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ABSTRACT

EFFICIENT ALGORITHMS FOR SEQUENCE ANALYSIS

WITH CONCAVE AND CONVEX GAP COSTS

David A. Eppstein

We describe algorithms for two problems in sequence analysis: sequence align-

ment with gaps (multiple consecutive insertions and deletions treated as a unit) and

RNA secondary structure with single loops only. We make the assumption that the

gap cost or loop cost is a convex or concave function of the length of the gap or

loop, and show how this assumption may be used to develop efficient algorithms for

these problems. We show how the restriction to convex or concave functions may

be relaxed, and give algorithms for solving the problems when the cost functions

are neither convex nor concave, but can be split into a small number of convex or

concave functions. Finally we point out some sparsity in the structure of our se-

quence analysis problems, and describe how we may take advantage of that sparsity

to further speed up our algorithms.
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1. INTRODUCTION

We consider algorithms for two problems in sequence analysis. The first problem

is sequence alignment, and the second is the prediction of RNA structure. Al-

though the two problems seem quite different from each other, their solutions share

a common structure, which can be expressed as a system of dynamic program-

ming recurrence equations. These equations also can be applied to other problems,

including text formatting and data storage optimization.

We use a number of assumptions about the problems in order to provide effi-

cient algorithms. The primary assumption is that of concavity or convexity. The

recurrence relations for both sequence alignment and for RNA structure each in-

clude an energy cost, which in the sequence alignment problem is a function of the

length of a gap in either input sequence, and in the RNA structure problem is a

function of the length of a loop in the hypothetical structure. In practice this cost is

taken to be the logarithm, square root, or some other simple function of the length.

For our algorithms we make no such specific assumption, but we require that the

function be either convex or concave. We also give algorithms for functions that

are neither convex nor concave, but which can be broken up into a small number

of pieces each of which is convex or concave.

The second assumption is that of sparsity. In the sequence alignment problem

we need only consider alignments involving some sparse set of exactly matching

subsequences; analogously, in the RNA structure problem we need only consider

structures involving some sparse set of possible base pairs. We show how the al-

gorithms for both problems may be further sped up by taking advantage of this

sparsity rather than simply working around it.

Although the problems we consider have practical applications, we consider

their analysis from the perspective of theoretical computer science. In particular,
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we compare the merit of different algorithms based on formulae for the longest

possible time they can take on inputs of a given length (worst case analysis), rather

than on experimental timing information. Further, we ignore for the most part the

constant factors in these formulae; thus we say that the time for some algorithm on

inputs of length n is O(f(n)), meaning there exists a constant c such that the time

is less than cf(n).

Because the sequence analysis problems we are interested in need to be solved

for very long sequences, and because in many cases our algorithms are better than

previous ones by as much as an order of magnitude (factor of n), differences among

the constant factors in our time bounds will typically be overwhelmed by differences

in the non-constant parts of the bounds. However these constants are not entirely

unimportant, and we endeavor to keep them small. Further, we point out which

versions of our algorithms are most suitable for practical implementation, and which

are of more purely theoretical interest.
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1.1. Motivation

Our primary motivation in developing the sequence analysis algorithms we present

is their application to molecular biology, although the same the same sequence

analysis procedures also have important uses in other fields. The reasons for the

particular interest in molecular biology are, first, that it is a growing and important

area of scientific study, and second, the lengths of biological sequences are such that

the need for efficient methods of sequence analysis is acute.

The development and refinement of efficient techniques for DNA sequencing

[60, 51] has contributed to a boom in nucleic acid research. A wealth of molecular

data is presently stored in several data banks (reviewed by Hobish [28]), which are

loosely connected with each other. The biggest of these banks are GenBank [11]

and the EMBL data library [23]. As of 1986, GenBank contained 5,731 entries with

a total of more than 5 million nucleotides. Most of these data banks double in size

every 8-10 months, and there are currently no signs that this growth is slowing down.

