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ABSTRACT

We give an expected-case analysis of Delaunay triangulations. To avoid edge effects
we consider a unit-intensity Poisson process in Euclidean d-space, and then limit
attention to the portion of the triangulation within a cube of side n1/d. For d equal
to two, we calculate the expected maximum edge length, the expected minimum
and maximum angles, and the average aspect ratio of a triangle. We also show that
in any fixed dimension the expected maximum vertex degree is Θ(log n/ log logn).
Altogether our results provide some measure of the suitability of the Delaunay tri-
angulation for certain applications, such as interpolation and mesh generation.

Keywords: Computational geometry, Delaunay triangulation, probabilistic analysis

1. Introduction

Suppose that Π is a set of points (called sites) in Euclidean d-space, such that
no d + 2 sites lie on a sphere (a general position assumption). In the Delaunay
triangulation of Π, a set of d + 1 sites defines a d-simplex of the triangulation
exactly when the sphere through those sites contains no sites in its interior. The
Voronoi diagram of Π is a division of space into convex polyhedral cells such that
all points in cell Vu are closer to u ∈ Π than to any other site. The following duality
relation holds: two sites are the endpoints of an edge of the Delaunay triangulation
exactly when their Voronoi cells share a facet. Voronoi diagrams and Delaunay
triangulations are central topics in computational geometry, both as algorithmic
tools and as interesting objects in their own right.1

The Delaunay triangulation (DT ) is often used in the design of communication
networks, in interpolating functions known only at points, and as a mesh for finite-
element computations. The DT has a number of properties that make it attractive
for applications. The DT of a planar point set has small “dilation”, that is, the
distance between any two sites in the DT graph is at most a constant times the
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Euclidean distance.2 Secondly, the DT of a planar point set maximizes the min-
imum angle among all triangulations.3,4 Sharp angles in a mesh adversely affect
numerical stability and convergence time of finite-element computations. Finally,
empirical results suggest that in any dimension the edge skeleton of the DT usually
has small vertex degree and small total length.

In this paper we study the Delaunay triangulation of a random point set. We fo-
cus primarily on parameters related to the suitability of the Delaunay triangulation
for use in interpolation or in finite-element computations. Typically a finite-element
mesh is a subdivision of a polyhedral region; however, we consider point sets instead,
because there are standard probabilistic models for point sets.

1.1. Results

We assume an infinite random point set Π given by the unit-intensity Poisson
process on Ed. Let S be the cube [0, n1/d ]×. . .×[0, n1/d ], and let DT (Π)∩S denote
the embedded graph consisting of vertices and edges of the Delaunay triangulation
DT (Π) that lie entirely in S. We focus attention on DT (Π) ∩ S; this is called
“‘minus sampling”.5We show the following results on the expectations of various
random variables. Result 5 is our main result. Result 1 is obvious, but we include
it for easy reference. Results 2, 3, and 4 involve the measures of angles in two
dimensions and are derived from Miles’s explicit expression for the joint probability
distribution of angles in an arbitrarily chosen Delaunay triangle.6

1. The expected maximum length of an edge of DT (Π) ∩ S is Θ(log1/d n).

2. The aspect ratio of a two-dimensional triangle is the length of its longest side
divided by the length of its altitude from that side. We show that the expected
aspect ratio of a triangle in DT (Π) is about 3.2. This implies that the recent
mesh generation algorithm of Bern et al.7 that guarantees no small angles,
gives a mesh of expected size that is linear in the size of the random, input
point set.

3. For d = 2, the expected minimum angle of DT (Π)∩S is Θ(n−1/2). Thus any
triangulation that does not add extra points produces sharp triangles on the
average.

4. For d = 2, the expected maximum angle is π −Θ(n−1/5).

5. The expected maximum degree in DT (Π) ∩ S is Θ(log n/ log logn), with a
constant depending only on dimension. This random variable is relevant to
finite-element and communications applications, and also to the analysis of
algorithms for point location in dynamic Voronoi diagrams.

Our bounds on maximum degree carry over to Poisson processes on natural
containing shapes, such as cubes and balls. On the other hand, the maximum edge
length and minimum and maximum angles depend quite dramatically on containing
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shape. For example,8 in two dimensions the expected number of points on the
convex hull of Π∩ S is Θ(log n), implying that the expected maximum edge length
is Ω(

√
n/ log n).

