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ABSTRACT

We describe methods for triangulating polygonal regions of the plane so that no
triangle has a large angle. Our main result is that a polygon with n sides can be trian-
gulated with O(n2) nonobtuse triangles. We also show that any triangulation (without
Steiner points) of a simple polygon has a refinement with O(n4) nonobtuse triangles.
Finally we show that a triangulation whose dual is a path has a refinement with only
O(n2) nonobtuse triangles.
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1. Introduction

One of the classical motivations for problems in computational geometry has
been automatic mesh generation for finite element methods. In particular, mesh
generation has motivated a number of triangulation algorithms, such as finding a
triangulation that minimizes the maximum angle.1 A triangulation algorithm takes
a geometric input, typically a point set or polygonal region, and produces an output
that is a triangulation of the input. For a point set, this usually means partitioning
the region bounded by its convex hull into triangles, such that the vertices of the
triangles are exactly the input vertices. Triangulating a polygonal region usually
means partitioning the region into triangles such that the vertices of the triangles
are exactly the vertices of the region’s boundary. In both cases, the output must
be a simplicial complex, that is, triangles intersect only at shared vertices or edges.

Mesh generation applications, however, invariably place further requirements
on the triangulation, stemming from numerical analysis. Very flat and very sharp
angles are undesirable.2,3 To satisfy angle bounds, it may be necessary to augment
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the input by adding new vertices, called Steiner points. Because the complexity
of the finite element computation depends on the size of the mesh, the number
of Steiner points should be kept small. Until recently, computational geometers
neglected the more realistic Steiner versions of triangulation problems, and concen-
trated on problems that do not allow extra vertices.

An upper bound of 90◦ has special importance in mesh generation. A triangu-
lation of a point set with maximum angle 90◦ is necessarily the Delaunay triangu-
lation. In finite element methods for solving certain partial differential equations,
a nonobtuse mesh leads to a matrix with nice numerical propertices, such as all
off-diagonal elements being nonpositive.4 For a more geometric motivation, notice
that each (closed) triangle in a triangulation contains the center of its circumscrib-
ing circle exactly when all angles measure at most 90◦. The “perpendicular planar
dual” of such a triangulation can be formed by simply joining perpendicular bisec-
tors of edges. Practitioners often use a mesh and its dual—sometimes with bent
edges in the dual—to discretize vector fields.4 In general, a straight-line embedding
of the planar dual of a triangular mesh can be formed by placing dual vertices at
the meeting point of angle bisectors5; however, a perpendicular planar dual is more
accurate and simplifies the calculation of flow or forces across element boundaries.

1.1. Summary of Results

In this paper we consider the problem of triangulating a polygonal region so
that all angles measure at most 90◦. We give the first algorithm that produces such
a nonobtuse triangulation with size (number of triangles) bounded by a polynomial
in n, the number of sides of the input polygon. The only previous provably-correct
algorithms, due to Baker et al.,4 have no size guarantees. Indeed, the size of the
triangulations produced by the algorithms of Baker et al. depend on the geometry
of the input, and hence can be arbitrarily large, even when n is fixed.

Our main result is that an arbitrary polygon can be triangulated with O(n2)
nonobtuse triangles. The polygon need not be simple; it may contain polygonal
holes. We also consider the problem of refining a given triangulation of a polygon
(without Steiner points) into a nonobtuse triangulation. We achieve O(n4) triangles
for arbitrary simple polygons, and O(n2) for the special case of a polygon with
a “path triangulation”, that is, a triangulation whose dual is a path. All our
algorithms can be made to run in time O(n log n + k), where k is the size of the
output.

