

Parallel Construction of Quadtrees

and Quality Triangulations

Marshall Bern∗ David Eppstein† Shang-Hua Teng‡

Abstract

We describe efficient PRAM algorithms for constructing unbalanced
quadtrees, balanced quadtrees, and quadtree-based finite element meshes.
Our algorithms take time O(logn) for point set input and O(logn log k)
time for planar straight-line graphs, using O(n+k/ logn) processors, where
n measures input size and k output size.

1 Introduction

A crucial preprocessing step for the finite element method is mesh generation,
and the most general and versatile type of two-dimensional mesh is an unstruc-
tured triangular mesh. Such a mesh is simply a triangulation of the input domain
(e.g., a polygon), along with some extra vertices, called Steiner points. Not all
triangulations, however, serve equally well; numerical and discretization error
depend on the quality of the triangulation, meaning the shapes and sizes of tri-
angles. A typical quality guarantee gives a lower bound on the minimum angle
in the triangulation.

Baker et al. [2] first proved the existence of quality triangulations for arbitrary
polygonal domains; their grid-based algorithm produces a triangulation with all
angles between 14◦ and 90◦. Chew [7] also bounded all angles away from 0◦

using incremental constrained Delaunay triangulation. Both of these algorithms,
however, produce triangulations in which all triangles are approximately the size
of the smallest input feature; hence, many more triangles than necessary may be
generated, slowing down both the mesh generation and finite element procedures.
Bern et al. [4] used adaptive spatial subdivision, namely quadtrees, to achieve
guaranteed quality with a small number of triangles (within a constant factor
of the optimal number). Modifications yield other desirable properties, such
as small total length [10] and no obtuse triangles [13]. Mitchell and Vavasis

∗Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304.
†Department of Information and Computer Science, University of California, Irvine, CA

92717. Supported by NSF grant CCR-9258355. Work performed in part while visiting Xerox
Palo Alto Research Center.
‡Department of Mathematics, Massachusetts Inst. of Technology, Cambridge, MA 02139.

Work performed in part while at Xerox Palo Alto Research Center.

1

generalized this approach to three dimensions [14]. Subsequently, Ruppert [15]
built on Chew’s more elegant algorithm to achieve the same theoretical guarantee
on the number of triangles. For more mesh generation theory, see our survey [5].

In this paper, we give parallel algorithms for mesh generation. The finite
element method is often performed on parallel computers, but parallel mesh
generation is less common. (We are unaware of any theoretical papers on the
subject and only a few practical papers, for example [18].) In some applica-
tions, a single mesh is generated and used many times; in this case the time
for mesh construction is not critical and a relatively slow, sequential algorithm
would suffice. In other applications, especially when the physics or geometry
of the problem changes with time, a mesh is used once and then discarded or
modified. Then a parallel mesh generator would offer considerable speed-up over
a sequential generator.

We parallelize the quadtree-based methods of Bern et al. [4]. The grid-based
method of Baker et al. [2] and a grid-based modification of Chew’s algorithm [7]
both parallelize easily, but as mentioned above these may produce too many
triangles. It is currently unknown whether Ruppert’s method [15] has an efficient
parallel version.

A quadtree [16] is a recursive partition of a region of the plane into axis-
aligned squares. One square, the root , covers the entire region. A square can be
divided into four child squares, by splitting it with horizontal and vertical line
segments through its center. The collection of squares then forms a tree, with
smaller squares at lower levels of the tree.

It may seem that quadtrees are easy to construct in parallel, a layer a time.
In practice this idea may work well, but it does not provide an asymptotically
efficient algorithm because the quadtree may have depth proportional to its total
size. We use the following strategy instead. We first find a “framework”, a tree
of quadtree squares such that every internal node has at least two nonempty
children. This tree guides the computation of the complete quadtree. We then
balance the quadtree so that no square is adjacent to a square more than twice its
side length. For polygonal inputs, we further refine and rebalance the quadtree
so that edges are well separated. Finally, we perform local “warping” as in [4]
or [13], to construct a guaranteed-quality triangulation. Figure 1 shows a mesh
computed by a variant of our sequential algorithm.