1.2. Related Work

Define the order-k Voronoi diagram of a set of sites to be a division of space into
convex polyhedral cells such that points in a single cell agree on their k nearest
sites. A refinement of the diagram requires that points in a single cell also agree on
the order of their k nearest sites. Miles6,9 considered order-k Voronoi diagrams and
these refinements for Poisson-process sites on the infinite plane. He computed the
expected area, number of sides (i.e., degree of the DT dual vertex), and perimeter
of cells. The higher-order moments are unknown.9

Miles6 also exactly determined the probability distributions of the areas of empty
triangles and the radii of empty circumcircles of triangles. More generally, he gave
the distributions of these random variables (gamma distributions with various pa-
rameter values) for triangles and circles that contain exactly m sites. Using the
distribution of areas of empty circumcircles, he derived an explicit expression for
the joint distribution of the angles in an arbitrary Delaunay triangle. It is this result
that we use in the bounds for 2, 3, and 4 above.

Crain10 sampled the distribution of the DT degree of an arbitrary site on the
plane using a Monte Carlo technique. He observed fifteen degree-11 sites and two
degree-12 sites in 11,000 trials.

More recently, Dwyer11 studied the expected degree of a site in the Delaunay
triangulation of n i.i.d. uniform points in the d-dimensional ball. He showed that
the average degree is independent of n, although it grows rather quickly with d

(approximately dd).

2. Edge Length, Aspect Ratio, and Angles

Throughout this paper we use the homogeneous Poisson point process of intensity
one. This standard probabilistic model is characterized by the property that the
number of points in a region is a random variable that depends only on the d-
dimensional volume of the region.6,12 In this model:

• The probability of exactly k sites appearing in any region of volume A is
e−AAk/k!.

• The conditional distribution of sites in any region given that exactly k nodes
fall in the region is joint uniform.

We denote the expected value of a random variable by E[·] and the probability
of an event by P [·]. The measure of 6 uvw in radians is denoted |6 uvw|, and the
length of line segment uv is |uv|. We write log for base-2 logarithm and ln for
natural logarithm.
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A set of d+ 2 sites on a sphere occurs with probability zero, so from now on we
assume that Π∩ S, the set of sites in cube S, contains no such degeneracy. We call
a sphere empty if it has no sites in its interior. A useful fact is the following: two
sites u and v are DT neighbors (that is, edge {u, v} lies in DT (Π)) if and only if
there exists an empty sphere through u and v.

All bounds in this section ultimately derive from the probabilities of certain
spheres or circles being empty. For illustration we show the edge length bounds
directly, though for d = 2 we could use Miles’s explicit expression for the distribution
of the radii of empty circumcircles.
Theorem 1. For dimension d fixed, the expected maximum length of an edge of

DT (Π) with endpoints in S is Θ(log1/d n).
Proof. Consider sites u1, u2, . . . , ud+1 in Π ∩ S. The chance that the sphere
through these points is empty is e−A, where A is the sphere’s volume. Thus if
A ≥ (d + 2) lnn, this chance is at most 1/nd+2. With probability larger than
1−1/n for n sufficiently large, the number of choices of u1, u2, . . . , ud+1 is less than
nd+1. Thus the probability that there exist twoDT neighbors further apart than the
diameter of a sphere of volume (d+ 2) lnn is less than 2/n. Finally, the maximum
possible edge length in DT (Π) ∩ S is d1/2n1/d. Thus the expected maximum edge
length is O(log1/d n).

For the lower bound, we center spheres of radius .5 ln1/d n at sites of Π ∩ S.
With probability tending to one, we can put down at least n1/2 of these spheres,
such that no two spheres intersect. The chance that at least one of these spheres is
empty—other than its center site—is greater than 1−(1−n−.25 )

√
n, which tends to

one as n goes to infinity. Also with probability tending to one, a site at the center
of such a sphere has a neighbor in DT (Π) ∩ S. 2

We now specialize to two dimensions and consider the aspect ratios and angles of
triangles in DT (Π). We make use of the following results.6 The probability density
function of two arbitrary angles (α, β) in an arbitrary triangle of DT (Π) is

f(α, β) =
8
3π

sinα sinβ sin(α+ β), α ≥ 0, β ≥ 0, α+ β ≤ π. (1)

Integrating over β, the density function of a random Delaunay angle is

f(α) =
4 sinα

3π
(sinα+ (π − α) cosα), 0 ≤ α ≤ π. (2)

He also showed that the radius of the circumcircle of the triangle is independent of
its angles.
Theorem 2. The average aspect ratio of a triangle in DT (Π) is 2π/3 + 7/(2π) ≈
3.20848.

