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Abstract

We show that the length of the minimum weight Steiner triangulation (MWST) of a
point set can be approximated within a constant factor by a triangulation algorithm based
on quadtrees. In O(nlogn) time we can compute a triangulation with O(n) new points, and
no obtuse triangles, that approximates the MWST. We can also approximate the MWST
with triangulations having no sharp angles. We generalize some of our results to higher
dimensional triangulation problems. No previous polynomial time triangulation algorithm
was known to approximate the MWST within a factor better than O(logn).

1 Introduction

Optimal triangulation has furnished a number of problems of longstanding interest in compu-
tational geometry. These problems have applications to cartography, spatial data analysis, and
finite element methods. Optimization criteria for which efficient algorithms are known include
maximizing the minimum angle [20, 24], minimizing the maximum angle [6], minimizing the
minimum angle [7], minimizing the maximum aspect ratio [3], and minimizing the maximum
edge length [5].

The most longstanding open problem in computational geometry is the complexity of an-
other optimal triangulation problem, the minimum weight triangulation (MWT), in which the
optimization criterion is the sum of the edge lengths. Indeed, this seems to have been known
as the “optimal triangulation” for some time. The MWT problem is included in Garey and
Johnson’s famous list of problems neither known to be NP-complete, nor known to be solvable
in polynomial time [9]. It is known that many triangulation algorithms will not correctly solve
the MWT problem [17]. We do not resolve the status of this question.

The algorithms and problems cited above search for triangulations in which the vertex
set of the triangulation is exactly the set of input points. Many of these problems can be
extended to Steiner triangulation problems, in which the vertex set must be a superset of
the input points. The additional vertices are known as Steiner points. For the application of
triangulation problems to finite element mesh generation, Steiner triangulation is more natural
than non-Steiner triangulation because the problem is simply to divide space up into a number
of (triangular) cells, and extra cell boundary points are not a problem. However it is important



that the number of additional Steiner points be relatively small, as this number directly affects
the time to solve the resulting finite element system.

No Steiner triangulation problem is known to be exactly solvable in polynomial time, but
a number of approximations have been published. In particular, one can find a Steiner trian-
gulation in which all angles are bounded between 36° and 80°, using an algorithm based on
quadtrees [1]. The number of Steiner points may vary with the geometry of the input, but
the algorithm uses within a constant factor of the optimal number of points, and takes time
polynomial in the total output size. Similar methods can be used to find a triangulation with
O(n) Steiner points in which no angle is obtuse [1]. We will revisit these two triangulations
later.

For the minimum weight triangulation problem, it is not immediately clear that adding
Steiner points can reduce the total edge length of the MWT. But in fact we can show that
the minimum weight Steiner triangulation (MWST) of n points can have a total weight Q(n)
times smaller than the MW'T. Algorithms are known for approximating the MW'T and the
MWST (2, 16, 21, 25], but the best such algorithms have a total length that is O(logn) times
the length of the MWT or MWST. In this paper we give the first constant-factor approximation
algorithms for the MWST.

1.1 New Results

We describe algorithms for several triangulations, all based on the quadtree recursive space-
partitioning data structure. Each of these triangulations has a total length that is O(1) times
the length of the MWST. Our algorithms can be implemented to take time O(nlogn + k),
where k is the number of Steiner points.

e We describe a simple Steiner triangulation based on quadtrees, in which each quadtree
square is split until no square contains more than one input point, along with a balancing
condition on the sizes of neighboring squares. This triangulation can use a nonpolynomial
number of Steiner points, but is easy to implement and should perform well in practice.
We prove that the total length of this triangulation is O(1) times the MWST length.

e We modify the above algorithm to stop dividing squares below O(logn) levels in the
quadtree. This reduces the number of Steiner points to O(nlogn), while preserving the
approximation to the MWST.

e We show that a variation of the algorithm from [1], in which some quadtree levels are
“shortcut” to reduce the number of Steiner points to O(n), and in which no triangle
contains an obtuse angle, also approximates the MWST.

e We modify a triangulation from [1] which avoids sharp angles, and uses a number of
Steiner points within a constant factor of the optimum needed to avoid sharp angles. The
modified triangulation retains these properties and approximates the MWST. As in [1], a
nonpolynomial number of Steiner points may be needed.

e We approximate the MWST of a convex polygon (not just point set) using O(n) Steiner
points.



In addition, we use our quadtree characterization of the MWST weight in order to prove
some other results on minimum triangulation:

e We prove that the MWST can have a total weight that is ©(logn) times the weight of
the minimum spanning tree (which we abbreviate MST; similarly the minimum weight
Steiner tree would be the MSST). The proofs of this and the following MWST properties
are based on our result that quadtrees approximate the MWST.

e We prove that the MWT can have a total weight that is ©(n) times the weight of the
MWST. Even for convex polygons or point sets in convex position, the MWT can have a
total weight ©(logn) times the MWST weight.

e We prove that, for convex polygons, the MWST can be approximated by a Steiner trian-
gulation in which all Steiner points are on the polygon boundary.

Since minimum length triangulation has been motivated in part by finite element mesh
generation, it is noteworthy that we can find triangulations which are good by other measures
of their applicability to finite element analysis, and which also approximate the MWST.

The relation between MWT and MWST weight shows the importance of allowing Steiner
points in a triangulation. The relation between MWST and MST weight is relevant because pre-
vious Steiner triangulation algorithms proved their performance by comparing the triangulation
length to the MST; since any triangulation spans all vertices, and since the MST approximates
the MSST [4], it follows that the MWST weight is at least a constant factor times that of the
MST. However the result above shows that such a proof can never lead to an approximation
factor better than O(logn). Our proof of this result is algorithmic: we find a point set for
which our algorithms produce a triangulation with this length. The result then follows from
the correctness of our approximation to the MWST.

The result on convex polygons is interesting because, although it is not known how to find
the MWST in polynomial time, the optimal triangulation using only boundary Steiner points
can be found easily using a dynamic programming technique. We conjecture that, for convex
polygons, the MWST in fact only needs boundary Steiner points.

1.2 Related Work

Quadtrees have been in use for well over a decade, with a number of applications [23] including
finite element mesh generation [18, 22, 26]. The first theoretical analysis of quadtree triangula-
tions appears in the recent work of Bern et al. [1] in which it is proved that such triangulations
can be used to avoid sharp and obtuse angles, with a number of points within a constant factor
of optimal. These restrictions on the angles in the triangulation are motivated by considerations
from finite element analysis. We modify these algorithms slightly—the main difference is in a
choice of several initial squares covering the points rather than a single large square—and show
that the modified triangulations approximate the MWST. The unmodified algorithms turn out
to be within an O(logn) factor of the MWST weight.

Previous attempts at approximating the MWT and MWST have followed two approaches.
In the first approach, various workers have attempted to show that certain other standard
triangulations approximate the MWT. For instance, it was at one point believed that the



Delaunay triangulation actually achieved the minimum weight; however it has since been shown
that it can be as far as Q(n) from the optimum [11, 19]. This is pessimal since any triangulation
achieves O(n) times the minimum weight [11]. Similarly, the greedy triangulation [10, 15] has
been proposed as an approximation to the MWT; however the approximation factor can be as
bad as Q(y/n) [13, 19]. On the other hand, for convex polygons the greedy triangulation offers
an easily computed approximation to the MWT [14, 15].