1.1 Input assumptions

We assume that the input is a point set or planar straight-line graph, with n
vertices. The coordinates of the points or vertices are fixed-point binary frac-
tions, strictly between 0 and 1, that can be stored in a single machine word.
We assume the ability to perform simple arithmetic and Boolean operations on
such words in constant time per operation, including bit shift operations. Fi-
nally, we assume the ability to detect the highest order nonzero bit in the binary
representation of such a number in constant time.

These assumptions are similar to a model in which the input coordinates are
machine-word integers, as in the work of Fredman and Willard [12, 17]. Our

Figure 1. A mesh derived from a quadtree (courtesy Scott Mitchell).

description in terms of fixed point fractions is somewhat more convenient for
our application, but equivalent in expressive power. If we were to use a real
number model instead—as is more usual in computational geometry—we would
incur a slight expense in time. The key operation of finding the highest bit can
be simulated by binary search in time O(log logR) per operation, where R is the
ratio between the largest and smallest numbers tested by the algorithm. For our
purposes R = O(2k) where k is the output size, so the penalty for weakening
the model is a factor of O(log k) time.

Our parallel algorithms use the EREW PRAM model of exclusive access
to shared memory [11]. Since our processor bound depends on k, the size of
the output triangulation, which is not known in advance, we need a mechanism
for allocating additional processors within the course of the computation. We
assume that a single allocation step, in which each of the N processors already
allocated asks to be replaced by some number of additional processors, can be
performed in O(logN) time.

1.2 New results

We describe EREW PRAM algorithms to perform the following tasks.

• We construct a balanced or unbalanced quadtree for an arbitrary point set
in time O(log n) with O(n+ k/ log n) processors.

• We triangulate a point set with total edge length O(1) times the minimum
and all angles bounded between 36◦ and 80◦, using a total number of points
within a constant factor of optimal, in time O(log n) using O(n+ k/ log n)
processors.

• We triangulate a point set with total edge length O(1) times the minimum
and all angles less than 90◦, using O(n) Steiner points, in time O(log n)
using O(n) processors.

• We triangulate a planar straight-line graph (PSLG) with all angles ex-
cept those of the input bounded away from zero, using a total number of
triangles within a constant factor of optimal, in time O(log k log n) using
O(n+ k/ log n) processors.

Our last algorithm produces a guaranteed-quality triangulation of a polygon,
but the number of triangles in this case may not be within a constant of optimal.
If the polygon wraps around and nearly touches itself from the outside (as in
Figure 1), our algorithm uses some triangles with size approximately the size of
this outside “feature”, which may be unnecessarily small.

Our results can also be used to fill a gap in our earlier paper [4], noted by
Mitchell and Vavasis [14]. In that paper we gave sequential algorithms for tri-
angulation of point sets, polygons, and planar straight-line graphs, all based on
quadtrees. We claimed running times of O(n log n + k) in all cases, but gave a
proof only the case of point sets. There turned out to be some complications in
achieving this bound for polygons and PSLGs. (A straightforward implementa-
tion achieves O(k log n).) However, the ideas given here also improve sequential
quadtree-based triangulation, yielding the first guaranteed-quality triangulation
algorithms with the optimal running time of O(n log n+ k).

2 Unbalanced quadtrees

We first describe how to generate a quadtree for a set of points in the plane. In
the resulting quadtree, there are no restrictions on the sizes of adjacent squares,
but no leaf square may contain more than one point. The root square of the
quadtree will be the semi-open unit square [0, 1)2. Thus the corners of quadtree
squares have coordinates representable in our fixed-point format.

The sides of all squares in the quadtree have lengths of the form 2−i, and
for any square of side length 2−i the coordinates of all four corners are integral
multiples of 2−i. We define a square with bottom left corner (x, y) and size 2−i

to contain a point (x′, y′) if x ≤ x′ < x+ 2−i and y ≤ y′ < y + 2−i. Given two
input points (x, y) and (x′, y′), we define their derived square to be the smallest
such square containing both points. The size of this square can be found by
comparing the high order bits of x ⊕ x′ and y ⊕ y′, and the coordinates of its
corners can be found by masking off lower order bits.