Proof. Assume that α ≤ β ≤ π − α − β. Then the side s between the angles
measuring α and β is the longest side. Altitude a subdivides s into two pieces s1
and s2 with |a|/|s1| = tanα and |a|/|s2| = tanβ. The aspect ratio is |s|/|a| =
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1/ tanα+ 1/ tanβ. The average aspect ratio is then given by the following integral
over the region R = { (α, β) | 0 ≤ α ≤ β ≤ π − α− β },

6
∫∫

R

8
3π

sinα sinβ sin(α+β)(1/ tanα+1/ tanβ) dαdβ =
∫∫

R

16
π

sin2(α+β) dαdβ.

The factor of six is included to correct for the fixing of a permutation of the angles.
Region R can be split into two smaller triangles: R1 = { (α, β) | 0 ≤ α ≤ β, α+β ≤
π/2 }, and R2 = { (α, β) | 0 ≤ α ≤ β, α + β ≥ π/2, α + 2β ≤ π }. We rotate the
coordinate system by π/4 with the subsitution x = α + β and y = β − α. The
integrals over y then amount to simply multiplying the integrand by the height
(y-dimension) of the regions of integration. This gives the following sum:∫ π/2

0

8
π
x sin2 x dx +

∫ 2π/3

π/2

8
π

(2π − 3x) sin2 x dx .

This expression evaluates to the number given above. 2

Now let θMIN denote the measure in radians of the smallest angle at a vertex
of DT (Π) ∩ S, that is, the smallest angle of a triangle of DT (Π) lying entirely in
square S. Define θMAX similarly. We now show that the expected minimum angle
measures Θ(n−1/2) radians. Since the aspect ratio of a triangle with sharpest angle
θ is between 1/ sin θ and 2/ sin θ, this also implies that the expected maximum
aspect ratio is Θ(n1/2). An intuitive explanation of this result is: the closest pair
of sites in S has expected distance Θ(n−1/2) and the nearest neighbor of this pair
lies at expected distance Θ(1).
Theorem 3. The expected minimum angle E[θMIN ] is Θ(n−1/2).
Proof. We first give the lower bound on E[θMIN ]. For a given angle 6 uvw in
DT (Π),

P [ | 6 uvw| ≤ θ ] =
∫ θ

0

4 sinα
3π

(sinα+ (π − α) cosα) dα

by (2) above. Now sinα = α+ o(α2) and cosα = 1− α2/2 + o(α2), so

P [ | 6 uvw| ≤ θ ] =
∫ θ

0

(4/3π) (απ + o(α)) dα = 2θ2/3 + o(θ2).

The number of angles of DT (Π) ∩ S is less than 6|Π ∩ S|, and hence less than
9n with probability greater than 1 − 1/n, for large n. Thus P [θMIN ≤ θ ] ≤
1/n + 9n · (2θ2/3 + o(θ2)). This is less than 1/n + 7nθ2 for large n and small θ.
Setting θ = n−1/2/4, for large n we have that P [θMIN ≤ θ ] ≤ 1/2, and hence
E[θMIN ] ≥ n−1/2/8.

For the upper bound, divide S into n/100 little squares of side 10. There is Ω(1)
chance that a square contains the entire circumcircle of a triangle of DT (Π); the
angles in such triangles are independent and distributed just as the angles in any
triangle of DT (Π). Then by the calculation above, a little square has chance Θ(θ2)
of containing an angle as sharp as θ. Then the chance that no little square contains
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an angle as sharp as θ is at most (1− cθ2)n/100 for a suitable constant c. This is at
most e−c

′nθ2 , where c′ = c/100. Thus for each θ,

P [θMIN ≤ θ ] ≥
∫ θ

0

e−c
′nα2 · 2c′nαdα,

which implies that

E[θMIN ] ≤
∫ ∞

0

αe−c
′nα2 · 2c′nαdα =

∫ ∞
0

e−c
′nα2

dα ,

where the last equality comes from integration by parts. This integral evaluates to√
π/(2
√
c′n ). 2

Theorem 4. The expected maximum angle E[θMAX ] is π −Θ(n−1/5).
Proof. To bound E[θMAX ] away from π, we consider an arbitrary angle 6 uvw in
DT (Π). By (2) above,

P [ | 6 uvw| > θ ] =
∫ π

θ

4 sinα
3π

(sinα+ (π − α) cosα) dα.