The second approach to approximate MW'T problems uses the insight that polygon mini-
mum weight triangulation is significantly easier than the point-set MWT or MWST problems.
The exact minimum weight triangulation of a simple polygon can be found by dynamic program-
ming in time O(n3) [10, 12]. If the polygon is convex, a triangulation of weight O(logn) times
the polygon’s perimeter can be found by the ring heuristic of repeatedly connecting all pairs of
adjacent even-numbered vertices [21], and as mentioned above a constant-factor approximation
to the MWT can be computed in linear time [14, 15].

Lingas [16] suggested starting with polygonal regions formed by combining the convex hull
with the MST of a point set, and then computing the optimal triangulations of these regions.
He showed that this leads to a triangulation with a total length of O(|MWT|logn + nxlogn),
where x is the length of the longest edge in the triangulation. However this formula does not
show an approximation ratio better than O(n).

Plaisted and Hong [21] used a more complicated method to partition the points into convex
polygons. Then the ring heuristic can be used to triangulate the polygons, achieving a total
triangulation length of O(logn) times the MWT length. The Plaisted-Hong algorithm has
recently been implemented with a running time of O(n?logn) [25]. Since they do not use
Steiner points, the Plaisted-Hong triangulation can be as far as Q(n) from the MWST weight.

Clarkson [2] generalizes the ring heuristic to non-convex polygons, by allowing the addition of
Steiner points. His method, together with Lingas’ partition into polygons, achieves an O(logn)
approximation to the MWST; until the present work this was the best such approximation
known.

1.3 Organization of this Paper

In the next section we describe the simplest version of our quadtree algorithm, and prove that
it approximates the MWST. The algorithm may have nonpolynomial output size (number of
Steiner points), but we show that the running time is polynomial in the input and output sizes.
The proof of approximation first relates the triangulation to the MWT, and then shows that
adding further Steiner points would only increase the length of the triangulation produced by
our algorithm; therefore it also approximates the MWST.

In the third section we describe a number of modifications of our algorithm to produce
triangles satisfying certain other properties. We extend the algorithms of [1], in which all
angles are within certain bounds, to new triangulations that both approximate the MWST and
satisfy the angle bounds. We also show that O(n) Steiner points suffice to approximate the
MWST, producing the first known polynomial time approximation to the MWST.

In the fourth section we prove a number of results about MWSTs, by analysing the behavior
of the quadtree algorithm on various point sets. In the fifth section we introduce higher dimen-
sional extensions of the MWT and MWST problems, discuss some difficulties in extending our
results, and prove an O(log n)-approximation to the minimum edge length Steiner triangulation



Figure 1. Balance condition: (a) unbalanced quadtree; (b) additional subdivisions restore balance.
in any dimension.

2 Basic Quadtree Triangulation

2.1 Triangulation Algorithm

A quadtree is a recursive partition of a region of the plane into axis-aligned squares. One
square, the root, covers the region that is to be partitioned. Each square may be divided into
four child squares, by splitting it with horizontal and vertical line segments through the center
of the square. Each child has a size (length of the sides of the square) proportional to half the
parent’s size. Thus the collection of squares forms a tree, with smaller squares at lower levels
of the tree. A leaf square is one that has not been further subdivided into children.

Each leaf square in the quadtree has a set of neighbors, those leaf squares sharing either
corner vertices or portions of sides with the square. A neighbor is orthogonally adjacent if it
shares a portion of the square’s sides, and diagonally adjacent if it only shares a corner point.

As in [1], we maintain an additional balance condition in the quadtrees we construct: the
orthogonally adjacent neighbors of any leaf square must be at most twice the size of the square,
and at least half the size of the square. Equivalently, each line segment forming the boundary of
a leaf square can be divided into at most two parts by subdivision of neighboring squares. We
say a quadtree is balanced if the balance condition is true. Unbalanced and balanced quadtrees
are shown in Figures 1(a) and 1(b).

Our triangulation algorithm first builds a quadtree covering the set of input points. Then
it triangulates a rectangular region of the quadtree, including all line segments bounding leaf
squares as edges in the triangulation. These edges are augmented by diagonal edges in squares
not containing input points, and edges from the input points to the quadtree vertices surround-
ing them in the squares containing them.

We first find any root square containing the entire point set. We then recursively subdivide
squares of the quadtree, maintaining the balance condition. We subdivide any square containing
two input points in its interior or on its boundary. Whenever two neighboring squares violate



the balance condition, we must also split the larger of the two squares, regardless of whether
it contains an input point. At the end of this process, each input point is alone in its square.
Note that this phase of the algorithm is inherently nonpolynomial, because two close together
points may require a number of subdivisions unrelated to the total number of points.

We next cut the quadtree by adding the boundary of the convex hull of the input point
set. We add a Steiner vertex at each point where the boundary crosses a line segment of the
quadtree. Any quadtree squares entirely outside this boundary are removed, as are the exterior
portions of squares crossed by the boundary.

Finally, we include as Steiner points all corners of quadtree squares, and triangulate the
resulting point set. Our triangulation will include as edges the sides of each square. Each leaf
square has O(1) vertices on its boundary, because of the balance condition and because the
convex hull of the input can only cross a square at most four times. Each square may also
contain an input point in its interior or on its boundary. We simply triangulate each square
with the minimum length triangulation of those O(1) points, in constant time per square.

Note that the order in which subdivisions are performed does not change the final quadtree.
Therefore adding additional points to the input set (within the original convex hull) can only
increase the total amount of subdivision and therefore the total length of the triangulation.

2.2 Implementation Details

A number of details are required to perform the above triangulation algorithm efficiently; these
are essentially the same as those required in [1].

In the course of the algorithm we maintain a partially split quadtree. For each square we
maintain a data structure with pointers to its parent, its children, and its same-size neighbors.
Whenever we split a square, we update the parent and child information. If the new children
have neighbors of the same size, the neighbors are either siblings, or they are children of the
neighbors of the split square. Therefore we can also maintain the neighbor pointers in constant
time per subdivision.

To maintain the balance condition, we keep a queue of unbalanced neighbor pairs. Whenever
we split a square, we determine if any of its parent’s unsubdivided neighbors is a neighbor of
the split square; if so the neighbor and some child of the split square form an unbalanced pair.
This check can be performed in constant time, and it is not hard to see that all unbalanced
pairs will be detected in this way. Whenever this queue is non-empty, we pull the top pair off
the queue and check if the two squares still violate the balance condition; if so we subdivide
the larger square and update the queue as necessary. By emptying the queue before continuing
with the algorithm, we perform subdivisions to restore the balance condition before we allow
any subdivisions for other reasons.

There are two ways to perform the checks that each input point is alone in its square. The
simpler of the two is to add the points one at a time to the quadtree. Each leaf square contains
a pointer to the point it contains, or is noted as containing no point. When we add a new
point, we trace through the quadtree to find the appropriate leaf, and test if the leaf is empty.
If not, we have a pair of points in the same square, and we subdivide further until the points are
separated. This method will work for the truncated quadtree triangulation described later, but
it can be inefficient for other quadtree algorithms (including the basic quadtree triangulation
described above) because we may have many points at a low level in the tree, and each point



takes time proportional to its level.