Given a point (x, y), where x and y are k-bit fixed point fractions, we define
the shuffle Sh(x, y) to be the 2k-bit fixed point fraction formed by alternately
taking the bits of x and y from most significant to least significant, the x bit
before the y bit. We represent Sh(x, y) implicitly by the pair (x, y). We can
compare two numbers Sh(x, y) and Sh(x′, y′) in this implicit representation in
constant time, using arithmetic and high bit operations separately on x and y.

The first step of our algorithm will be to sort all the input points by the
values of their shuffled coordinates. This can be done in O(log n) time with
O(n) EREW processors [8]. From now on we assume that the points occur in
this sorted order.

Lemma 1. The set of points in any square of a quadtree rooted at [0, 1)2 form
a contiguous interval in the sorted order.

Proof: The points in a square of size 2−i have the same i most significant
shuffled-coordinate bits, and any pair of points with those same bits shares a
square of that size. If a point (x, y) is outside the given square, one of its first
i bits must differ. If that bit is zero, (x, y) will appear before all points in the
square. If the bit is one, (x, y) will appear after all points in the square. Hence
it is impossible for (x, y) to appear before some points and after some others in
the sorted order.

Lemma 2. If more than one child of quadtree square s contains an input point,
then s is the derived square for two adjacent points in the sorted order.

Proof: By Lemma 1, the points in s form an interval, which can be divided
into two to four smaller intervals corresponding to the children of s. Then s is
the derived square for any pair of points in two different smaller intervals.

Consider the desired unbalanced quadtree as an abstract rooted tree. If we
remove all leaves of this tree that do not contain input points, and contract all
remaining paths of nodes having one child each, we obtain a tree TF in which
all internal nodes have degree two or more. We call TF the framework and use
it to construct the quadtree.

By Lemma 2, the nodes of TF exactly correspond to the derived squares
for adjacent points in the sorted order, and the structure of TF corresponds to
the nesting of intervals induced by the derived squares, as in Lemma 1. So for
each adjacent pair of points, we compute their derived square and note its side
length. (Some squares may be derived in as many as three ways, but we can
eliminate this problem later.) The nesting of intervals is computed by finding,
for each derived square, the first larger one to its right and to its left in the
sorted order. This is an all-nearest-larger-values computation, taking O(log n)
time with O(n/ log n) work [3].

Once the framework TF is computed, we construct the quadtree TQ. Each
edge in TF corresponds to a path of perhaps many squares in TQ, with the
number of squares determined by the relative sizes of TF squares. So we perform
a processor allocation step in which each framework edge e requests O(pe/ log n)
processors, where pe is e’s number of squares. Now all remaining squares (leaves
and children of path squares), can be constructed in O(log n) time. The total
number of processors is O(n+k/ log n) where k is the complexity of the resulting
(unbalanced) quadtree.

Theorem 1. Given n input points, we can compute a quadtree with k squares,
in which each point is alone in its square, in time O(log n) using O(n+ k/ log n)
EREW processors.

s

Figure 2. The squares forced by square s.

3 Balancing the quadtree

The quadtree-based mesh generation algorithms of [4, 10, 13] impose a balance
condition: no leaf square is adjacent to another leaf square smaller than half
its size. (Some variants of these algorithms impose stronger conditions; the
techniques given here generalize.) These algorithms also need cross pointers
between squares of the same size sharing a common side.

We proceed in two stages, starting from the unbalanced quadtree TQ of Sec-
tion 2. In the first stage, we produce a tree of squares T ′Q in which some non-leaf
squares may have fewer than four child squares. Tree T ′Q, however, will satisfy
the balance condition above; it will also include cross pointers.

The balance condition is ensured if, for each square s, three other squares
(not necessarily leaves) exist: the two squares adjacent to both s and its parent,
twice as large as s, and the square sharing a corner with both s and its parent,
four times as large as s. See Figure 2. (If any of these squares protrudes from
[0, 1)2, then an exception is granted.) The parents of these forced squares exist
either by the same rule applied to the parent of s, or because they are themselves
ancestors of s. The three forced squares do not force other new squares in an
unbounded chain of requirements; the nine squares forced by these three either
already exist or are forced by the parent of s. (We do not require the siblings
of the forced squares, as this could result in such an unbounded chain. This is
why we allow a square to have fewer than four children.)