On the contrary, the introduction of automatic sequencing techniques is expected

to accelerate the process [48]. The existence of these nucletide and amino acid

data banks allows scientists to compare sequences of molecules and find similarities

between them. As the quantity of data grows, however, it is becoming increasingly

difficult to compare a given sequence, usually a newly determined one, with the

entire body of sequences within a particular data bank.

The current methods of RNA structure computation have similar limitations.

In this case one needs only perform computations on single sequences of RNA, rather

than performing computations on entire data banks at once. However the cost of

present methods grows even more quickly with the size of the problem than does

the cost of sequence comparison, and so at present we can only perform structure

computations for relatively small sequences of RNA.
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Present algorithms for biological sequence analysis tend to incorporate sophis-

ticated knowledge of the domain of application, but their algorithmic content is

limited. Typically they act by computing a set of simple recurrences using dynamic

programming in a matrix of values. Our algorithms solve the same problems, us-

ing assumptions about the physical constraints of the domain that are either the

same as previous assumptions or less restrictive than them. However by using more

sophisticated algorithmic techniques we can take better advantage of the physical

constraints of the problems to derive more efficient methods for sequence analysis.
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1.2. Definitions of Convexity and Concavity

All our algorithms use in some way or another the assumption that some cost

function in the recurrence being solved satisfies a concavity or convexity condition.

The usual definition for a function g(x) to be concave is that for any a ≤ b and

0 ≤ t ≤ 1,

g(ta+ (1− t)b) ≤ tg(a) + (1− t)g(b). (1)

I.e., the function g(x) on the interval [a, b] always falls on or below the line between

the function’s values on the endpoints of the interval. An equivalent definition for

continuous functions is that, for each a ≤ b, g(a)+g(b) ≥ 2g((a+b)/2). This clearly

follows from inequality 1, and conversely inequality 1 can be recovered from this

special case by approximating ta+ (1− t)b using binary search. Similar definitions

can be given for convexity, or we can simply define g(x) to be convex exactly when

f(x) = −g(x) is concave.

For our purposes, all cost functions will be functions of pairs of numbers (x, y),

with x ≤ y. Since the usual definitions of convexity or concavity apply only to

functions of one variable, we need to explain the convexity and concavity conditions

we use. we say that w(x, y) is concave when it satisfies the quadrangle inequality:

w(i, j) + w(i′, j′) ≤ w(i′, j) + w(i, j′), (2)

whenever i ≤ i′ ≤ j ≤ j′. Similarly, w(x, y) is convex when it satisfies the inverse

quadrangle inequality, which can be found by replacing ≤ with ≥ in inequality 2.

Equivalently w(x, y) is convex when f(x, y) = −w(x, y) is concave.

An important case of such two dimensional convex or concave functions is that

w(x, y) is really some function g(y− x) of the difference between the two variables.

For such g satisfying the quadrangle inequality, and for 0 ≤ a ≤ b, let x = (a+ b)/2
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and y = x− a = b− x = (b− a)/2. Then 0 ≤ y ≤ x ≤ b and

g(a) + g(b) = w(y, x) + w(0, b)

≥ w(y, b) + w(0, x)

= 2g(x).

So the concavity of w(x, y) by our definition implies that of g(y − x) by the usual

definition. Conversely assume g is concave and let i ≤ i′ ≤ j ≤ j′. Then there

exists t between 0 and 1 such that j′ − i′ = t(j − i′) + (1 − t)(j′ − i). Further,

j − i = (j − i′) + (j′ − i)− (j′ − i′) = (1− t)(j − i′) + t(j′ − i). So

w(i, j) + w(i′, j′) = g(j − i) + g(j′ − i′)

≤ (tg(j − i′) + (1− t)g(j′ − i)) + ((1− t)g(j − i′) + tg(j′ − i))

= g(j − i′) + g(j′ − i)

= w(i′, j) + w(i, j′),

and the concavity of g implies that of w. Thus our choice of terminology is justified.