Our angle bound is the best possible for polynomial-size triangulations. Our
work with John R. Gilbert6 shows that any smaller fixed bound on the largest angle
would require the number of triangles to depend not only on the size of the input,
but also on its aspect ratio. Consider for example an input that is an extremely
long, thin rectangle R. A triangle with a maximum angle of, say, 89◦ must have
longest side no longer than a constant multiple of R’s smaller dimension, and hence
a large number of these triangles would be needed to cover R.
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1.2. Related Work

The original computational geometry result motivated by mesh generation is
that the Delaunay triangulation of a point set maximizes the minimum angle.7,8,9

(It is a curiously similar fact that, for points in convex position, the farthest-point
Delaunay triangulation minimizes the minimum angle.10) For polygons the mini-
mum angle is maximized by the constrained Delaunay triangulation.11,12 It is also
known how to compute the triangulations that minimize the maximum angle,1

maximize the minimum triangle height,13 and minimize the maximum triangle
“eccentricity”13 for both point sets and polygons.

Theoretical work on Steiner triangulation problems is less common. In an ear-
lier paper,6 we developed algorithms based on quadtrees for a number of Steiner
triangulation problems. In a certain strong sense, we solved the problems of Steiner-
triangulating point sets and polygonal regions with no small angles (when the min-
imum angle bound is sufficiently small, for example no more than 18.4◦). For each
input our algorithms produce an output that has size within a constant factor of the
optimal size. The number of triangles required necessarily depends not only on the
size of the input, but also on its aspect ratio. We also showed how to triangulate
point sets with no large angles. If the angle bound is less than 90◦, the solution is
essentially identical to that for no small angles; but if the only requirement is that
there be no obtuse angles, the point set can be triangulated with only linearly many
Steiner points.

Gerver14 showed how to compute a nonpolynomial-size triangulation of a poly-
gon with no angles larger than 72◦, assuming all interior angles of the input measure
at least 36◦. As mentioned above, Baker et al.4 gave a nonpolynomial algorithm
for nonobtuse triangulation, thereby showing that every polygon has such a trian-
gulation. They gave a simple algorithm for nonobtuse triangulation of a polygon
whose vertices have integer coordinates. This algorithm imposes a unit grid on the
polygon, so it typically uses an exponential (in the size of the encoding of the input)
number of triangles. They went on to give a somewhat more complicated algorithm
for the general problem. This second algorithm also avoids angles smaller than 14◦,
and is thus inherently nonpolynomial as well. Our earlier result that point sets can
be triangulated with O(n) nonobtuse triangles led us to suspect that polygons too
could be triangulated with a polynomial number of nonobtuse triangles. Subse-
quent to the work reported here, Eppstein devised an algorithm that triangulates a
convex polygon with O(n1.85) nonobtuse triangles (included in Ref. 18).

2. Obtuse with subdivided legs

In this section, we develop the main subroutine of our nonobtuse triangulation
algorithm. In the next section, we shall present the full algorithm. Throughout
this paper, we use hypotenuse to mean the longest side of a triangle and legs to
mean the other two sides. A subdivision point is a vertex of a polygon at which
the angle measures 180◦. A nonobtuse (nonacute) angle is one measuring at most
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(respectively, at least) 90◦. The measure of angle 6 abc is denoted |6 abc|.
Suppose we are given a triangle ace with hypotenuse ae as its horizontal base,

with | 6 ace| ≥ 90◦, and with subdivided legs. In this section we show how to
triangulate this input into nonobtuse triangles, without adding any new subdivision
points to the legs. Our overall stategy is to replace the legs by ones sloped slightly
closer to the horizontal, while keeping the base fixed. The region between the old
legs and the new legs is triangulated in such a way as to reduce the total number
of subdivision points by one. The remaining subdivision points propagate towards
the polygon boundary.

Figure 1. Base cases.

We have two different reduction methods, called apex merger and side merger .
Roughly speaking, an apex merger combines the first subdivision point on one leg
with apex c; a side merger combines two closely-spaced subdivision points. The
reduction methods given here have been simplified somewhat from the reduction
methods given in the conference version of this paper.15

Our first two lemmas and Figure 1 give the basis of an induction. Lemmas 3
and 4 then give “coroutines” for the inductive step; each of these lemmas calls the
other on a triangle with at most n− 1 subdivision points.
Lemma 1. If ace is a right triangle with one subdivision point on a leg, ace can

be triangulated into three right triangles, with one subdivision point on base ae.