How do we add forced squares in parallel all over TQ? For each side length
in TQ, we compute a list of squares (say top left corners) containing: all current
squares, all squares of that size that we must create, and all squares that should
be cross-linked if they exist or are created. Then we simply sort these lists using
shuffled or unshuffled coordinates. Each list contains O(1) copies of any top left
corner; these determine all actions necessary to produce T ′Q (creating squares
and adding cross pointers). Each quadtree level has at most O(n) squares, so
this algorithm takes only O(log n) time, but requires O(k) processors and hence
O(k log n) total work.

In the second stage, we turn T ′Q back into a quadtree by simply splitting all
squares, leaves as well as internal nodes without all four children. This preserves
the balance condition and restores the required number of children per parent.

Due to this extra split, the resulting balanced quadtree TB may have up to four
times as many squares as the quadtree produced by the sequential balancing
algorithm. Cross pointers for TB can be found recursively by examining squares’
siblings as well as the children of squares cross-linked to their parents.

The two stages together give us the balanced quadtree TB , but we may no
longer know which squares contain which input points. To obtain this important
information, we group the squares of TB into blocks of O(n) squares each and
then process each block separately. Within a block, we compute a framework
(that is, a compressed quadtree as above) for the input points along with the
bottom left corners of the new squares. We find the squares of this framework
that contain one input point, and from them determine the nearest input point
above and to the right of each TB square corner. For each TB square, we can
then test its closest above-right point to see whether it lies within the square.
These steps also take O(log n) time and O(k log n) work.

The following theorem shows how to combine the “sorting algorithm” just
described with a top-down algorithm in order to achieve optimal efficiency.

Theorem 2. An unbalanced quadtree can be balanced and cross-linked in time
O(log n) using O(n+ k/ log n) processors.

Proof: Consider the following top-down method. Assume a virtual processor
per square of the unbalanced quadtree. This processor waits until all the bal-
ancing and cross-linking is done for its parent’s level. Then it creates nearby
squares to enforce the balance condition, coordinates with neighboring squares
so that no new square is created multiple times, and adds all necessary cross-
links, in O(1) time. It also tests whether its square contains the (at most one)
input point contained in its parent. This results in an algorithm which has
time t bounded by the number of levels in the quadtree, and total work O(k).
By Brent’s lemma [6], only O(k/t) actual processors are required to simulate all
virtual processors in time O(t).

To combine the two algorithms, we apply the sorting algorithm only at certain
levels. We choose a set of levels, equally spaced and ` = dlog2 ne apart. Once the
spacing is fixed there are ` ways of making this choice, each giving rise to a set of
levels disjoint from other such sets, so for some such set there are a total of only
O(k/ log n) squares. The appropriate choice of set can be determined from the
framework tree. Once we have added the required squares in this set of levels,
we apply the parallelization of the top-down algorithm in O(log n) time and
O(k) total work. The scheduling required for Brent’s lemma can be performed
using information on the number of squares per level, again computed from the
O(n)-size framework tree.

4 Mesh generation for point sets

The balanced quadtree computed in the last section can be modified by a set
of “warping” steps to give a triangulation of the input point set, with no angles

smaller than about 20◦, as in [4]. These warping steps are local, involving only
O(1) squares each, and hence can obviously be performed in constant parallel
time with optimal work. In this section, we go on to solve two slightly harder
problems: (1) approximate minimum-weight no-small-angle triangulation, and
(2) approximate minimum-weight nonobtuse triangulation.

Eppstein [10] showed how to sequentially compute triangulations of point
sets with these guarantees: all angles between 36◦ and 80◦, total edge length
within a constant factor of the minimum, and total number of triangles within
a constant of the minimum for any angle-bounded triangulation. The algorithm
again uses local warping, trivial to parallelize, but the quadtree must also satisfy
some stronger conditions than the ones given directly by Theorems 1 and 2:

• The coordinate axes of the quadtree must be rotated so that the diameter,
of length d, connecting the farthest pair of points, is horizontal.