The quadrangle inequality was introduced by Monge [54], and revived by Hoff-

man [29], in connection with a planar transportation problem. More recently, F.

Yao [81] considered the following recurrence relations:

C[i, i] = 0

C[i, j] = w(i, j) + min
i<k≤j

C[i, k − 1] + C[k, j], for i < j.

Yao proved that if the weight function w satisfies the quadrangle inequality then

the obvious O(n3) algorithm can be sped up to O(n2). A corollary of this result

is an O(n2) algorithm for computing optimum binary search trees, an earlier re-

markable result of Knuth [36]. However her techniques do not seem to apply to

the sequence analysis problems we consider. Recently, the quadrangle inequality

has seen use in a number of other dynamic programming algorithms for sequence
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analysis [3, 17, 27, 35, 53, 78], and it is this set of algorithms that we improve and

generalize, as well as developing new algorithms for the solution of further sequence

analysis problems.
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2. SEQUENCE ALIGNMENT

The first sequence analysis problem we study is that of sequence alignment. We only

consider alignments between pairs of sequences; computation of alignments between

three or more sequences has also been studied [4, 8, 9, 22, 63] but the problem of

simultaneously aligning more than a small constant number of sequences is NP-

complete in general [20, 47].

Sequence alignment seeks to compare the two input sequences, either to com-

pute a measure of similarity between them or to find some core sequence that each

shares characteristics from. Sequence alignment is an important tool in a wide va-

riety of scientific applications [65, 74]. In molecular biology, the sequences being

compared are proteins or nucleotides. In geology, they represent the stratigraphic

structure of core samples. In speech recognition, they are samples of digitized

speech.

The first important use of such comparisons is to find a common subsequence

or consensus sequence for the two input sequences. For instance, in geology and pa-

leontology, an important discovery was a thin layer of iridium in many core samples

from around the world, at a point corresponding to the time at which the dinosaurs

became extinct. In molecular biology, a common structure to a set of sequences

could lead to an elucidation of the function of those sequences.

A related use of sequence alignment is an application to computer file com-

parison, made by the widely used diff program [6]. Here the input sequences are

lines from text files. The program tries to find a large subsequence of the two line

sequences, so that the remaining unmatched lines, which are output as the set of

differences between the two files, are small in number.

The other use of sequence alignment is, as we have said, to compute a measure

of similarity between the sequences. This can be used for instance in molecular
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biology, to compute the taxonomy of evolutionary descent of a set of species, or

the genetic taxonomy of a set of proteins within a species [14]. It can also be used

to group proteins by common structure, which also typically has a high correlation

with common function. For other fields of application the uses of such a measure

are similar.
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2.1. Longest Common Subsequences and Edit Distance Computation

The simplest definition of an alignment is a matching of the symbols of one input

sequence against the symbols of the other so that the total number of matched sym-

bols is maximized. In other words, it is the longest common subsequence between

the two sequences [7, 26, 30]. However in practice this definition leaves something

to be desired. One would like to take into account the process by which the two se-

quences were transformed one to the other, and match the symbols in the way that

is most likely to correspond to this process. For instance, in molecular biology the

sequences being matched are either proteins or nucleotides, which share a common

genetic ancestor, and which differ from that ancestor by a sequence of mutations.

The best alignment is therefore one that could have been formed by the most likely

sequence of mutations.

More generally, one can define a small set of edit operations on the sequences,

each with an associated cost. For molecular biology, these correspond to genetic

mutations, for speech recognition they correspond to variation in speech production,

and so forth. The alignment of the two sequences is then the set of edit operations

taking one sequence to the other, having the minimum cost. The measure of the

distance between the sequences is the cost of the best alignment.