Proof. Simply add the edge from the subdivision point to the opposite vertex of
ace; then drop the altitude from the subdivision point perpendicular to base ae. 2

Lemma 2. If triangle ace is obtuse with no subdivision points, then it can be

triangulated into two nonobtuse triangles, adding one subdivision to base ae.

Proof. Simply drop the altitude from c to ae. 2

Lemma 3. Assume nonacute triangle ace has n ≥ 1 subdivision points, all on

one leg. Using O(n) nonobtuse triangles, either we can reduce the untriangulated

portion of ace to a nonacute triangle ac′e with n− 1 subdivision points, or we can

completely triangulate ace adding at most n+ 1 subdivision points to base ae.

Proof. Without loss of generality, assume ac is the subdivided leg, and let b
be the subdivision point closest to c. If |6 ace| = 90◦, we simply add edge be and
reduce to the case of an obtuse triangle with n− 1 subdivision points.

So assume | 6 ace| > 90◦, and consider extending a perpendicular to ac at b and a
perpendicular to ce at c. Assume these meet at point c′ inside the (closed) triangle
ace. Now imagine adding edges that project the subdivision points along ac onto
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Figure 2. (a) Apex merger. (b) Side merger.

ac′, alternately projecting perpendicularly away from ac and perpendicularly onto
ac′. The first subdivision point b projects away (to point c’), the next one down
from b projects onto, and so forth. See Figure 2(a). Now if 6 bac′ is sufficiently small
(relative to the spacing of subdivision points), then none of these projection edges
cross each other, and triangle abc′ will be divided into some number of quadrilaterals
and one right triangle. Each quadrilateral has the nice property that it can be
divided into two right triangles with a diagonal. This move, in which we reduce the
number of subdivision points by combining the apex and an adjacent subdivision
point using the meeting point of perpendiculars, is called an apex merger .

So assume that the perpendiculars to ac at b and to ce at c do not meet at a
point c′ with sufficiently small 6 bac′. Instead define c′ to be the last point (i.e.,
furthest from b) in triangle ace along the perpendicular to ac at b, such that the
projection edges from ac do not cross. (Two line segments cross if they intersect at
a point that is interior to each segment.) Notice that |6 c′ce| > 90◦ since the apex
merger did not succeed.

One possibility is that c′ lies on base ae. (This case occurs whenever n ≤ 2 and
the apex merger fails.) We add the projection edges from ac to ac′, along with c′c,
and drop an altitude from c to c′e. Quadrilaterals are triangulated as before into
two right triangles. Now there is no untriangulated portion of ace, and the number
of Steiner points on base ae is at most n + 1. Look at Figure 2(b) and imagine c′

lying on base ae.
The other possibility is that c′ lies interior to ace. Now by our choice of c′

some adjacent pair of projection edges meet along ac′, as shown in Figure 2(b).
Along with the projection edges and quadrilateral diagonals, we add cc′, c′e, and
an altitude from c to c′e. Triangle ac′e has at most n−1 subdivision points, although
one of them has now moved to the right leg (necessitating Lemma 4 below). This
reduction step is called a side merger . 2

Notice that the algorithm given in the proof of Lemma 3 either reduces the
number of subdivision points by one without adding anything to base ae, or it
completely triangulates ace. The same will be true of our method for the case
of subdivisions on both legs. Therefore, we assert that the algorithm given by
Lemmas 1–4 adds at most n + 1 points to the base, and at most n if ace is right.
Because each merger uses O(n) triangles and removes one subdivision point, the
total number of triangles will be O(n(n − n′ + 2)), where n′ is the number of
subdivisions added to the base. We use these bounds recursively in the proof of the
next lemma.
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Figure 3. In both apex (a) and side (b) mergers, c′de is triangulated recursively.