The second method for managing the input points is to deal with them all at once. Initially,
the root square contains a list of all the points. When a box is split, we must divide that
list into four parts, one for each of the child boxes. The difficulty here is performing that
division efficiently when the points are unevenly divided among the children. We solve this
difficulty by maintaining two doubly linked lists, of the points sorted by horizontal and vertical
coordinates. We split the square horizontally by moving in simultaneously from both ends of
the horizontally sorted list, until we find the division corresponding to the center line of the
square. We determine which of the two sides contains the smaller set of points, and we extract
the points in that set one at a time from the vertically sorted list.

This takes time proportional to the size of the smaller set. However it leaves the vertical list
of the smaller set unsorted. Along with the two lists, we maintain for each point two integers
representing its order in the two lists. Whenever we extract a smaller subset of points from a
larger set, we sort the smaller subset using the previously computed integers, then we recompute
the integers in the smaller subset to be exactly the ranks in the sorted lists. However we do not
recompute the integers for the points remaining in the larger subset until the size of the subset
drops below half of what its size was the last time we performed such a recomputation. In this
way the ranking integers can be maintained at a total cost of O(nlogn) over the span of the
algorithm. We use these ranking integers to sort the vertical set. If there are x points in the
large set, the points will have ranks between 1 and 2z. If we wish to extract k points, then the
sorting can be performed in time O(klog(z/k)) using a combination of bucket sorting (with k
buckets) and comparison sorting. The total cost of splitting squares horizontally then becomes
also O(nlogn). Vertical splitting is performed in a similar way.

Theorem 1. A quadtree triangulation on n input points, with k Steiner points, can be con-
structed in time O(nlogn + k)

Proof: The number of Steiner points is proportional to the number of times quadtree squares
are subdivided. As described above, the total time to split a square is O(1), together with the
cost of splitting the sets of points in the square which can be amortized to a total of O(nlogn).
So if the total number of squares produced is k, the total time will be O(nlogn + k). O

2.3 Approximation to MWT

We first show that the quadtree triangulation approximates the minimum weight (non-Steiner)
triangulation of the input points. This is strange, because we are approximating a non-Steiner
triangulation by a Steiner triangulation. However as we shall see this step is needed in our
proof that the quadtree triangulation approximates the MWST.

We slightly modify the definition of the triangulation we are using: we assume that each
input point is contained in a quadtree square with very small side length, say e/n for some e.
This is without loss of generality, since the extra splitting needed to ensure this only increases
the total edge length of the triangulated quadtree. With this assumption, the boxes containing
points have total edge length € and can be neglected in the analysis—all the edge length arises
from empty boxes. This reduces the number of cases we need to consider.



Figure 2. Cases one through four of Lemma 2: (a) Regions s, parent of s, 3s, 3v/2d, and D. (b) stepping
from triangle to triangle until we find a point in 3s N D.

We now show that the triangulation length can be measured just by the edges in the
quadtree, without having to worry in detail about the diagonals added to produce a trian-
gulation.

Lemma 1. Within the portion of the quadtree within the convex hull of the input, the ratio
in edge lengths between the triangulated and untriangulated versions of the quadtree is O(1).

Proof: If we sum the perimeters of all unsubdivided squares in the quadtree, each interior
edge is counted twice and each exterior edge is counted once. So if each edge is responsible for
a total length proportional to twice its side length, all length will be covered except for half the
exterior edges. (Alternately, imagine each square being responsible for its bottom right edges,
with the top left edges taken care of by the square’s neighbors except for the exterior edges for
which no such neighbor exists).

Within a given unsubdivided square s of side length ¢, we must add diagonals to form a
triangulation. There are six possible cases, depending on the number of subdivision pointss
appearing on the sides of s (there are two different cases for squares with two subdivisions). In
each of these cases, we will charge some of the length in the added diagonals to s itself, and
some of the length to the half-size squares causing the subdivision points.

Note that any set of four siblings in the quadtree square can be charged for subdivisions
on at most three larger squares. There cannot be four larger squares, surrounding a set of four
equal sized siblings, because the parent of the siblings could only be subdivided because of a
pair of points within it, and since we are assuming input points are in negligable size squares
one of the four siblings would have to be small. If there are three larger squares, all four siblings
must be present to be charged, and if there are two larger squares they must charge at least
three siblings. So if a square can be charged by a factor of = times its length, a square with
subdivisions will be able to charge a factor of 2x/3 times it length per subdivision.

We apply this charging process with 2 = 3/4(1 + /5 — v/4). Then the total charge for
squares with no subdivisions, or with two opposite subdivisions, including the cost for the
diagonals and the 2¢ charge for the square itself, is (11 + /2 + 3v/5)¢/4 a~ 4.78(. The charge



Figure 3. Squares that can charge an edge in various cases of Lemma 2: (a) endpoint is near boundary
of parent; (b) endpoint is near center of parent.

for a square with one subdivision is (9 + 5v/5 — v/2)¢/4 ~ 4.69¢. The charge for a square with
two adjacent subdivisions is (7 + 3v/2 + 3v/5)f/4 ~ 4.49¢. The charge for a square with three
subdivisions is (9 + 7v/2 — v/5)¢/4 ~ 4.16¢. And the charge for a square with four subdivisions
is (7 + 11v/2 — 5/5)¢/4 ~ 2.844¢. The desired ratio is obtained by dividing the maximum of
these numbers by the 2¢ charge per square of the untriangulated quadtree, obtaining a value of
approximately 2.39. O

Lemma 2. The total edge length of the quadtree triangulation is O(m), where m is the total
edge length of the MW'T.

Proof: As noted above, we can allocate the edge length of the triangulated quadtree to its
individual unsubdivided squares. Each square of side length ¢ is charged with length 4.78¢. By
the assumption that squares containing input points are small, we only need to worry about
the empty squares. We now partition the unsubdivided empty squares into several types. We
treat each type in a separate case.

In the following description, s will refer to an unsubdivided square of side length £ which
we are attempting to charge to the MW'T, ¢ will refer to the center point of s, d will refer to
a square with the same side length and centerpoint, but at an angle of 45° to s, and kd or ks
for some constant k£ will refer to the concentric squares with side length k¢. H will refer to
the convex hull of the input, which is the region covered by the MW'T triangles. D refers to a
halfplane, with boundary line at 45 deg to the sides of s, touching s at one corner and entirely
containing the quadtree parent of s. Some of these regions are depicted in Figure 2(a).

In the first case, cis in H and the MWTT triangle covering c has a vertex in the region 3sND.
We then charge the edge length of s to the two adjacent triangle edges, proportional to their



lengths. Any triangle covering ¢ with vertices outside s has an edge of length at least ¢, so by
the triangle inequality the two charged edges together have total length at least /. Each MWT
edge is charged at most 12 times for each size of square, since each endpoint can be charged
by 6 squares neighboring the one containing the endpoint. The charge per square s is at most
4.78¢. Each endpoint of an edge can be charged by at most six squares of any given size.