The first set of edit operations to be considered consisted of substitions of one

symbol for another (point mutations), deletion of a single symbol, and insertion of

a single symbol. It turns out that the minimum cost set of edit operations trans-

forming one string x to another string y can be computed by a simple recurrence:

C[i, j] = min{C[i− 1, j − 1] + s(i, j), C[i− 1, j] + f(i), C[i, j − 1] + g(j)}. (3)

Since we will be dealing with generalizations of this recurrence throughout this

thesis, in the solution of more general sequence alignment problems, let us explain

in a little more detail its meaning and derivation.
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In this equation C[i, j] measures the cost of the minimum set of edit operations

transforming string xi to yj , where xi consists of the first i symbols of string x and

similarly yj consists of the first j symbols of string y. Clearly if i = 0 the only

possibility is to insert all the symbols of yj , so we initialize the first row of the

matrix to the insertion cost of each such substring. Similarly for j = 0 we use the

deletion cost of substring xi. Otherwise, both i > 0 and j > 0, and the recurrence

above is well defined at position (i, j).

In any set of operations taking xi to yj , the last symbol of yj has to appear

somehow. Either it is inserted by an edit operation, or it is carried across or

substituted from a symbol in xi. In the latter case, if it does not come from the

last symbol of xi, then since no operation transposes symbols that last symbol itself

must be deleted. Thus, in the minimum cost set of edit operations taking xi to yj ,

there are three possibilities:

(1) The last two positions i and j of each substring are aligned with each other;

either they match and no edit operation need take place, or they are unequal

and a substitution must be performed; in either case the total cost can be

represented as C[i− 1, j − 1] + s(i, j), where s(i, j) is either zero, for an exact

match between the two positions, or the cost of a substitution between the two,

otherwise.

(2) The symbol in the last position i of xi is deleted. Then the total cost is

C[i− 1, j] + f(i), where f measures this deletion cost.

(3) The symbol in the last position j of yj is inserted. Then the total cost is

C[i, j − 1] + g(j), where g measures this insertion cost.

Thus each possible case of a minimum cost is included in the minimization of

recurrence 3. Conversely, each choice in the minimization gives rise to a possible

set of edit operations. Thus the recurrence correctly computes the minimum cost

alignment. If x has length m and y has length n, there will be mn values of the
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recurrence to compute, and each takes constant time to compute, so the total time

is O(mn).

This algorithm was independently discovered many times by researchers from

a variety of fields [13, 24, 45, 55, 58, 59, 61, 69, 70]. Further, one can find the

subsequence of the first string having the best alignment with the second string

in the same time, by slightly modifying the initial conditions for the first row and

column of the matrix.

Extensive study has been made of the alignment problem solved above, and a

number of algorithms have been given which improve the above time bound when

there are only a small number of edit operations in the minimum cost alignment

for the two input sequences [16, 18, 40, 41, 42, 43, 44]. Unfortunately, for the

applications we are interested in the number of edit operations is typically some

large fixed fraction of the lengths of the input sequences, and so this approach does

not yield any improvement in asymptotic time bounds.

If only the cost of the best sequence is desired, the O(mn) dynamic program-

ming algorithm for the sequence alignment problem need take only linear space: if

we compute the values of the dynamic programming matrix in order by rows, we

need only store the values in the single row above the one in which we are perform-

ing the computation. However if the sequence itself is desired, it would seem that

we need O(mn) space, to store pointers for each cell in the matrix to the sequence

leading to that cell. Hirschberg [25] showed that less storage was required, by giving

an ingenious algorithm that computes the edit sequence as well as the alignment

cost, in space O(n), and remaining within the time bound of O(mn).

Approaches other than dynamic programming are also possible. Masek and

Paterson [50] have designed an algorithm that can be thought of as a finite automa-

ton of O(n) states, which finds the edit distance between the pattern and the strings

in the database in O(mn/ log n) time. This time bound arises from the assumption
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that each word of memory can hold O(log n) bits of information (as it must, to be

able to store a pointer into the input strings).