Lemma 4. Assume triangle ace has n ≥ 2 subdivision points, with at least one on

each leg. Using O(n(n−n′+ 2)) triangles, either we can reduce the untriangulated

portion of ace to a nonacute triangle ac′e with n′ ≤ n− 1 subdivision points, or we

can completely triangulate ace adding n′ ≤ n+ 1 subdivisions to the base.

Proof. Let b and d be the closest subdivision points to c on ac and ce, respectively.
Let nr represent the number of subdivision points on the right leg ce.

We first try the apex merger of c with b. Assume that the perpendiculars to ac
at b and to ce at c meet at point c′ in ace, such that 6 cac′ is small enough that
no projection edges cross, as shown in Figure 3(a). In this case, we add edges c′d
and c′e. Triangle c′de has nr − 1 subdivisions, all one leg, so we can triangulate it
recursively, outputting at most nr subdivisions on base c′e. Thus we have reduced
the problem to triangulating ac′e, an obtuse triangle with one fewer subdivisions.

So assume the apex merger of c and b is not possible, and let c′ be the last point
in triangle ace along the perpendicular to ac at b such that no pair of adjacent
projection edges from ab onto ac′ cross. Since the apex merger failed, 6 c′cd is
obtuse.

Now if c′ lies on base ae, then we add edges bc′, c′c, and c′d; drop an altitude
from c to c′d; and triangulate the quadrilaterals along ab. These steps add n − nr
subdivision points to base ae and reduce the problem to triangulating c′de, an
obtuse triangle with nr subdivisions (on two legs). Triangle c′de is triangulated
recursively, adding at most nr + 1 subdivision points to ae, for a total of at most
n + 1. Because each merger removes a subdivision point at the cost of O(n) new
triangles, the total number of triangles used will be O(n(n − n′ + 2)), where n′ is
the number of subdivision points added to ae.

The remaining possibility is that c′ lies interior to ace. In this case, we can
perform a side merger. We add edges c′c, c′d, c′e, and an altitude from c onto
c′d, as shown in Figure 3(b). We then triangulate c′de recursively. After this step,
triangle ac′e has at most nr+1 subdivisions on leg c′e and n−nr−2 on leg ab′ (one
fewer due to the merger and another fewer because c′ is the apex and not counted
as a subdivision point), so the total number of subdivision points is at most n− 1.
As throughout, the number of triangles used in this step is O(n) per subdivision
point removed. 2

Theorem 1. An obtuse or right triangle with n subdivisions on its legs can be

triangulated with O(n2) nonobtuse triangles, without adding any new subdivisions

to the legs. 2
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3. Arbitrary Polygons

We now show how the method of the previous section can be applied to an
arbitrary polygon, possibly with holes. Our overall strategy is to partition the
polygon into some simple shapes, by cutting it with horizontal and vertical lines.
Each such shape can be either triangulated directly or divided into obtuse triangles
with subdivided legs, that can then be further triangulated using the methods
developed to prove Theorem 1.

Draw a vertical line segment through each vertex of the polygon, extending to
the boundaries of the polygon. These lines divide the polygons into slabs, which
we define as quadrilaterals with two vertical sides, possibly with subdivision points
on the vertical sides. In degenerate cases, two vertices may lie on the same vertical
line; this causes no problems.

Each vertex of a slab will be either an original input vertex, or a point where a
vertical line touches the polygon boundary. Draw a horizontal line segment through
each slab vertex, and extend the line segment to the last possible vertical segment.
In other words, each endpoint of a horizontal segment should lie either on a vertical
segment, or on the vertex inducing the horizontal, and each horizontal segment
should be as long as possible with this property. A polygon so divided is shown in
Figure 4(a).
Lemma 5. The above steps partition the polygon into regions of four types: (1)

rectangles with unsubdivided sides; (2) right triangles with hypotenuse on the

boundary of the polygon and vertical leg possibly subdivided; (3) obtuse trian-

gles with two sides on the boundary of the polygon, and one leg vertical and pos-

sibly subdivided; (4) slabs with two sides on the boundary of the polygon, and

two possibly-subdivided vertical sides, that cannot be simultaneously crossed by a

horizontal line.