In the second case, ¢ is in H and some orthogonally adjacent sibling s’ of s contains an
input point x. that has side length s and that shares a side with s. Note that s’ is entirely
contained in 3s N D. If s was not covered by the first case, no vertex of the MWT triangle
containing c¢ is in 3s N D. Since this triangle is empty, x is outside it. Therefore some edge of
the triangle cuts entirely across region 3s N D and separates ¢ from x. We next examine the
triangle on the other side of this edge. Again, this triangle either has a vertex in 3s N D or
another edge separates ¢ from x in 3sN D. If we repeat this process, we find a triangle with one
vertex v in 3s N D, and with the opposite edge cutting entirely across 3s N D separating ¢ from
x. We charge the two triangle edges adjacent to v proportionally to their lengths. The opposite
triangle edge must have length at least £, so by the triangle inequality this is also true for the
sum of the charged edge lengths. Figure 2(b) shows a sequence of triangles ending at one with
an endpoint in 3s N D, as described in this case. The charge per square, and the squares that
can charge a given edge, are the same as in the first case.

In the third case, ¢ is in H and the MWT triangle covering ¢ has a vertex in the region
3v2d N D. (This region is depicted with 3s in Figure 2(a).) This case is similar to the first
case. Because the vertices of the triangle avoid 3s N D, we can charge a pair of edges with total
length at least 2¢, so the charge per square relative to the edge’s length is smaller by a factor
of two. Each endpoint of an edge may be charged by 11 squares of a given size, but 6 of these
potential charging squares were accounted for in the first two cases, leaving 5 new charges.

In the fourth case, ¢ is in H and s has a diagonally adjacent sibling that contains an input
point. This is similar to the second case, in that we step from triangle to triangle to produce
a sequence of edges separating ¢ from this input point in 3v/2d N D.. We then charge a pair
of edges with total length at least the length of the last edge in the sequence. The shortest
line segment crossing 3v/2d N D and separating ¢ from some point of its diagonal neighbor has
length 3v/2 /2¢ > 2¢. The charge per square, and the squares that can charge a given edge, are
the same as in the third case.

The fifth case covers all remaining squares s that are entirely contained in H. Let s’ denote
the quadtree parent square of s, let ¢’ denote the centerpoint of s’. and let d’ denote the square
with side length 2¢ centered on ¢’ at an angle 45° to s’. Since s is in H, and ¢ is in s, ¢ is
in H. If s is not covered by the previous four cases, s’ must be empty, and must have been
split by the balance condition. Therefore, there must be some input point & within the region
3s' N2v/2d’. We first consider the MWT triangle containing ¢’. If it has an endpoint in 3¢/,
we charge the edge length of s to a pair of edges with total length at least 2¢, adjacent to
that endpoint. Otherwise, some edge of the triangle crosses square 3s, and separates ¢’ from x;
this edge must have length at least 2¢. As in cases two and four, we can step from triangle to
triangle until we find a pair of edges, with total length at least 2¢, sharing an endpoint within
3s’. Each endpoint of an edge may be charged by 32 squares of any given size; however 8 of
these could also have charged the edge in the first four cases, leaving 24 new charges.

Figures 3(a) and 3(b) depict the neighborhood of an edge endpoint, depicting the various
squares of a given size that can charge it in various cases. Note that, if any of the eight nearest



neighboring squares to the point charge it, then certain squares of half the size cannot do so.
In this sort of conflict, a larger charge will always be accumulated when these eight squares are
subdivided and their children charge the edge, than when they are unsubdivided and charge the
edge directly. Therefore the total charge to an edge will be maximized when, for each possible
size of square, the 27 outer squares charge the edge and the 8 inner ones do not. The total
charge per unit edge length will then be 54 - 4.78 < 258.2: we multiply 27 by the charge per
square, divide by two since an edge or pair of edges can only be charged by squares of half the
side length, multiply by two since each edge has two endpoints, and multiply by two again to
sum the geometric series formed by considering all possible sizes of squares.

In the remaining cases, square s is crossed by the boundary of the convex hull of the input
(if s were entirely outside the convex hull, it would have been removed from the quadtree before
triangulation and so would not contribute to the total edge length). Square s can be crossed at
most four times by such line segments, and each one cuts off at least one corner of s, so there
can be at most 12 points on the boundary of s, and s can be triangulated with total length
with total length at most (2 4 41/2)¢ simply by adding a point in the center.

In case six, we consider squares in which the convex hull boundary crosses s in a line segment
such that no corner of s is within distance /3 of both line segment endpoints. We charge the
edge length in s to that segment, which must have length at least £/3. Each unit of convex hull
boundary is then charged (2 + 4v/2)3 < 23 times.

In case seven, s is crossed near a corner but the center of s is outside the convex hull of the
input. Then s together with the crossing segment already forms a triangle, and we charge the
portion of convex hull boundary crossing s twice per unit length.

In the final case, s is crossed near a corner and the bulk of s is inside the convex hull. But
then the two neighbors on either side of the corner must be covered by case six. We charge the
triangulation length of s to those neighbors, which have side length at least £/2. Each square
can be charged at most once by a larger square, and once by an equal or smaller size square.
So the extra charge from this case is at most 3/2 that of case seven, or at most 34.5 per unit
edge length.

All cases together contribute a charge of at most 316 per unit edge length to the edges of
the MWT, so the total edge length of the quadtree triangulation is at most 316 times that of
the MWT. O

2.4 Approximation to MWST

We have shown that the quadtree triangulation approximates the MWT. But our desired result
is that it approximates the MWST.

Theorem 2. The total edge length of the quadtree triangulation is O(m'), where m’ is the
total edge length of the MWST.

Proof: Let S be the initial point set, and S’ be the set of Steiner points added to form the
MWST. The MWST is just the MWT of SUS’. Consider forming a quadtree triangulation in
the following way: we first form the quadtree for S as before, and then we add the points in
S’ and perform further splits as required. Then we add the edges of the convex hull of S and
triangulate squares as before.
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Figure 4. Quadtree triangulation: (a) placement and initial subdivision of root square, showing long
diagonal; (b) subdivision until points are separated and squares are balanced.

The extra splits can only increase the length of the triangulation, so this triangulation has
greater total length than the actual quadtree triangulation we would compute for S alone. But
this new triangulation satisfies the assumptions of Lemma 2 for input S U S’, and so it has
length O(m’) by that lemma. O

Further, the detailed analysis of Lemma 2 carries over to show that the approximation factor
in Theorem 2 is at most 316.

Corollary 1. Quadtree triangulation approximates the MWS'T of any convex polygon.

The same result does not carry through for non-convex polygons. The difficulty is that
the MWST of a polygon can have smaller weight than the MWST of its vertices. It is not
difficult to come up with examples in which simply performing the quadtree triangulation of
the polygon vertices, then refining the triangulation to include the polygon boundary, can lead
to an (logn) factor between the resulting triangulation and the MWST. The problem is that
the balance condition in the quadtree can cause splitting to spread between regions that are
nearby geometrically, but far within the polygon. It seems likely that a more constrained balance
condition can be used to develop an algorithm for approximating the MWST of polygons.

3 Modified Quadtree Triangulations

The quadtree triangulation above is unsatisfactory as an approximation to the MWST, because
it does not run in polynomial time. This difficulty arises because input points may be very close
to each other, and so many levels of the quadtree may be constructed before the points are
separated. Hence the running time may depend on the geometry of the input point set as well
as on the number of points. We must modify our triangulation to avoid small squares.