By a change of variables, β = π−α, and the approximations sinα = β−β3/6+o(β3)
and cosα = −1 + β2/2 + o(β3), we obtain

P [ | 6 uvw| > θ ] =
4
3π

∫ π−θ

0

(β − β3/6)2 + β(β − β3/6)(−1 + β2/2) + o(β4) dβ.

The expression inside the integral simplifies to β4/3 + o(β4). Thus the probability
of an arbitrary angle measuring more than θ is Θ((π − θ)5). The argument that
E[θMAX ] is then π − Ω(n−1/5) follows as in the first part of the proof of Theorem
3.

To show that E[θMAX ] is π − O(n−1/5), we again use the device of dividing S
into n/100 little squares. The rest of the proof follows analogously. 2

3. Maximum Degree in the Plane

For ease of understanding, we first give our degree bounds in two dimensions.
Then in the next section, we generalize to higher dimensions. In both cases, the
strategy for the upper bound is to show that if a site has high degree in DT (Π)∩S,
then either it touches an unusually large empty sphere or its DT neighbors are
unusually close to each other.

Now assume d = 2, and consider a single site v ∈ Π ∩ S. Let the DT neighbors
of v that lie above v (i.e., larger y-coordinate) be u1, u2, . . . , uK in radial order
counterclockwise around v. We limit attention to the DT neighbors above v to
avoid some conditioning of random variables as the path wraps around. It is the
random variable K that we would like to bound.
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Figure 1. The Delaunay neighbors of v.

Let u0 be the site preceding u1 and uK+1 be the site succeeding uK in the radial
order of all DT neighbors of v. Let Ci be the circle through v, ui−1, and ui for
1 ≤ i ≤ K. Let ri be the radius of Ci, and let r be the maximum of the ri, for
1 ≤ i ≤ K. Let the path length L be the length of the path u1u2 . . . uK . We first
show that if the path is long, then r must be large.
Lemma 1. Path length L is at most 2πr.
Proof. Length |ui−1ui| is no greater than the length of the outside arc of Ci
between ui−1 and ui. This length is no greater than ri · 2|6 ui−1vui|, since the arc
subtends a central angle of 2| 6 ui−1vui|. Replacing ri by r and summing over all i
between 1 and K finishes the proof. 2

The constant 2π is tight, as the Delaunay neighbors could form a circle lying
entirely above v. Next we introduce a random process that approximates path
length. Let D be a nonnegative random variable with distribution

P [D ≤ d] =
∫ d

0

πxe−πx
2/2 dx.

The distribution ofD is that of the distance from a point of Π to its nearest neighbor
with larger y-coordinate. The chance that this nearest neighbor lies at distance at
most d is the same as the chance that a semicircle with radius d contains at least one
site. Since the area of the semicircle is πd2/2, the probability that it is nonempty
is 1 − exp(−πd2/2). Differentiating this expression gives the probability density
inside the integral above. Random variable D has mean

√
2/2 and has increasing

probability density on the interval [0, 1/
√
π ]. The following lemma shows that the

length of each path segment dominates D.
Lemma 2. Assume that the locations of u0, u1, . . . ui are given, but that K is not.

Then for each d, P [ |uiui+1| > d ] ≥ P [D > d ].
Proof. Distance |uiui+1| is at least |uiw|, where w is the nearest site to ui that
comes later in the radial order around v. The distribution of w is conditioned by
the locations of u1, u2, . . . , ui and the fact that these vertices are DT neighbors of
v. This conditioning forbids w from the interior of circles C0, C1, . . . , Ci, as shown
in Figure 1. This only increases the likelihood that |uiui+1| exceeds D. 2
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Lemma 3. There is a constant c such that for large n, P [K ≥ c·log n/ log logn ] ≤
1/n2.

Proof. The probability P [K ≥ c · log n/ log logn] is less than the sum of the
probabilities P [L ≥ 4π ln1/2 n] and P [K ≥ c · log n/ log logn and L < 4π ln1/2 n ].
By Lemma 1, the first probability is less than the probability that there exists
an empty Delaunay circle of radius 2 ln1/2 n touching v. With probability greater
than 1 − 1/(4n2), there are less than n2 possible circles, so P [L ≥ 4π ln1/2 n] ≤
1/(4n2) + n2 · exp(−4π lnn) ≤ 1/(2n2).