• A row of equal-size smaller squares that contain the input is cut from the
root square. These squares have side length proportional to max{d′, d/n},
where d′ is the maximum distance of any point from the diameter.

• The points must be well-separated from each other, meaning that for some
specified constant c, if a point is in a square with side ` then its nearest
neighbor must be at least distance c` away. (In [4], c = 2

√
2.)

We relax these requirements somewhat to simplify our parallel algorithm.
Rather than computing the exact diameter, it suffices to find some line segment
with length within a factor of, say, .95 of the diameter, and rotate the points so
that line segment forms an angle of O(1/n) with the horizontal axis. Such a line
segment can be found by projecting the point set onto O(1) different axes, taking
the extrema of each projected point set, and choosing the pair forming the longest
segment. The rotation can be performed in our integer model by treating our
inputs as complex numbers with integer coordinates, and multiplying by another
such number chosen appropriately. The result will be a set of points with the
correct orientation but scaled by a factor of O(n), which corresponds to using
O(log n) additional bits to represent each coordinate value.

We scale and translate the rotated point set to fit in the rectangle [1/4, 3/4)×
[2−i, 2−i+1), where i is the smallest integer with 2−i ≥ 1/n for which this is
possible. The row of squares will then have side lengths equal to 2−i+1. These
steps may all be performed in O(log n) time with O(n/ log n) processors.

It remains to ensure the separation of points. We first compute near neighbors
(approximate nearest neighbors), using the balanced quadtree constructed by
Theorem 2. We simply examine the O(1) squares around each square containing
an input point. If all those squares are empty, we need not find a near neighbor
for the input point; otherwise we take the near neighbor to be any point in a
neighboring square. We can now add notations to the framework tree of Section 2
specifying the desired size of the quadtree square containing a point with a near
neighbor; the size is, say, one-eighth of the distance to the near neighbor. A
suitable quadtree can then be computed as in Theorems 1 and 2.

Theorem 3. Given a set of n points in the plane, we can compute a triangu-
lation with k triangles, total length O(1) times the minimum possible, in which
all angles measure between 36◦ and 80◦, in time O(log n) using O(n+ k/ log n)
EREW processors. The output size k is O(m + n), where m = m(ε) is the
minimum number of Steiner points required to triangulate the input point set
with no angle smaller than fixed constant ε.

We now consider the second problem: nonobtuse triangulation. Sequential
quadtree-based methods can triangulate a point set with all acute angles and
only O(n) Steiner points [4]. Moreover, the total edge length can be made
to approximate that of the minimum-weight triangulation [10]. The following
theorem extends this result to the parallel case. To save space, we omit the
algorithm and proof; these will appear in the journal version of this paper.

Theorem 4. A set of n input points can be triangulated with O(n) triangles,
all angles less than 90◦, and total length O(1) times the minimum possible, in
time O(log n) using O(n) EREW processors.

5 Mesh generation for planar straight-line graphs

For most finite-element mesh generation applications, the input is not a point
set but rather a polygonal region. We discuss here the most general input, a
planar straight-line graph (PSLG). Our triangulation algorithm handles simple
polygons as a special case, but the output complexity may be larger than neces-
sary due to input features that are near to each other in Euclidean distance but
far in geodesic distance.

Several new complications arise with PSLG input. First, we must modify the
input to eliminate any pre-existing acute (below 90◦) corners [4], and this should
be done without introducing new points or edges too close to existing ones.
Second, we must subdivide the edges of the PSLG where they cross the sides
of quadtree squares. Third, we require that vertices not only be well-separated
from other vertices, but also from other edges, and that edges be well-separated
from each other; this means that each (piece of an original) edge is contained in
a sufficiently small square that no vertex or other edge passes nearby (less than
a specified constant—such as 3—times the square’s side length).

To accomplish these goals, we take the following approach. We compute
vertex-to-vertex and vertex-to-edge approximate nearest neighbors using an ini-
tial balanced quadtree TB . This information enables us to cut off the acute cor-
ners and build a second quadtree T ′B in which vertices are well-separated from
edges and other vertices. We subdivide the edges into pieces in this quadtree,
and then split the squares of the quadtree to create a third quadtree T ′′B in which
each square contains only O(1) pieces of edges. We can then—finally—compute
approximate nearest neighbor information for pieces of edges, which we use to
construct the final quadtree T ∗B , in which everything is well-separated.