We also wish to modify the triangulation in another way. Recall that we added edges of the
convex hull of the input, and removed all portions of quadtree squares outside that polygon.
This leads to many special cases in the details of the triangulation, which are avoided if all input
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points are interior to the triangulation. In particular, we do not wish to add more cases to the
already complicated quadtree algorithms of Bern et al. [1] for non-obtuse triangulation and for
triangulation without small angles. For this reason, we now describe a version of the quadtree
triangulation in which we triangulate both inside and outside the convex hull of the input.
The algorithm itself is perhaps even simpler than the previous one, but its analysis will be
somewhat more complicated, since the exterior of the convex hull can add a total triangulation
length proportional to that of the interior but it is not so easy to charge this length against
edges of the MWT.

The first step is placing the root square. We rotate the coordinate system so the horizontal
axis is aligned with the longest segment connecting two input points. Let z; and x5 be the
minimal and maximal extent of the points in the horizontal direction, and let y; and yo be the
extent of the points in the vertical direction. We use a root square having a side length equal to
the length of that long diagonal, and with a bottom side on the line y = y;. The corners of the
square are the four points (z1,41), (z2,v1), (z1,(x2 — 21 +y1)), and (22, (x2 — 21 + y1)). The
placement of the root square is illustrated in Figure 4(a); the long diagonal runs horizontally
(because of the coordinate system rotation) and is indicated by a dashed line.

Next, we do some initial subdivision to reduce the area of the quadtree that we must actually
triangulate. This step is essential in reducing the approximation ratio from O(logn) to O(1).
Let k be the largest integer for which (2o —x1)/2¥ > (y2 —1). Then we subdivide the quadtree
k levels deep, so that the leaf squares have size (z2 —x1)/2%. By the choice of k, all input points
will be contained in squares in the bottom row of the quadtree, so we only need triangulate
this bottom row. The rest of the quadtree can be ignored for the remainder of the algorithm.
The initial subdivision is also illustrated in Figure 4(a).

We further subdivide squares of the quadtree, maintaining the balance condition. We sub-
divide any square containing two input points in its interior or on its boundary. Whenever
two neighboring squares violate the balance condition, we must also split the larger of the two
squares, regardless of whether it contains an input point. At the end of this process, each input
point is alone in its square. However this phase of the algorithm is inherently nonpolynomial,
because two close together points may require a number of subdivisions unrelated to the total
number of points. The result of this subdivision process is depicted in Figure 4(b); in the figure
only one square has been split because of the balance condition, but in practice this situation
may arise more frequently.

Finally, we triangulate individual squares as in the previous algorithm. We do this for all
squares, not just those interior to the convex hull of the input.

Lemma 3. The quadtree triangulation described in this section approximates the edge length
of the minimum weight Steiner triangulation.

Proof: Asin Lemma 2 and Theorem 2, we need only prove that it approximates the minimum
weight non-Steiner triangulation; the lemma will then follow from the fact that adding Steiner
points can not decrease the total quadtree triangulation length.

Rather than charging empty quadtree squares to MW'T edges, we charge all such squares.
When four squares of side length ¢ are created by subdividing their parent, a total edge length
of 4/ is added to the quadtree, so each square except for the initial root squares carries a charge
of £. The root squares can be charged against the boundary of the convex hull of the input.
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Figure 5. Squares with no neighbor interior to CH: (a) five neighbors, with CH boundary passing
horizontally through each; (b) squares of each size form rows near the left and right sides of quadtree.

The charge per square is then multiplied by some O(1) factor to account for the edge length
added by the diagonals used to form a triangulation.

We reallocate the charge so that the only charged squares are those containing at least one
input point. Squares for which a parent contains a point are charged to that parent. Remaining
squares must be formed by the balance condition, and for each such square one neighbor of
the parent must contain an input point. We charge that neighbor. Each square is charged for
the weights of at most 19 smaller squares, so the total charge is proportional to the sum of the
charged squares’ perimeters.

We next reallocate the charge again so that the only charged squares are subdivided and
have between one and three children containing a point. As in Lemma 2 we can deal with
unsubdivided squares containing points by further subdividing them until all such squares are
very small, and cannot contribute significantly to the total edge length of the triangulation. If
a square is subdivided, but has points in all four children, we divide its charge equally among
the children. Any square can get half again its charge from its parent, a quarter from its
grandparent, and so on, so the charge per square at most doubles in this stage.

We now divide the problem into cases. The first case consists of squares entirely contained
within the convex hull of the input points. Consider one such square s, with side length ¢. By
assumption s contains an empty child s’. Consider the MWT triangle containing this child’s
centerpoint. Since the child is empty, at least two of the sides of the triangle must have length
at least ¢/+/8. If a triangle vertex is within distance ¢/2 of s, charge the perimeter of s to
the longest adjacent triangle edge. Otherwise, some edge of the triangle partitions s into two
regions, one containing the centerpoint of the empty child and the other containing the input
points in s. As in Lemma 2 we can step from triangle to triangle until we find a long MWT
edge with a nearby endpoint, on which we can dump the charge carried by s. Each MWT edge
is charged by O(1) squares of each size, so the total charge is proportional to its length.

The second case consists of squares crossed by the convex hull boundary, but for which a
same-size neighboring square is entirely contained in the convex hull. If the neighboring square
contains a point, we charge the boundary square to the neighboring square; each interior square
is so charged at most 8 times. Otherwise, the neighboring square is empty. Again, we have a
situation in which a square in the convex hull is empty but has a nearby point. Again, either
the MWT triangle containing the square center or some other triangle found by following a
path of triangles provides a long edge with a nearby endpoint to charge. As in the first case,
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each MWT edge is charged proportionally to its length.

In the final case, we must account for squares crossing the convex hull boundary, for which all
neighbors also cross the convex hull boundary. Because of the initial choice of quadtree position,
there O(1) such squares of each possible size in which the convex hull boundary passes through
the top or bottom of the square. For the remaining squares, the boundary in the square and
all of its neighbors passes through the left and right sides; therefore the squares of a given size
have five similar neighbors, either up or down and to both the left and right (Figure 5(a)). The
three remaining possible neighbors are entirely outside the convex hull. Thus the squares of a
given size in this case form double rows, above and below the long diagonal of the input points
(Figure 5(b)). If the initial squares have side length s, and the length of the long diagonal is r,
then because s was chosen as small as possible, the squares of side length s27% can only occur
within distance r2'=% of the left and right sides of the quadtree. The total perimeters of all
boxes in this final case is O(r), which is proportional to the convex hull perimeter. Since each
convex hull edge is in the MW'T, this third case also can be charged to the length of the MWT.
O

3.1 Truncated Quadtree Algorithm

We now address the difficulty noted at the start of this section, that our basic quadtree tri-
angulation algorithm does not run in polynomial time. If however it takes more time than
O(nlogn), two points must be close together, and the edges between them will contribute little
to the total weight of the MWST, or to the weight of the quadtree triangulation. To make this
precise we prove the following lemma.

Lemma 4. If we consider a quadtree square of side length s, containing k input points, and
replace its contents with any triangulation of the points together with the corners of the square
and some of its side midpoints, the difference in weights between the portion of the original
triangulation contained in the square, and the new triangulation in the square, is O(ks).

Proof:  This follows from the fact that the total length of the edges in the replacement
triangulation must be O(ks). O

Therefore, from the lemma, if the root square length is r, if we modify the quadtree trian-
gulation by not subdividing any square smaller than size r/n, we will achieve a total increase in
length of O(r) in the unsubdivided squares, together with some possible decrease due to fewer
balance subdivisions elsewhere in the quadtree. But any triangulation must have total length
O(r), because that is proportional to the convex hull perimeter of the input points.

