expected linear
time. BIT 24 (1984) 151{163.

[150] D.J. Mavriplis. Unstructured and adaptive mesh generation for high Reynolds num-
ber viscous
ows. ICASE Report 91-25, NASA Langley Research Center, 1991.

[151] E. Melissaratos and D. Souvaine. Coping with inconsistencies: a new approach to
produce quality triangulations of polygonal domains with holes for the the �nite
element method. In Proc. 8th ACM Symp. Comp. Geom. (1992) 202{211.

[152] R.E. Miles. On the homogeneous planar Poisson point process. Mathematical Bio-

sciences 6 (1970) 85{127.

[153] G.L. Miller and W. Thurston. Separators in two and three dimensions. In Proc.

22nd ACM Symp. Theory of Computing (1990) 300{309.

[154] G.L. Miller, S.-H. Teng, and S.A. Vavasis. A uni�ed geometric approach to graph
separators. In Proc. 32nd IEEE Symp. on Foundations of Comp. Science (1991)
538{547.

[155] S.A. Mitchell. Re�ning a triangulation of a planar straight-line graph to eliminate
large angles. In Proc. 34th IEEE Symp. on Foundations of Comp. Science (1993)
583{591.

[156] S.A. Mitchell. Finding a covering triangulation whose maximum angle is prov-
ably small. In Proc. 17th Computer Science Conference, Australian Comp. Science
Comm. 16 (1994) 55{64.

[157] S.A. Mitchell and S. Vavasis. Quality mesh generation in three dimensions. In Proc.

8th ACM Symp. Comp. Geom. (1992) 212-221.

[158] D. Moore and J. Warren. Adaptive mesh generation I: packing space. Tech. Report
TR 90-106, Dept. of Computer Science, Rice University, 1990.

74

[159] D.M. Mount and A. Saalfeld. Globally-equiangular triangulations of co-circular
points in O(n log n) time. In Proc. 4th ACM Symp. Comp. Geom. (1988) 143{152.

[160] J.-D. M�uller. Proven angular bounds and stretched triangulations with the frontal
Delaunay method. In Proc. 11th AIAA Comp. Fluid Dyanmics, Orlando, 1993.

[161] S. M�uller, K. Kells, and W. Fichtner. Automatic rectangle-based adaptvie mesh
generation without obtuse angles. IEEE Trans. Computer-Aided Design 11 (1992)
855{863.

[162] K. Mulmuley. Computational Geometry: An Introduction through Randomized Al-

gorithms. Prentice-Hall, Englewood Cli�s, 1994.

[163] O.R. Musin. Delaunay triangulation and optimality. ARO Worksh. Comp. Geome-

try, Raleigh, North Carolina, 1993.

[164] L.R. Nackman and V. Srinivasan. Point placement for Delaunay triangulation of
polygonal domains. In Proc. 3rd Canadian Conf. Comp. Geometry (1991) 37-40.

[165] S. Olariu, S. Toida, and M. Zubair. On a conjecture by Plaisted and Hong. J. Alg.
9 (1988) 597{598.

[166] M.E.G. Ong. Uniform re�nement of a tetrahedron. To appear in SIAM J. Sci. Stat.

Comp.

[167] C.H. Papadimitriou, A.A. Sch�a�er, and M. Yannakakis. Simple local search problems
that are hard to solve. SIAM J. Comput. 20 (1991) 56{87.

[168] J. Peraire, J. Peiro, L. Formaggia, K. Morgan, and O.C. Zienkiewicz. Finite element
Euler computations in three dimensions. In Proc. AIAA 26th Aerospace Sciences

Meeting, Reno, 1988.

[169] R. Perucchio, M. Saxena, and A. Kela. Automatic mesh generation from solid models
based on recursive spatial decomposition. Int. J. Numer. Meth. Eng. 28 (1989) 2469{
2502.

[170] D.A. Plaisted and J. Hong. A heuristic triangulation algorithm. J. Algorithms 8
(1987) 405{437.

[171] M.-A. Posenau. Approaches to high aspect ratio triangulations. In Proc. 5th Cana-

dian Conf. Comp. Geometry (1993) 30{35.

[172] M.-A. Posenau and D.M. Mount. Delaunay triangulation and computational
uid
dynamics meshes. In Proc. 4th Canadian Conf. Comp. Geometry (1993) 316{321.