Proof. Any other shape must have a vertex from which a line segment can
be extended vertically or horizontally. The construction only creates verticals and
horizontals, so any other line segments must be on the polygon boundary. 2

Theorem 2. Any n-vertex polygon (with holes) can be triangulated with O(n2)
nonobtuse triangles.

Proof. We apply the procedure above to subdivide the polygon into the shapes
listed in Lemma 5. Triangulating the rectangles is trivial. The right and obtuse
triangles can be triangulated by the method of the previous section. The slabs can
be divided by a diagonal into two obtuse triangles, that can then be triangulated
by the method of the previous section. See Figure 4(b).

We create O(n) horizontal and vertical line segments, so there are O(n2) rectan-
gles. Nonrectangular faces each contain a portion of the polygon boundary between
vertical line segments, so there are O(n) such faces. There are O(n) subdivisions in
all these regions, arising from the horizontal line segments. Therefore the method
of the previous section, when applied to the nonrectangular faces, creates O(n2)
triangles. 2
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Figure 4. (a) Polygon cut by horizontals and verticals. (b) Triangulation.

4. Refining a Given Triangulation

In this section we consider the problem of refining a given triangulation (without
interior Steiner points) of a simple polygon into a nonobtuse triangulation. The
edges of the input triangulation must appear in the output, possibly subdivided.
This problem has application to computing a mesh for a domain with interfaces,
perhaps modeling an object made of more than one material.

The refinement problem is a special case of—and perhaps a first step towards
solving—the more general problem of refining an arbitrary straight-line planar graph
into nonobtuse triangles. The more general problem has applications to computing
a mesh on a polyhedral surface, and to learning polygons from examples given by a
“helpful teacher”. Salzberg et al.16 have shown that, if the inside and outside of a
polygon (up to the convex hull) can be simultaneously triangulated without obtuse
angles, then a teacher who picks examples as advantageously as possible can teach
a polygon to a nearest-neighbor classifier, using a number of examples proportional
to the size of the triangulation.

Our strategy for this problem is to again cut the input into cases that we can
handle: rectangles and obtuse triangles with subdivided legs. The cutting proce-
dure, however, grows more complicated. We process triangles in a preorder traversal
of the tree that is the planar dual of the initial triangulation. Each triangle after
the first one then has one “inbound” edge (the one shared with a triangle earlier
in the order) and two “outbound” edges. Ideally each triangle is obtuse with its
hypotenuse an outbound edge. Our preprocessing step dices up “backwards” obtuse
triangles, propagating O(n2) subdivision points up the tree, in order to achieve this
ideal situation. The ideal situation can be triangulated with quadratic increase in
complexity.

Lemma 6. If ace is a nonobtuse triangle with subdivisions on only one side, then

ace can be triangulated into nonobtuse triangles, adding new subdivisions only to

the other two sides.

Proof. Let ac be the side with subdivisions. Consider the perpendicular projection
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Figure 5. A nonobtuse triangle with subdivisions on only one side.

e′ of e onto ac. Add edges between e and the subdivision points adjacent to e′ (but
do not add e′ or edges to e′), as shown in Figure 5. This divides ace into one
nonobtuse triangle without subdivisions and either one or two nonacute triangles
that can be triangulated by the method of Section 2. 2

Theorem 3. Any triangulation of a polygon (without holes) with n vertices can

be refined into a nonobtuse triangulation with O(n4) triangles.

Proof. Let T be the tree that has a vertex for each triangle of the input and an edge
between each pair of triangles that share a side. Root T at any vertex corresponding
to a triangle with an exterior side, that is, one lying along the boundary of the
polygon. We now label triangle sides as inbound or outbound . Label the side that
a triangle shares with its parent in T inbound; label the other two sides (whether
exterior or not) outbound.

