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Circle packing theorem

Contacts of interior-disjoint disks in the plane form a planar graph

All planar graphs can be represented this way

Unique (up to Möbius) for triangulated graphs

[Koebe 1936; Andreev 1970; Thurston 2002]



Balanced circle packing

Some planar graphs may require exponentially-different radii

But polynomial radii are
possible for:

I Trees

I Outerpaths

I Cactus graphs

I Bounded tree-depth

[Alam et al. 2015]
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Perfect balance

Circle packings with all radii equal represent penny graphs

[Harborth 1974; Erdős 1987]



Penny graphs as proximity graphs

Given any finite set of points in the plane

Draw an edge between each closest pair of points

(Pennies: circles centered at the given points
with radius = half the minimum distance)

So penny graphs may also be called closest-pair graphs
or minimum-distance graphs



Penny graphs as optimal graph drawings

Penny graphs are exactly
graphs that can be drawn

I With no crossings

I All edges equal length

I Angular resolution
≥ π/3



Properties of penny graphs

3-degenerate (convex hull vertices have degree ≤ 3)

⇒ easy proof of 4-color theorem; 4-list-colorable
[Hartsfield and Ringel 2003]

Number of edges at most 3n −
√

12n − 3
Maximized by packing into a hexagon

[Harborth 1974; Kupitz 1994]

NP-hard to recognize, even for trees
[Bowen et al. 2015]



Triangle-free penny graphs

Planar equal-edge-length graphs with angular resolution > π/3

Conjecture [Swanepoel 2009]:
max # edges is b2n − 2

√
nc, given by (partial) square grid

Only known results were inherited from ∆-free planar graphs:

I # edges ≤ 2n − 4

I 3-colorable [Grötzsch 1959]



New results

2-degenerate (if not tree has ≥ 4 degree-2 vertices)

⇒ 3-list-colorable

2

2 2

2

2

2

# edges ≤ 2n − Ω(
√
n)



Proof that some vertices have ≤ 2 neighbors

At each vertex on outer face, draw a ray directly away from
neighbor counterclockwise from its clockwise-boundary neighbor

If we walk around boundary, rays rotate by 2π in same direction

But they only rotate positively at vertices of degree ≤ 2!



Proof that # edges ≤ 2n − Ω(
√
n)

Isoperimetric theorem:
To enclose area of n pennies, outer face must have Ω(

√
n) edges

+ Algebra with face lengths and Euler’s formula



Conclusions and future work

We proved degeneracy and edge bounds for ∆-free penny graphs

The same results hold for squaregraphs [Bandelt et al. 2010]

but arbitrary ∆-free planar graphs can be 3-degenerate
or (even when 2-degenerate) have 2n − 4 edges

Still open: The right constant factor in the
√
n term
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P. Erdős. Some combinatorial and metric problems in geometry. In
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Herbert Grötzsch. Zur Theorie der diskreten Gebilde, VII: Ein
Dreifarbensatz für dreikreisfreie Netze auf der Kugel. Wiss. Z.
Martin-Luther-U., Halle-Wittenberg, Math.-Nat. Reihe, 8:109–120,
1959.

H. Harborth. Lösung zu Problem 664A. Elemente der Mathematik, 29:
14–15, 1974.

https://www.renyi.hu/~p_erdos/1987-27.pdf


References III

Nora Hartsfield and Gerhard Ringel. Problem 8.4.8. In Pearls in Graph
Theory: A Comprehensive Introduction, Dover Books on Mathematics,
pages 177–178. Courier Corporation, 2003.

Paul Koebe. Kontaktprobleme der Konformen Abbildung. Ber. Sächs.
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