[173] F.P. Preparata and S.J. Hong. Convex hulls of �nite sets of points in two and three
dimensions. Commun. Assoc. Comput. Mach. 20 (1977) 87{93.

[174] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction,
Springer-Verlag, 1985.

[175] J.F. Randolph. Calculus and Analytic Geometry. Wadsworth, 1961, 373{374.

[176] V.T. Rajan. Optimality of the Delaunay triangulation in R
d. In Proc. 7th ACM

Symp. Comp. Geometry (1991) 357{363.

75

[177] S. Rippa. Minimal roughness property of the Delaunay triangulation. CAGD 7
(1990) 489{497.

[178] S. Rippa and B. Schi�. Minimum energy triangulations for elliptic problems. Comp.
Meth. in Applied Mech. and Eng. 84 (1990) 257{274.

[179] M.-C. Rivara. Algorithms for re�ning triangular grids suitable for adaptive and
multigrid techniques. Int. J. Numer. Meth. Eng. 20 (1984) 745{756.

[180] M.-C. Rivara. A discussion on the triangulation re�nement problem. In Proc. 5th

Canadian Conf. Comp. Geometry (1993) 42{47.

[181] M.-C. Rivara and C. Levin. A 3-d re�nement algorithm suitable for adaptive and
multi-grid techniques. Comm. in Appl. Numer. Meth. 8 (1992) 281{290.

[182] I.G. Rosenberg and F. Stenger. A lower bound on the angles of triangles constructed
by bisecting the longest side. Math. Comp. 29 (1975) 390{395.

[183] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation.
In Proc. 4th ACM-SIAM Symp. on Disc. Algorithms (1993) 83{92.

[184] J. Ruppert and R. Seidel. On the di�culty of tetrahedralizing 3-dimensional non-
convex polyhedra. Disc. and Comp. Geometry 7 (1992) 227{253.

[185] A. Saalfeld. Delaunay edge re�nements. In Proc. 3rd Canadian Conf. Comp. Geom-

etry (1991) 33-36.

[186] S. Salzberg, A. Delcher, D. Heath, and S. Kasif. Learning with a helpful teacher. In
Proc. 12th Int. Joint Conf. Arti�cial Intelligence (1991).

[187] H. Samet. The quadtree and related hierarchical data structures. Computing Surveys
16 (1984) 188-260.

[188] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

[189] N. Sapidis and R. Perucchio. Advanced techniques for automatic �nite element mesh-
ing from solid models. Computer-Aided Design 21 (1989) 248{253.

[190] N. Sapidis and R. Perucchio. Delaunay triangulation of arbitrarily shaped planar
domains. CAGD 8 (1991) 421{438.

[191] L.L. Scarlatos and T. Pavlidis. Optimizing triangulations by curvature equalization.
In Proc. Visualization '92 , IEEE Comput. Soc. Press, 333{339.

[192] D. Schmitt and J.-C. Spehner. On equiangularity of Delaunay diagrams in every
dimension. In Proc. 5th Canadian Conf. Comp. Geometry (1993) 346{351.

[193] E. Sch�onhardt. �Uber die Zerlegung von Dreieckspolyedern in Tetraeder. Math. An-

nalen 98 (1928) 309{312.

[194] W.J. Schroeder and M.S. Shephard. Geometry-based fully automatic mesh gener-
ation and the Delaunay triangulation. Int. J. Numer. Meth. Eng. 26 (1988) 2503{
2515.

[195] L.L. Schumaker. Triangulation methods. In Topics in Multivariate Approximation,
C.K. Chui, L.L. Schumaker, and F.I. Utreras, eds., Academic Press, 1987, 219{232.

76

[196] L.L. Schumaker. Reconstructing 3D objects from cross-sections. In Computation

of Curves and Surfaces, W. Dahmen, M. Gasca, and C.A. Micchelli, eds., Kluwer
Academic Publishers, 1989, 275{309.

[197] R. Seidel. A convex hull algorithm optimal for point sets in even dimensions. Report
81-14, Dept. of Computer Science, U. British Columbia, 1981.

[198] R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams with obsta-
cles. In H.S. Poingratz and W. Schinnerl, eds., 1978-1988 Ten Years IIG (1988)
178{191.

[199] R. Seidel. Backwards analysis of randomized geometric algorithms. ICSI Tech. Re-
port TR-92-014, 1992.