At this point, if each triangle is nonobtuse or is obtuse with its hypotenuse
labeled outbound, then we can refine the triangulation as follows. We split the
root triangle into two right triangles by dropping an altitude. Each subsequent
triangle in the tree starts with some number of subdivision points on its inbound
side, and we triangulate using either Lemma 6 or the method of Section 2, adding
new subdivisions only to outbound sides.

So assume that there is at least one backwards obtuse triangle with its hy-
potenuse labeled inbound. See Figure 6. We first process triangles in “upward”
order given by a postorder traversal of T . A backwards obtuse triangle that has
no backwards descendants is handled by simply dropping the altitude onto its hy-
potenuse; this introduces a subdivision point to an outbound side of the parent
triangle.

We now carry this through inductively, by showing how to partition a triangle,
that has subdivisions on its outbound sides, into rectangles and right triangles with
subdivided legs and hypotenuse that is part of an outbound side. The partitioning
introduces new subdivision points to the inbound side, which is an outbound side
of the parent; these points will be further propagated up the tree. We may also
introduce new subdivision points to the outbound sides; these points are resolved
later.

Assume the triangle is ace and its inbound side is horizontal base ae. If 6 cae
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Figure 6. Triangle ace is backwards obtuse.

and 6 cea are both acute, then we partition ace by sending vertical lines from c

and from all subdivision points onto ae. We then draw horizontal lines from each
subdivision point up to the last possible vertical, as shown in Figure 7(a). This
partitioning introduces new subdivisions only to the inbound side (and to some
internal verticals). If one of 6 cae and 6 cea is right, then we partition in the same
way. This time, however, the partitioning introduces new subdivisions to the vertical
side of ace, which may be an inbound side of a child triangle; these points will be
resolved in the downward pass of the algorithm.

So assume that one of 6 cae and 6 cea is obtuse, say 6 cea. We draw horizontal
lines from each subdivision point on ac and ce across to the other side. Now from
vertex e, from each subdivision point, and from each new vertex (where a horizontal
hits ac or ce), extend a vertical line, up or down, until it contacts the last possible
horizontal, base ae counting as a horizontal. See Figure 7(b). As in the case of the
right angle, this partitioning introduces new subdivisions to the outbound sides as
well as to the inbound side. The subdivision points on the outbound sides (inbound
sides of children) are resolved in the next—downward—pass of the algorithm.

The downward pass triangulates in a preorder traversal of T . Each original
triangle is either unchanged (which implies that it is not backwards obtuse) or it
has been partitioned as above into rectangles and small triangles with hypotenuse
part of an original outbound side. Unchanged nonobtuse triangles are triangulated

e

c

ae

c

a

Figure 7. Within obtuse triangles, the upward pass leaves subdivisions only on legs.
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using Lemma 6. Unchanged obtuse triangles are triangulated using the algorithm of
Section 2. Finally a partitioned triangle is handled as follows. Subdivisions added to
sides of rectangles are passed straight through; this adds yet more subdivision points
to the legs of the small triangles and slices rectangles into smaller rectangles that
can be triangulated at the end. Then the small triangles with hypotenuses along
outbound edges are triangulated in any order using the algorithm of Section 2.

The total number of vertices (subdivision points and apexes of obtuse triangles)
to propagate downwards is O(n2). This bound follows from the fact that, in the
upwards pass of the algorithm, each apex of a backwards obtuse angle adds only
O(1) new subdivision points per original triangle. The downwards pass of the algo-
rithm is quadratic as before, so overall we have obtained a nonobtuse triangulation
with O(n4) triangles. 2

In the case that the dual graph of the triangulation is simply a path, we can
improve the size bound to O(n2) by exploiting the fact that each triangle has an
exterior side. Incidentally, this condition defines an interesting class of polygons:
call a polygon a path polygon if it has a Steiner triangulation whose dual is a
path. Equivalently, a path polygon is one that can be swept by an extensible line
segment with endpoints on its boundary, without retracing any area. Path polygons
simultaneously generalize monotone polygons and spiral polygons (polygons with
only one chain of reflex vertices); they can be recognized in time O(n2) by dynamic
programming.
Theorem 4. Assume we are given a triangulation of a polygon with n vertices,

such that the planar dual of the triangulation is a path. Then this triangulation

can be refined into a nonobtuse triangulation with O(n2) triangles.