Theorem 3. The truncated quadtree triangulation described above can be constructed in
time O(nlogn), has O(nlogn) Steiner points, and approximates the MWST.

Proof: If we stop subdividing when the squares reach size r/n, the quadtree will have at
most O(logn) levels. Since the squares at each level contain points, are neighbors of squares
containing points, or are children of such neighbors, the total number of squares at each level
can be shown to be 16n. Therefore the total size is O(nlogn). Small squares containing several
points can be triangulated using a plane sweep algorithm, in total time O(nlogn). The same
argument as for the original quadtree triangulation establishes the time bound for the rest of
the construction. O
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Figure 6. Angle-bounded triangulation: (a) tiles for triangulating empty squares; (b) example triangu-
lation.

3.2 No Sharp Angles

We next examine the triangulation from [1], in which all angles are bounded between 36° and
80°. This triangulation is based on quadtrees as before, with a few notable differences.

e The balance condition is stronger: diagonal neighbors as well as orthogonal neighbors are
required to be within a factor of two in size from each other.

e Input points are well separated from each other: there must be a certain number of empty
squares between them.

e Input points are well separated from the boundary of the quadtree; the quadtree root is
chosen so that, if the root is divided into sixteen squares, all points are contained in the
central four squares.

e Empty squares are triangulated by replacing them with one of a certain set of tiles; the
choice of tile is made by examining the relative sizes of the four orthogonal neighbors.
Tiles achieving the angle bounds above are shown in Figure 6(a); an example triangulation
is shown in Figure 6(b).

e The squares of the quadtree are rearranged near input points so that each point is po-
sitioned close to the center of its square; then the square can be triangulated by an
appropriate tile, using the input point as one of the vertices.

The strengthened balance condition can be handled by charging empty squares to farther
away squares containing points; this changes our analysis by at most a constant factor. Similarly
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the triangulation by tiles and the rearrangement near input points multiplies the length by at
most a constant factor.

The only difference that causes us any difficulty is well separation of points from each other
and from the boundaries. Well separation of points from each other is achieved by subdividing
squares containing single points, if there are points in other nearby squares. But our analysis was
carried through under the assumption that squares containing points are further subdivided to
make their size negligable, so we have already taken into account this well separation restriction.

Finally, we must choose a root square or collection of root squares, satisfying the separation
of input points from root boundaries needed by the algorithm. In the quadtree triangulations
above, the root squares contain points exactly on their boundaries. Also, the analysis in [1] of
the number of Steiner points depends on the root square having few points, which would seem
to conflict with our goal of fitting the root squares to the convex hull of the point set.

Recall that in our original algorithm we chose a sequence of squares, parallel to the long
diagonal of the points, with size within a factor of two of the height of the points measured
perpendicular to the long diagonal. This choice was used in our analysis, because it limits
the total number of squares that touch the convex hull boundary and for which all same-size
neighbors also touch the boundary.

If the square size is too small, there will be many squares, even when only a few Steiner
points are needed to achieve small angles in the triangulation. We expand the square size,
so that there are at most n initial squares; for the same reasons as in the truncated quadtree
triangulation, this will not hurt our approximation to the MWST. We then expand the square
size slightly, so that the convex hull of the input points is well separated from the outside of
the initial squares. Again, this will not hurt our approximation.

The result of this is an initial set of O(n) squares having the properties needed for the
bounded angle triangulation. The analysis in [1] together with the appropriately modified
proof of Theorem 2 give us the following result.

Theorem 4. For any ¢, let k(e) be the minimum number of Steiner points required to tri-
angulate a point set with no angle smaller than e. Then we can find in time O(nlogn + k) a
Steiner triangulation with a total length O(1) times the MWST length, in which all angles are
bounded between 36° and 80°, and for which the number of Steiner points is O(k +n). O

Proof: The construction of the initial set of root squares can be done as before in O(nlogn)
time; the analysis of [1] then applies to give the stated bounds on total time, number of Steiner
points, and triangle angles. We charge the edge length to three different cases. First, we consider
the squares that are larger than the initial root squares of the simpler quadtree triangulation of
Theorem 2. There are O(n) squares of each size, and the total length is therefore proportional
to the convex hull perimeter of the point set. Second, we consider the length caused by squares
splitting because they contain more than one point, or by rebalancing after such splits. But
these squares would exist in either type of triangulation, and the proof of Theorem 2 is not
sensitive to the exact alignment of the quadtree box positions, so as in that theorem the total
length of these squares is O(1) times the MWST length. Finally, we consider splits caused by
the requirement for well separation. But each such split is of a square containing a single point,
and even if we performed these splits ad infinitum instead of stopping after the points were
well separated, the total length added would merely sum in a geometric series to an amount

16



585
HH

Figure 7. Attaching cluster to outer quadtree: (a) mirroring of cluster and attachment to outer square;
(b) detail of attachment.

proportional to the size of the square containing the point before such splitting. So in this case
also the length is O(1) times that of the MWST. O

The area covered by the triangulation may be much larger than the convex hull of the input
points; this is because of the expansion of the initial squares to reduce the number of initial
squares to O(n). We can forgo this expansion, at the expense of increasing the number of
Steiner points. Without initial expansion, the number of Steiner points is O(k’ + n), where
K'(€) is the minimum number of Steiner points required to triangulate the points with no angle
smaller than ¢, and with total area proportional to the convex hull of the input set.

3.3 No Obtuse Angles

Bern et al. [1] describe another triangulation, in which O(n) Steiner points are added and all
angles are acute (strictly less than 90°). Such a triangulation must be a Delaunay triangulation
of its vertices. We now show how to modify this triangulation to approximate the MWST;
again, the modification consists of judicious selection of the initial set of root squares.

The non-obtuse triangulation of [1] uses the insight that the only non-linear behavior of the
quadtree triangulation occurs when a square containing a point set is repeatedly subdivided,
without causing the point set to also be subdivided. This can happen because the points are all
in the same child square, or because points are in different children but are not well separated.
If this happens for the same point set at more than some constant number of levels, we can
identify a closely grouped cluster of points, which are causing the difficulty, and which are well
separated from any other points in the input set. We then shortcut the non-linear behavior of the
quadtree by recursively triangulating the cluster, and connecting this recursively constructed
quadtree to the outer quadtree.

The connection is formed by imbedding the cluster in a small mesh of squares; this prevents
subdivision caused by the balance condition from reaching outside the mesh. By some local
rearrangements of the outer quadtree squares, we can cause the cluster to be placed near the
center of the square containing it. We then mirror the cluster, placing copies of it in three
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Figure 8. Extra tiles for non-obtuse triangulation: (a) connection to cluster; (b) acute triangulation of
rectangle.

locations forming a rectangle within the outer square (Figure 7(a)). The mirror images contain
copies of the mesh of squares but not of the actual input points. We can then connect the
recursive quadtree and its mirror images to the outer squares, with a collection of acute and
right triangles (Figure 7(b)). By slightly warping the rectangle of mirror images, all right
triangles can be made acute. Squares not containing input points or clusters are triangulated
with tiles as in the angle-bounded triangulation. A new tile is used to connect the rest of
the triangulation with the squares containing clusters (Figure 8(a)). The connection between
clusters and their outer squares uses a large but constant number of edges, since each cluster is
formed by a quadtree in which a constant number of subdivisions appear on the boundary of
the initial root square. The length of these edges can therefore be charged to the length of the
outer square.