To bound the second probability we consider the following “stopping time” ques-
tion. Suppose we make i.i.d. choices from D’s distribution. We stop when the sum
of the choices exceeds 4π ln1/2 n. What is the chance that we are still going after
k = bc · log n/ log lognc choices? Lemma 2 implies that this probability is an upper
bound on P [K ≥ k and L < 4π ln1/2 n ].

If the sum of k choices is less than 4π ln1/2 n, then at least k/2 of these choices
must be less than 8π(ln1/2 n)/k. The chance that any one choice from D is this
small is less than p = 16π(ln1/2 n)/k. For this calculation, we (rather grossly)
underestimated D by assuming it to be uniform on [0, .5]. For sufficiently large n
and hence sufficiently small p, the chance that at least k/2 choices are small—that
is, in the range [0, .5p]—is at most twice as big as the chance that exactly bk/2c are
small. Thus the probability that at least k/2 choices are small is at most

2 ·
(

k

bk/2c

)
pk/2(1− p)k/2.

This is less than 2kpk/2, which in turn is less than 2k(16π)k/2(lnn)k/4k−k/2. Since
k = bc · log n/ log lognc, this last expression is less than (logn)−k/4(c′ · log logn)k

for some constant c′. With a sufficiently large choice of c, this expression is smaller
than 1/(2n2) for large n. 2

Theorem 5. For d = 2, the expected max degree of a vertex of DT (Π) ∩ S is

O(log n/ log logn).
Proof. The probability that there exists a vertex of degree at least 2k is less than
the sum of the probability P [ |Π∩S| > 2n ] and 2n times the probability that a given
vertex has at least k DT neighbors with larger y-coordinate. The first probability
is much less than 1/n. We let k = bc · log n/ log lognc, where c is as guaranteed
in Lemma 3. Then the second probability is at most 2/n, and the sum of the two
probabilities is at most 3/n. Since the maximum possible degree is |Π ∩ S|, the
expected maximum degree is no more than 2k +O(1). 2

For the lower bound, we give a specific pattern for a site and its DT neighbors,
and show that this pattern is realized with nonvanishing probability. Let v be a
point of Π∩S. We center a circle C of radius r at v, and then circumscribe a regular
`-gon about this circle. We will determine ` and r later. Consider the region of the
plane that lies interior to the `-gon but not in the closed disk bounded by C. We
call each of the ` sickle-shaped connected components of this region a wedge.
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Lemma 4. Assume the only site inside C is v. If a wedge is nonempty, then with

probability one it contains a DT neighbor of v.

Proof. Consider a wedge W containing a site u. The diameter circle of u and
v (i.e., the circle with diameter uv) does not intersect any other wedge. To see
this, notice that if u is close to a vertex of the `-gon then the diameter circle just
misses the two adjacent wedges, and if u moves further interior, the diameter circle
shrinks. So the diameter circle of u and v is either empty, or it contains another
site u′ in W . Assuming W contains only a finite number of sites, we can find a site
in W whose diameter circle with v is empty. Assuming no degeneracy, this site is a
DT neighbor of v. 2

Lemma 5. For ` ≥ 4, the area of a wedge is at least 2r2/`3.
Proof. The area of the regular `-gon is `r2 tan(π/`) and the area of the circle
is πr2. Thus the area of a single wedge is r2(tan(π/`) − π/`). For θ less than
one radian, the following inequality follows from Taylor series expansions: tan θ ≥
θ+ θ3/3− θ5/4!. Applying this inequality to the expression for the area of a wedge
yields the lemma. 2

Lemma 6. For r/` ≤ 1 and ` ≥ 4, the probability that a given wedge contains a

site is at least 2r2/`3 − 8r4/`6.
Proof. This follows from Lemma 5 and a Taylor series expansion of e−2r2/`3 . 2

Theorem 6. For d = 2, the expected max degree of a vertex of DT (Π) ∩ S is

Ω(log n/ log logn).
Proof. Let r = .05 ln1/2 n. Then the chance that a circle of radius r is empty
is greater than n−.01. With probability tending to one, we can select a subset
P ⊂ Π ∩ S such that |P | ≥ n/ log n and the closest pair of points in P is at least
distance .2 ln1/2 n apart. We place a circle of radius r centered at each point of P
and then circumscribe an `-gon around each circle. By construction these `-gons
are pairwise disjoint. The probability that at least n.9 of the circles are empty tends
to one as n goes to infinity.