We now flesh out the steps mentioned above. Approximate vertex-vertex
nearest neighbors proceeds as in Section 4. The following lemma (easy geometric

proof omitted) shows how to find a nearby non-incident edge for each vertex of
the planar straight-line graph.

Lemma 3. If the nearest edge e to a vertex v has distance d from v, then
either some vertex v′ is within distance

√
2d from v, or e is visible to v through

an angle of at least 90◦.

So for each vertex of the PSLG, we need only determine which edge is visible
along each of the four axis directions, and choose the nearest of these four edges.
This horizontal and vertical ray-shooting problem is exactly that solved by the
trapezoidal decomposition, which can be constructed in time O(log n) using O(n)
CREW processors [1]; this algorithm can be simulated on an EREW machine
with logarithmic slowdown [11].

Now we cut off acute angles around each vertex at a distance proportional
to the vertex’s nearest neighbor as in [4, 15], so that cut-off triangles do not
contain other parts of the input, two such triangles on the same edge match up,
and the new cutting edges are not unnecessarily short. We can ignore the cut-
off triangles for the remainder of the algorithm, simply reattaching them (with
appropriately subdivided cutting edges) after the final warping step. For the
remainder of the algorithm, we can assume as in [4, 15] that all angles measure
at least 90◦, and consequently each vertex has bounded degree.

We can now compute a quadtree T ′B in which each vertex lies in a square
of size proportional to the nearer of its nearest neighbors (vertex and edge).
Vertices will be well-separated from other vertices and edges, but two PSLG
edges may yet cross the same square. We subdivide the PSLG edges into pieces
contained in each quadtree square so that we will be able to discover these
problems and correct them. In a sequential algorithm, we could subdivide simply
by walking from one end of each edge to the other, keeping track of the crossed
squares, but in a parallel algorithm we must do this differently.

We apply the accelerated centroid technique [9] to T ′B . This produces a
binary tree TC , the accelerated centroid tree, which has logarithmic height and
linear size; each subtree of TC corresponds to a subtree of T ′B . To find the
subdivisions of a given PSLG edge, we test it against TC ’s root node r. Node r
corresponds to a square in the quadtree T ′B , and we simply test whether the edge
misses the square, is contained in the square, or crosses the square’s boundary.
If one of the first two cases occurs, we continue recursively to the left or right
child of r. If the third case occurs, we split the segment in pieces and continue
in parallel for each piece to the appropriate child of r. We process all edges in
parallel, one level of TC at a time. Each level can be handled in O(log k) time
by O(k/ log k) EREW processors. Between levels we reallocate processors and
split the lists of edges being tested, resulting in time O(log k) and linear work.

This edge-subdivision step of our algorithm takes O(log2 k) time and a total
of O(k log k) work. But in each of these bounds, a factor of O(log k) can be re-
duced to O(log n) by the following trick: partition the quadtree T ′B into O(k/n)
subtrees, each of O(n) squares, and perform the edge partition algorithm de-
scribed above in parallel for each edge in each subtree. The number of levels in

each centroid decomposition tree is thus reduced from O(log k) to O(log n), but
O(log k) time per level is still required for processor reallocation.

We now look at the arrangement of edges in a single square of quadtree T ′B .
We assert that each cell in this arrangement has only O(1) complexity. If the
cell is not convex, then there is a vertex of the PSLG on its boundary, and the
bound on angles then implies the assertion. If the cell is convex, PSLG edges on
its boundary must either meet at a nearby PSLG vertex or be nearly parallel.
The fact that vertices are well-separated in T ′B then implies the assertion.

We consider in parallel each pair of edge pieces that bound a common cell.
By the assertion above, there are only O(k) such pairs over all of T ′B . For each
pair, we determine the further quadtree subdivision that would be necessary to
separate the edges in that square. We combine and balance all such subdivisions
with sorting (as in Section 3) to produce a new balanced quadtree T ′′B in time
O(log n) and work O(k log n). We again use a centroid tree to determine the
sub-pieces of edge pieces; each quadtree square now intersects only O(1) sub-
pieces.