As in the angle-bounded triangulation, the strengthened balance condition and the require-
ment of well-separated points can be dealt with at a constant factor cost in the approximation
constant. We could choose initial squares as in that triangulation, but in fact we can do better
in this problem. Recall that, in our basic quadtree triangulation algorithm, we choose a set
of initial squares aligned with the long diagonal of the input points and with side length pro-
portional to the maximum distance of any point from that long diagonal. Denote the number
of initial squares by m. If m < n, the number of Steiner points formed by the corners of the
initial squares will not interfere with our total bound. Otherwise, at most n of the squares can
actually contain a point. For each such square, we also keep two empty squares on either side;
the outer empty square will remain undivided by balance condition requirements. This gives
us a collection of 5n initial squares. The remaining m — 5n squares are merged into a set of at
most n rectangles, simply by removing the boundary edges separating them. Each rectangle
will touch on either side an unsubdivided square, which (because of the replacement by tiles)
will have two equally spaced points on its boundary. Thus the rectangle can be split into three
narrow rectangles, each of which can be triangulated with acute triangles by adding Steiner
points at the midpoints of each long rectangle side and two Steiner points in the interior of each
rectangle (Figure 8(b)).

Theorem 5. We can find in time O(nlogn) a Steiner triangulation in which all angles are

less than 90°, with a total length O(1) times the MWST length, covering an area O(1) times
the convex hull of the input points, and for which the number of Steiner points is O(n).
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Figure 9. Point set illustrating ratio of MWT to MWST lengths: (a) MWT length Q(yn); (b) quadtree
length O(y + zlogn).

Proof:  The proof that angles are acute, that the number of Steiner points is O(n), and
that the time is O(nlogn), are all the same as in [1]. The remaining difficulty in proving
approximation to the MWST is that, by recursively triangulating clusters, we lose the property
that adding Steiner points can only further subdivide the quadtree squares. The problem is
that the Steiner points can cause the cluster to not be separated from the main quadtree, or
cause the cluster to have a larger convex hull, in either case leading to squares with a different
alignment.

Instead, we bound the total length indirectly, by comparing it to the previously described
quadtree triangulation of Theorem 4. Note that in all quadtree triangulations we have described,
any unsubdivided square not containing an input point will have side length proportional to
the distance from its center to the nearest input point. This distance is clearly a lower bound
on the side length, and it is an upper bound because no operation used to construct our
quadtree triangulations subdivides squares far away from any point. In both the triangulation
considered here, and that of Theorem 4, any unsubdivided square containing an input point will
have side length proportional to the distance from that point to the nearest square. This follows
simply because we subdivide squares until the points are well-separated, and no further. So we
can bound the edge length of the non-obtuse triangulation considered here, by charging each
unsubdivided quadtree square to the square containing its centerpoint in the triangulation of
Theorem 4. Each square in that triangulation will have charged to it O(1) squares of similar sizes
in the non-obtuse triangulation, and therefore the non-obtuse triangulation also approximates
the MWST length. O

4 Properties of the MWST

4.1 MWST and MWT

Clearly the MWST must have total edge length at most that of the MWT. It is also not hard
to show that the weight of the MWT (or any other non-Steiner triangulation) is O(n) times the
perimeter of the convex hull, and therefore O(n) times the MWST weight. As we now show,
this latter factor can be tight, even for the MWT.

Theorem 6. For any n, there exist point sets for which the MW'T has weight Q(n) times the
MWST weight.
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Proof: Start with an isosceles triangle, with two long side lengths equal to some value y and
one short side length equal to x. Let the short side be replaced by a concave chain of n — 1
vertices, giving (with the remaining vertex at the apex of the triangle) a total of n. Then the
only empty triangles touching the apex are those formed by pairs of adjacent vertices in the
concave chain; therefore all such triangles must be present in the MWT, and the total MWT
length is Q(yn) (Figure 9(a)).

However the quadtree triangulation will contain subdivided squares of size s only within
within distance O(s) of the concave chain. There can be at most O(z/s) such squares, for a
total length of O(x) at each level of subdivision. As usual we need only count squares of side
length Q(y/n), for which there are O(logn) possible sizes. The total length of the quadtree
triangulation, and hence the MWST, is O(y + xlogn) (Figure 9(b)).

If we let z = y/logn we achieve a ratio of Q(n) between the MWT and MWST lengths as
desired. O

4.2 MWST and MST

The algorithm of Clarkson [2] shows that there exist Steiner triangulations with a total weight
within an O(logn) factor of the MST weight. A similar result holds for our triangulations (see
Lemma 10 below). Therefore the MWST weight is within a logarithmic factor of the MST
weight. We now show that this is tight.

Theorem 7. For any n, there exist point sets for which the MWST has a weight Q(logn)
times the MST weight.

Proof: Let the points be equally spaced around the unit circle. Then the MST weight is
approximately 2m(1—1/n) = O(1). The quadtree triangulation will produce squares of all sizes
down to the level at which the points are separated from each other; this occurs when the side
length nears 1/n, at a level Q(logn). For each side length s, there will be approximately 1/s
unsubdivided squares of that size, created because of the balance rule, in two chains running
around the inside and outside of the unit circle. The total length of these squares is Q(1).
Therefore the total length of all unsubdivided squares, and the total length of the quadtree
triangulation, is Q(logn). But since the quadtree triangulation approximates the MWST, the
MWST length must also be Q(logn). O

4.3 Convex Polygons

We now consider the MWST for a convex polygon. We already noted in Corollary 1 that such
an MWST can be approximated using a quadtree based algorithm. It is at least plausible that
the MWST of a convex polygon is approximated by its MWT (without Steiner points); first we
show that not to be true.

Theorem 8. For any n, there exist convex polygons for which the MWST has weight Q(logn)
times the MW'T weight.

Proof: Start with n evenly spaced points on the unit interval, and raise them slightly so that
they form a single convex chain. The unit interval itself is then an edge in the convex hull. Then
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Figure 10. Initial Initial root boxes and diagonals for triangulation with no interior Steiner points.

by adding the original unraised points as Steiner points on the unit interval, we can produce a

triangulation with total length approximately 3. If we have no Steiner points, the MWT can

be found as a triangle based on that long edge, together with two MWTs of smaller polygons

formed by taking shorter convex chains. The total length can be described by a recurrence
L(m)=0(m/n)+ min L(a)+ L(b)

a+b=m+1
which solves to O(logn). O

So we need Steiner points to even approximate the minimum length. But in the example
above, all the Steiner points fell on the polygon’s boundary. We conjecture that, in fact, the
MWST of any convex polygon needs only to use Steiner points on the polygon’s boundary.
This is false for non-convex polygons, as can be seen for the polygon in Figure 9(a). The truth
of our conjecture would imply a polynomial time algorithm for computing the MWST in this
case. As a partial result in this direction, we show that boundary Steiner points can be used
to approximate the MWST.

Theorem 9. The minimum weight triangulation using Steiner points only on the boundary
of a convex polygon has weight O(1) times the MWST of the polygon.