Next we set ` = blog n/ log lognc. Let k = b.1`c. For n and hence ` sufficiently
large, Lemma 6 implies that the chance that any given wedge within any given `-gon
is nonempty is at least r2/`3. Within a single `-gon, the probability that at least k
wedges are nonempty is at least(

`

k

)
(r2/`3)k(1− r2/`3)`−k.

Now
(
`
k

)
≥ 1, and (1 − r2/`3)`−k ≥ (1 − 1/`).9` ≥ 1/e for sufficiently large n.

Thus for large n the probability that at least k wedges are nonempty is at least
(.0025 lnn)k`−3ke−1 ≥ `−.3`. For large n, logn/ log logn ≥ (log n).9, therefore,
`−.3` ≥ (log n)−.27 log n/ log log n = n−.27.

Thus, out of n.9 empty circles, the probability tends to one that some circum-
scribed `-gon has at least b.1`c nonempty wedges. Thus, by Lemma 4 the expected
maximum DT degree is at least a constant times log n/ log logn. 2
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Figure 2. The Delaunay surface of v.

4. Higher Dimensions

We now generalize the degree bounds to arbitrary fixed dimension d. The upper
bound follows the same strategy as above, although the proof is somewhat more
technical, primarily because we can no longer sort Delaunay neighbors into a natural
order. The lower bound is a straightforward generalization.

Consider a single site v ∈ Π ∩ S. Let B1, B2, . . . , BM denote the balls bounded
by the circumspheres of Delaunay d-simplices incident to v. Call the boundary of
B1 ∪ B2 ∪ . . . ∪ BM the Delaunay surface (of site v). Since we assumed that no
set of d + 2 sites lies on a sphere, each ball Bi, 1 ≤ i ≤ M , contributes a curved
triangular patch to the Delaunay surface. In other words, the Delaunay surface is
topologically a triangulation of a (d − 1)-sphere. See Figure 2. Let r denote the
maximum radius of a ball Bi, 1 ≤ i ≤M .

The following is analogous to Lemma 1. For dimensions greater than two, we
do not know tight constants (the analog of 2π) and determining them may be an
intriguing geometric question.
Lemma 7. The (d− 1)-dimensional volume of the Delaunay surface is O(rd−1).
Proof. Consider a sphere C of radius 2r centered at v. Define the mapping
that projects the points of the Delaunay surface D from v along radii to sphere C.
Though the Delaunay surface is not convex, this projection is easily seen to be one-
to-one. Moreover, this projection is expansive, that is, for points x and y on D that
project to x′ and y′ on C, the geodesic distance d(x, y) on D is at most the geodesic
distance d(x′, y′) on C. To see this claim, consider the plane through v, x, and y.
The intersection of D and this plane is a boundary of a union of circles incident to
v, as in Figure 1. The proof of Lemma 1 then suffices to show that distance d(x, y)
on D is at most 2πrθ, where θ = |6 xvy|. Distance d(x′, y′) on C is exactly 2πrθ.
The existence of this expansive map shows that the (d− 1)-dimensional volume of
D is no greater than the surface area of sphere C. This surface area of sphere C is
2πd/2(2r)d−1/Γ(d/2). 2
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As in the proof of Lemma 3, we divide the analysis into two cases, depending on
whether or not r exceeds a constant times log1/d n. For a suitable constant, the case
of large r occurs with probability less than 1/n2 and thus contributes a negligible
factor to the expectation. From now on, assume we are in the case of small r. Call a
DT neighbor u of site v isolated if there are no other neighbors of v within distance
r−1/d2 of u.
Lemma 8. Site v has O(rd−1+(d−1)/d2) isolated neighbors.

Proof. The intersection of a sphere of radius .5r−1/d2 centered at an isolated
neighbor with the Delaunay surface has (d− 1)-dimensional volume greater than a
constant times r−(d−1)/d2 . These intersections are disjoint, so only O(rd−1+(d−1)/d2)
can fit onto the Delaunay surface. 2

Since r is O(log1/d n), the number of isolated neighbors is o(log n/ log logn).
Thus it suffices to bound the number of nonisolated neighbors. Call a pair of sites
in Π ∩ S close if the distance between them is less than r−1/d2 .
Lemma 9. Let C be a d-dimensional cube of volume V = c · rd. The probability

is less than (c′V 1−1/d2 / k)k/2 that there exist 2dk disjoint close pairs of sites in C,

where c′ is a constant.