Proof. Assume we are at a generic step of the upwards pass, in original triangle
ace. Assume outbound side ac is subdivided, ce is exterior, and horizontal base
ae is inbound. We distinguish three cases. If |6 cae| ≥ 90◦, then the procedure of
Section 2 will triangulate ace in the downwards pass of the algorithm, adding new
subdivisions only to exterior side ce; thus, the upwards pass of the algorithm need
not partition ace. In the second case, |6 ace| ≥ 90◦, and we drop the altitude from c

to ae, forming subdivision point c′ on ae. Triangle c′ce has an exterior hypotenuse,
so it requires no further subdivision. The other triangle, acc′, has reduced to the
third case, in which both angles alongside the subdivided side ac are acute.

In the third case, the opposite vertex e projects perpendicularly onto the sub-
divided side ac. Add edges from e to the subdivision points on either side of its
perpendicular projection e′, as in Lemma 6. This splits ace into either two or three
triangles, depending on whether there exist subdivisions on each side of e′. An ob-
tuse triangle with hypotenuse ce can be handled without further subdivision, even
if—as will be the case in lower levels of the recursion—side ce is not exterior but
only outbound. A nonobtuse triangle without subdivisions—such as a triangle in
the middle—can be handled as is by the downwards pass, since Lemma 6 will apply.
The last triangle (leftmost in Figure 8) has at least one fewer subdivision point, so
we partition it recursively. (The recursive call starts by dropping an altitude to ae,
as the second case necessarily applies.)
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Figure 8. The upward pass on a triangle in a path polygon.

Notice that the upward pass only leaves behind subdivision points that do not
propagate beyond their original triangle in the downward pass. In other words,
each subdivision on ac either drops an altitude to ae or is left in a triangle that the
downward pass processes towards exterior side ce. Thus the downward pass results
in O(n2) complexity overall. 2

5. Conclusions and Open Problems

We have shown how to triangulate arbitrary polygons using a polynomial number
of right and acute triangles. This result demonstrates a strong separation between
the complexities of two desirable properties of finite element meshes. Forbidding
angles larger than 90◦ incurs only polynomial cost in size, but forbidding angles
smaller than a fixed bound incurs cost dependent upon the geometry of the domain.
There are still a number of open problems in “mesh generation theory”.

First of all, we would like to extend the results of Section 4. The general version
of the refinement problem is to refine an arbitrary straight-line planar graph. In
particular, this would require an algorithm for triangulated polygons with holes,
and further, a way to handle line-segment holes so that Steiner points on each
side of a line-segment hole match up. As mentioned above, an interesting special
case of refining planar graphs is simultaneously triangulating the inside and outside
of a polygon. Edelsbrunner and Tan17 have recently given the first polynomial-
size solution to a problem related to refining planar graphs: finding a “conforming
Delaunay triangulation”, that is, a set of Steiner points such that the Delaunay
triangulation of all vertices contains the input graph.

Open Problem 1. Can every straight-line planar graph be refined into a

polynomial-size nonobtuse triangulation?

Second, the question of lower bounds is interesting, especially in light of Epp-
stein’s recent subquadratic algorithm for convex polygons.18

Open Problem 2. Can any nontrivial lower bound be shown for the size of a

nonobtuse triangulation?