Proof: We derive such a triangulation from our quadtree-based triangulation algorithms.
We start, as in the quadtree algorithms, by finding a horizontal row of squares containing the
polygon. Fach square cuts the polygon by two vertical lines; these cuts can be represented as
diagonals between Steiner points on the boundary of the polygon.

Each initial square will contain portions of both the upper and lower boundary of the
polygon. We next add diagonals connecting the points where the initial quadtree square edges
cross the input boundary. Figure 10 depicts these initial squares and diagonals. We will not add
edges crossing these diagonals, so we can treat the upper and lower portions of the boundary
independently of each other, and work as if each quadtree square contains a single connected
component of the polygon boundary. The total length of the initial squares and diagonals is
proportional to the perimeter of the polygon.

Finally, we follow the quadtree algorithm, splitting squares until points are alone in their
squares. As we split, each square will contain a connected portion of the input polygon bound-
ary, with the endpoints of the boundary segments connected by a diagonal. These regions
between the diagonals and the boundary segments will be the only untriangulated areas in the
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polygon. When we split a square or rectangle in two, the lines along which we split may cut the
polygon boundary in one or more places. We then add new Steiner points at the cut points,
and connect them by diagonals to the endpoints of the boundary segment. This partitions the
polygon into a region between the new and old diagonals, and a number of subproblems in
the region between the new diagonals and the polygon boundary. We triangulate the region
between the new and old diagonals by adding O(1) extra diagonals, and we continue recursively
in the remaining regions, each of which will be contained in a single quadtree square. Some
squares may again contain two separate components of polygon boundary, but again they will
be separated by diagonals and can be treated independently of each other. Every time we split
a square, the total length added to the triangulation is proportional to the length added to the
quadtree. Therefore the total length of the triangulation approximates the MWST length. O

5 Extensions to Higher Dimensions

An obvious question arises from these results: do they carry over into higher dimensions? Can
quadtree triangulations approximate the minimum weight triangulation of higher-dimensional
point sets?

To answer this question, we first have to determine what we mean by the minimum weight
triangulation. Given a triangulation, we can measure its 0-faces (points), 1-faces (edges), etc.,
up through d-faces. The number of 0-faces must be at least n, and any non-Steiner triangulation
will have that many. The d-faces must have total measure at least that of the convex hull, and
again any non-Steiner triangulation achieves this. That leaves d — 1 possible functions to
minimize. In two dimensions, the only interesting minimization problem is that of the total
edge length. But even in three dimensions, one can examine both edge length and triangle area.

Note that in two dimensions, our triangulations not only optimize edge length, but at least
one of them (the non-obtuse triangulation) also uses O(n) Steiner points and fits within an
area O(1) times the area of the original point set. Thus it simultaneously optimizes all three
possible criteria. However we saw that this simultaneous optimization must be modified if we
desire further properties, such as no small angles. Then we must count the optimal number of
Steiner points over triangulations also having these properties. Nevertheless it is reasonable to
hope that similar simultaneous approximation results hold in higher dimensions.

Let us examine the three dimensional case in more detail. First we must determine what
to use as the root box of our octtree (three-dimensional quadtree). If we wish to approximate
the minimum triangle area, we must closely fit our initial set of cubes to the convex hull of the
point set; otherwise the surface area of our initial set will be too large. On the other hand, if
we start with an initial set of cubes that are too small, the total edge length would be too large.
It seems that already in the initial placement we need some sort of hierarchical decomposition.

Next we examine our proof of optimality. The main step was amortizing cubes with an
empty child against MWT edges with a nearby endpoint. We did this by starting at the
triangle containing the child’s centerpoint. If the endpoints were not nearby, one face of the
triangle separates the centerpoint from the points in the square, and we can use that fact to
move from there to a large triangle with a nearby vertex. In three dimensions, we can similarly
reduce the problem to counting squares with an empty child. The tetrahedron containing the
child’s centerpoint will have sufficiently long edges, but it may be long and narrow, having a
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surface area that is arbitrarily small. Indeed, it may be that no triangle has area proportional
to that of the cube. The triangle’s edges will be long, but if the endpoints are not nearby it
will not be clear in which direction to move in order to find a nearby triangle with long edges.

Given these difficulties, it is surprising that we can find any higher dimensional general-
ization of our results. But in fact we can prove the following, which shows that quadtree
triangulations give a (non-constant-factor) approximation to the minimum edge length trian-
gulation.

Theorem 10. In any dimension d, the appropriate generalizations of the quadtree and trun-
cated quadtree triangulations, starting from a single root box, use total edge length exp(cd) logn
times the length of the MS'T, for some constant c.

Proof: As before, we can charge the length of boxes not containing points to nearby boxes
containing points. Each box is charged exp(O(d)) times its length. Then we need merely sum
the edge lengths in boxes containing points. The boxes with edge length 1/n times the initial
root box take a total length proportional to the root box length, so we need only look at higher
levels in the quadtree. There are O(logn) such levels; we show that the length in each is
proportional to the minimum spanning tree length.

Consider a box of side length s, containing a point z. There are 3¢ — 1 neighboring boxes.
There are O(3%) boxes large enough that the entire point set is contained in these neighbors;
the total length of these boxes is exp(O(d)) times the MST length. Otherwise, = is connected
by the MST to a point outside the neighboring boxes; therefore there must be an MST path
from x to that point, and the length of the intersection of that path with the neighboring boxes
must be O(s). We charge that portion of the path with the weight of the box; each portion of
the MST is charged 2¢ times its length for as many as 3¢ boxes at each of the O(logn) levels.
(]

As a corollary, d-dimensional quadtree triangulation approximates the minimum edge length
Steiner triangulation within a factor of O(logn). This argument also applies in two dimensions,
and proves that the triangulations of [1] (in which the root box was not fitted as closely to the
input points as it is in our constructions) also achieve this O(logn) approximation.

We do not know any similar approximation results for the measures of k-faces in the trian-
gulation, k£ > 1.

6 Conclusions

We have shown that quadtree triangulations achieve a small total edge length. This comple-
ments their previously known ability to restrict the angles used in the triangulation, and is
further evidence of their utility in finite element mesh generation applications. We also used
quadtree approximations to the MWST as a tool in proving other properties of the MWST.
In an earlier conference version of this paper [8], we gave a relatively sloppy analysis of the
approximation ratio, and did not explicitly derive a numeric approximation ratio. The analysis
in this paper has been tightened by perhaps a factor of one hundred, and yet the constant factor
we end up with (316) is still quite large. We believe the constant factor achieved by quadtrees
is much smaller, perhaps on the order of twenty, but proving this will require an even more
careful analysis. Further improvements may come from tuning the algorithms in various ways,
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from heuristic procedures such as removing Steiner points that do not contribute to decreased
length, and from performing various other local optimizations.

Another important open question is whether it is possible to approximate the MW'T. At first
glance, quadtrees seem unlikely to help, because they use Steiner points and can achieve much
lower lengths than the MWT. Hence it would seem difficult to rearrange a quadtree triangulation
into a non-Steiner triangulation that approximates the MWT. Plaisted and Hong [21] conjecture
that their algorithm computes an approximation to the MWT, but it seems difficult to determine
when their O(logn) factor lost due to the ring heuristic is a necessary part of the MWT, and
when it is an artifact of their construction. Since in the MWST problem the same O(logn)
factors sometimes appear, and are easily explained with our quadtree approximation, perhaps
our quadtree based techniques can be used to solve this problem.
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