Finally, for each square we search O(1) nearby squares to determine how
much further splitting is necessary. We again subdivide and rebalance to con-
struct a last quadtree T ∗B , in which all PSLG edges are finally well-separated.
Local warping then offers the following result. Bern et al. [4] achieve an angle
bound of 18◦ sequentially; the same specific bound can be achieved in parallel,
only with a constant factor more triangles.

Theorem 5. Given a planar straight-line graph with n vertices, we can com-
pute a triangulation with k triangles, in which all new angles are bounded away
from 0◦, in time O(log k log n) using O(n + k/ log n) EREW processors. The
output size k is O(n+m), where m = m(ε) is the minimum number of Steiner
points required to triangulate the given PSLG with no new angle smaller than
fixed constant ε.

6 Conclusions

We have given a theoretical study of parallel two-dimensional mesh generation.
We believe this area deserves further research, both theoretical and practical.

The triangulations we construct are within a constant factor of the optimal
complexity, but it might be of some practical interest to improve the constant
factors. In particular, our balancing method wastes a factor of four; is it pos-
sible to compute the minimum balanced quadtree for a set of n points in time
O(log n)? Another interesting problem that we are leaving open is the parallel
computation of approximate geodesic nearest neighbors. Efficient algorithms
for this problem (both vertex-vertex and vertex-edge) would extend our PSLG
methods to simple polygons with a stronger bound on the total number of tri-
angles.

References

[1] M.J. Atallah, R. Cole, and M.T. Goodrich. Cascading divide-and-conquer: a tech-
nique for designing parallel algorithms. SIAM J. Comput. 18 (1989) 499–532.

[2] B. Baker, E. Grosse, and C. Rafferty. Nonobtuse triangulation of polygons. Dis-
crete Comput. Geom. 3 (1988) 147–168.

[3] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Highly paral-
lelizable problems. 21st Symp. Theory of Computing (1989) 309–319.

[4] M. Bern, D. Eppstein, and J.R. Gilbert. Provably good mesh generation. 31st
Symp. Found. Comput. Sci. (1990) 231–241. To appear in J. Comp. Sys. Sci.

[5] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In Eu-
clidean Geometry and the Computer, World Scientific, 1992.

[6] R.P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM 21
(1974) 201–206.

[7] L.P. Chew. Guaranteed-quality triangular meshes. TR-89-983, Cornell, 1989.

[8] R. Cole. Parallel merge sort. SIAM J. Comput. 17 (1988) 770–785.

[9] R. Cole and U. Vishkin. Optimal parallel algorithms for expression tree evaluation
and list ranking. 3rd Aegean Workshop on Computing, Springer LNCS 319 (1988).

[10] D. Eppstein. Approximating the minimum weight triangulation. 3rd Symp. Dis-
crete Algorithms (1992) 48–57. To appear in Discrete Comput. Geom.

[11] D. Eppstein and Z. Galil. Parallel algorithmic techniques for combinatorial com-
putation. Ann. Rev. Comput. Sci. 3 (1988) 233–283.

[12] M.L. Fredman and D.E. Willard. Blasting through the information-theoretic bar-
rier with fusion trees. 22nd Symp. Theory of Computing (1990) 1–7.

[13] E.A. Melissaratos and D.L. Souvaine. Coping with inconsistencies: A new ap-
proach to produce quality triangulations of polygonal domains with holes. 8th
Symp. Comput. Geom. (1992) 202–211.

[14] S.A. Mitchell and S.A. Vavasis. Quality mesh generation in three dimensions. 8th
Symp. Comput. Geom. (1992) 212–221.

[15] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh genera-
tion. 4th Symp. Discrete Algorithms (1993) 83–92.

[16] H. Samet. The quadtree and related hierarchical data structures. Computing Sur-
veys 16 (1984) 188-260.

[17] D.E. Willard. Applications of the fusion tree method to computational geometry
and searching. 3rd Symp. Discrete Algorithms (1992) 286–295.

[18] R.D. Williams. Adaptive parallel meshes with complex geometry. Tech. Report

CRPC-91-2, Center for Research on Parallel Computation, Cal. Tech.