[200] M.I. Shamos and D. Hoey. Closest-point problems. In Proc. 16th IEEE Symp. Foun-

dations of Comp. Science (1975) 151{162.

[201] J.G. Shaw. Xerox Webster Research Center, Webster, New York.

[202] M.S. Shephard. Approaches to the automatic generation and control of �nite element
meshes. Appl. Mech. Rev. 41 (1988) 169{185.

[203] M.S. Shephard, F. Guerinoni, J.E. Flaherty, R.A. Ludwig, and P.L. Baehmann.
Finite octree mesh generation for automated adaptive three-dimensional
ow anal-
ysis. In Proc. of 2nd Int. Conf. on Numer. Grid Generation in Computational Fluid

Mechanics (1988) 709{718.

[204] R. Sibson. Locally equiangular triangulations. Computer J. 21 (1978) 243{245.

[205] D. Sleator, R.E. Tarjan, and W. Thurston. Rotation distance, triangulations, and
hyperbolic geometry. J. Amer. Math. Soc. 1 (1988) 647{682.

[206] W.D. Smith. Studies in Discrete and Computational Geometry. PhD thesis, Prince-
ton University, 1988.

[207] W.D. Smith. Implementing the Plaisted-Hong min-length plane triangulation heuris-
tic. Manuscript cited by [53], 1989.

[208] V. Srinivasan, L.R. Nackman, J-M. Tang, and S.N. Meshkat. Automatic mesh gen-
eration using the symmetric axis tranformation of polygonal domains. Tech. Rept.
RC 16132, Comp. Science, IBM Research Division, Yorktown Heights, NY, 1990.

[209] G. Strang and G.J. Fix. An Analysis of the Finite Element Method. Prentice-Hall,
1973.

[210] T.-S. Tan. An optimal bound for conforming quality triangulations. In Proc. 10th

ACM Symp. Comp. Geometry (1994) 240{249.

[211] R.E. Tarjan and C.J. Van Wyk. An O(n log log n)-time algorithm for triangulating
a simple polygon. SIAM J. Comput. 17 (1988) 143{178.

[212] W.C. Thacker. A brief review of techniques for generating irregular computational
grids. Int. J. Numer. Meth. Eng. 15 (1980) 1335{1341.

[213] J.F. Thompson, ed. Numerical Grid Generation. North-Holland, 1982.

77

[214] J.F. Thompson, Z.U.A. Warsi, C.W. Mastin. Numerical Grid Generation: Founda-

tions and Applications. North-Holland, 1985.

[215] G.T. Toussaint, C. Verbrugge, C. Wang, and B. Zhu. Tetrahedralization of simple
and non-simple polyhedra. In Proc. 5th Canadian Conf. Comp. Geometry (1993)
24{29.

[216] P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Practice.
Kluwer Academic Publishers, Dordrecht, the Netherlands, 1987.

[217] S.A. Vavasis. Stable �nite elements for problems with wild coe�cients. Tech. Report
TR93-1364, Dept. of Comp. Science, Cornell University, 1993.

[218] C. Wang and L. Schubert. An optimal algorithm for constructing the Delaunay
triangulation of a set of line segments. In Proc. 3rd ACM Symp. Comp. Geometry

(1987) 223{232.

[219] D.F. Watson. Computing the n-dimensional Delaunay tessellation with application
to Voronoi polytopes. Computer J. 24 (1981) 167{171.

[220] D.F. Watson and G.M. Philip. Systematic triangulations. Computer Vision, Graph-
ics, and Image Processing 26 (1984) 217{223.

[221] R.D. Williams. Adaptive parallel meshes with complex geometry. Tech. Report
CRPC-91-2, Center for Research on Parallel Computation, California Inst. of Tech-
nology, 1991.

[222] A.M.Winslow. An irregular triangle mesh generator. Report UCXRL-7880, National
Technical Information Service, Spring�eld, VA, 1964.

[223] F.F. Yao. Speed-up in dynamic programming. SIAM J. Algebraic and Disc. Methods

3 (1982) 532{540.

[224] M.A. Yerry and M.S. Shephard. A modi�ed quadtree approach to �nite element
mesh generation. IEEE Computer Graphics and Applications 3 (January/February
1983) 39{46.

[225] M.A. Yerry and M.S. Shephard. Automatic three-dimensional mesh generation by
the modi�ed-octree technique. Int. J. Numer. Meth. Eng. 20 (1984) 1965{1990.

78