Proof. We cover the cube of volume V with a grid of little cubes, each of volume
w = 2dr−1/d (and hence of side 2r−1/d2). There are a total of m little cubes, with
V/w ≤ m ≤ 2V/w. If A is a random variable representing the number of sites in
some little cube, then P [A = j] = e−wwj/j!. Let C1, C2, . . . , Cs be the little cubes
that contain at least two sites, and suppose that Ci contains Ai ≥ 2 sites. Let
K =

∑s
i=1Ai. Then

P [K = k] =
∑

A1+...+As=k

(∏
i

e−wwAi

Ai!

)

= wk ·
∑

A1+...+As=k

(
e−sw

A1!A2! . . . As!

)
≤ wk ·

∑
A1+...+As=k

1 .

The sum in the last expression is less than the number of ways of dividing k indistin-
guishable items into no more than k/2 distinguishable groups, times the number of
subsets of little cubes that can receive these groups (that is, the number of choices
of C1, C2, . . . , Cs). Denoting this sum by Nk we then have

Nk ≤
(
k + k/2
k/2

)
·
(
m

k/2

)
≤ 22k · m

k/2

(k/2)!
≤ 4k ·

(
2em
k

)k/2
.

Substituting this expression into our previous bound, we have

P [K = k] ≤ (4w)k ·
(

2em
k

)k/2
=
(

32e · w
2m

k

)k/2
.
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Now since m ≤ 2V/w, this last expression is smaller than (64eV w/k)k/2. Since
V w is Θ(V 1−1/d2), we have proved that the probability P [K = k] is less than
(c′ V 1−1/d2 / k)k/2, for some constant c′. As this probability decreases more quickly
than geometrically with k, P [K ≥ k] is at most a constant times this quantity.

By shifting the grid of little cubes 2d times (that is, by mapping the center of a
cube to the center of each of its faces), we can ensure that each close pair of sites
falls into a single subcube at some stage. If there are 2dk disjoint close pairs, then
some stage must have at least k pairs together, that is, have K ≥ 2k. 2

With a suitable choice of a constant c′′, Lemma 9 implies that the probability
is less than 1/n2 that there exist c′′ · log n/ log logn close pairs of sites in a cube
of volume O(log n). Notice that in the case of small r, all Delaunay neighbors of v
necessarily fit into such a cube.
Theorem 7. In any fixed dimension d, the expected maximum degree of a vertex

of DT (Π) ∩ S is Θ(logn/ log logn).
Proof. Above we showed that the expected maximum degree is O(log n/ log logn).
The lower bound is a straightforward induction on dimension. We illustrate the
induction in the case of d = 3. Let C be a sphere centered on a site v. We surround
C with a solid C ′ such that in each cross-section parallel to the xy-plane, C ′ defines
a regular `-gon circumscribed about the circle defined by C. As before, a wedge is
a connected component of the interior of C ′ minus the closed ball bounded by C.
The lower bound proof of Theorem 6 depends only on the ratio of the volume of a
wedge to the volume of the central sphere. This ratio changes by only a constant
as d increases. 2

5. Conclusions

The Θ(log n/ log logn) bound for expected maximum degree came as something
of a surprise to us. This function does not really reflect the geometry of random
point sets as, for example, the Θ(log1/d n) bound on maximum edge length does.
The maximum degree bound stems from a balance between the number of trials and
the probability of success in a single trial for a repeated random experiment. The
same Θ(log n/ log logn) bound holds for the expected maximum length of a probe
sequence in a hash table.13,14 For hashing this bound can be explained by the fact
that the maximum of n independent Poisson random variables is Θ(logn/ log logn).
Vertex degrees in a Delaunay triangulation are neither independent nor Poisson,
although a Poisson distribution appears to fit Crain’s histogram reasonably well.10

Our proof holds without modification for the maximum degree in the Gabriel graph1

of random points.
There remain some interesting open questions about Delaunay triangulations

of random points. Nothing seems to be known about angles (planar or solid) or
aspect ratios in dimensions greater than two. Sharper probabilistic results—such
as bounds on the higher moments of the distribution of vertex degree–would also
be of interest.
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