Paterson19 observed that for the problem of refining a given triangulation, the
complexity must be quadratic, even for convex polygons and a largest angle bound
arbitrarily close to 180◦. His example is a convex polygon with an “accordion”
triangulation, shown in Figure 9. There are Θ(n) long, skinny, nearly horizontal
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Figure 9. Lower bound example for refinement.

triangles; the polygon also has Θ(n) vertices evenly spaced along the top of this
stack of triangles. Because each vertex at the top must have a “downwards” edge,
there must be a path downward from each vertex through the stack of triangles.
Separate paths cannot merge because of the angle bound. Thus each path has
complexity Ω(n), and the total triangulation has complexity Ω(n2). Salzberg et al.
gave a similar lower-bound example for their learning problem.16

Third, it would be interesting to give an algorithm that uses only acute angles,
so that all circumcenters lie in the interiors of their elements. By carefully warping
rectangles and right triangles, it is possible to turn our linear-size nonobtuse trian-
gulations of point sets into acute triangulations (included in the journal version of
our previous paper6). For polygon input, however, some new ideas are needed, as it
is not possible to divide an obtuse triangle into acute triangles, adding subdivision
points only to the base.

Finally, there remains the question of extending these results to higher dimen-
sions. We believe the correct analog of a nonobtuse triangle is a simplex that
contains its circumcenter; this generalization most closely follows the mesh gen-
eration application. Perhaps the size bound for a nonobtuse triangulation of a
d-dimensional polyhedron will turn out to be O(nd), matching a lower-bound ex-
ample for the inside-outside triangulation problem.16
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2. I. Babuška and A. Aziz. On the angle condition in the finite element method. SIAM.
J. Numer. Analysis 13 (1976), 214–227.

3. I. Fried. Condition of finite element matrices generated from nonuniform meshes.
AIAA J. 10 (1972), 219–221.

13



4. B.S. Baker, E. Grosse, and C.S. Rafferty. Nonobtuse triangulation of polygons.
Discrete and Comp. Geom. 3 (1988), 147–168.

5. M. Bern and J.R. Gilbert. Drawing the planar dual. To appear in Inform. Proc.
Letters, 1992.

6. M. Bern, D. Eppstein, and J.R. Gilbert. Provably good mesh generation. 31st IEEE
Symp. Found. Comp. Sci., 1990, 231–241. Final version to appear in appear in J.
Comput. Syst. Science.

7. D.T. Lee and B.J. Schachter. Two algorithms for constructing a Delaunay triangu-
lation. Int. J. of Computer and Information Sciences 9 (1980), 219–242.

8. D. Mount and A. Saalfeld. Globally-equiangular triangulations of co-circular points
in O(n logn) time. 4th ACM Symp. Comp. Geom., 1988, 143–152.

9. R. Sibson. Locally equiangular triangulations. Computer J., 21 (1978), 243–245.

10. D. Eppstein. The farthest point Delaunay triangulation minimizes angles. Comp.
Geom. Theory and Applic. 1 (1992), 43–48.

11. D.T. Lee and A.K. Lin. Generalized Delaunay triangulation for planar graphs.
Discrete and Comp. Geom. 1 (1986), 201–217.

12. L.P. Chew. Constrained Delaunay triangulations. Algorithmica 4 (1989), 97–108.

13. M. Bern, D. Eppstein, H. Edelsbrunner, S. Mitchell, and T.S. Tan. Edge insertion
for optimal triangulations. 1st Latin American Symp. on Theoretical Informatics,
1992, 46–60.

14. J.L. Gerver. The dissection of a polygon into nearly equilateral triangles. Geom.
Dedicata 16 (1984), 93–106.

15. M. Bern and D. Eppstein. Polynomial-size nonobtuse triangulation of polygons. 7th
ACM Symp. Comp. Geom., 1991, 342–250.

16. S. Salzberg, A. Delcher, D. Heath, and S. Kasif. Learning with a helpful teacher.
12th Int. Joint Conf. on Art. Intelligence, Sydney, Australia, 1991.

17. H. Edelsbrunner and T.S. Tan. An upper bound for conforming Delaunay triangu-
lations. Tech. Report UIUCDCS-R-92-1739, U. of Illinois at Urbana-Champaign.
Also to appear in 8th ACM Symp. Comp. Geom., 1992.

18. M. Bern, D. Dobkin, and D. Eppstein. Triangulating polygons without large angles.
To appear in 8th ACM Symp. Comp. Geom., 1992.

19. M.S. Paterson. Personal communication, 1990.

14