Further speed-ups are also possible using this automata-theoretic approach;

in particular one can construct a finite automaton for a string x that determines

the minimum cost edit sequence between x and substrings of a string y input to

the automaton. Such an automaton would then run in linear time. However this

automaton has an exponential number of states; in particular each state can be

equated with a possible column of the matrix solving recurrence 3. Thus the linear

time bound arises from loopholes in the theoretical model of computation, and

gives no improvement in practice. In contrast, the algorithms in this thesis are true

improvements, and do not take advantage of such tricks.
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2.2. Generalized Edit Operations and Gap Costs

Above we discussed sequence alignment with the operations of point substitution,

single symbol insertion, and single symbol deletion. A number of further extensions

to this set of operations have been considered. If one adds an operation that trans-

poses two adjacent symbols, the problem becomes NP-complete [20, 71]. If one is

allowed to take circular permutations of the two input sequences, before performing

a sequence of substitutions, insertions, and deletions, the problem can be solved in

time O(nm log n) [33].

Another important extension to the set of operations is the following. We call

a consecutive set of deleted symbols in one sequence, or inserted symbols in the

other sequence, a gap. With the operations and costs above, the cost of a gap

is the sum of the costs of the individual insertions or deletions which compose it.

However, in molecular biology for example, it is much more likely that a gap came

about through one mutation that deleted all the symbols in the gap, than that

many individual mutations combined to create the gap. Similar motivations apply

to other applications of sequence alignment. Therefore we would like to allow gap

insertions or deletions to combine many individual symbol insertions or deletions,

with the cost of a gap insertion or deletion being some function of the length of the

gap.

Because of the motivation above, the most likely choices for gap costs are

convex functions of the gap lengths. With such functions the cost of a long gap

will be less than the sums of the costs of any partition of the gap into smaller gaps,

so that as desired the best alignment will treat each gap as a unit. However it is

also natural to consider other classes of gap cost function. We call the sequence

alignment problem with gap insertions and deletions the gap sequence alignment

problem, and similarly we name special cases of this problem by the class of cost
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functions considered, e.g. the convex sequence alignment problem, etc.

Experimental results by Fitch and Smith [15] indicate that, for biological se-

quence alignment, the cost of a gap may depend on its endpoints (or location) and

on its length. Thus, if we denote the cost of a potential gap between symbols i and

j by w(i, j), we have

w(i, j) = f1(i) + f2(j) + g(j − i) (4)

for some functions f1, f2, and g.

As we have said, the original sequence alignment problem treats the cost of a

gap as the sum of the costs of the individual symbol insertions or deletions of which

it is composed. Therefore if the gap cost function is some constant times the length

of the gap, the gap sequence alignment problem can be solved in time O(mn). This

can be generalized to a slightly wider class of functions, the linear or affine gap cost

functions. These functions satisfy equation 4, with g(j − i) = c · (j − i) for some

constant c. A simple modification of the solution to the original sequence alignment

problem also solves the linear sequence alignment problem in time O(mn) [21].

The gap sequence alignment problem can again be solved by a simple dynamic

programming algorithm [65]. The algorithm is similar to that for the original se-

quence alignment problem; however where in recurrence 3 we needed only consider

insertions and deletions of the final position of each substring, here we must allow

insertions and deletions of arbitrary lengths. Thus the recurrence for solving this

problem becomes

C[i, j] = min{C[i− 1, j − 1] + s(i, j), F [i, j], G[i, j]}, (5)

where

F [i, j] = min
0≤`<i

C[`, j] + w(`, i) (6)

G[i, j] = min
0≤`<j

C[i, `] + w′(`, j). (7)
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Here C[i, j] as before calculates the best alignment between substrings xi and yj .

But now instead of a single expression for a possible deletion, we have recurrence 6,

which calculates the best alignment ending in a deletion of some terminal substring

of xi. And similarly recurrence 7 calculates the best alignment ending in an insertion

of some terminal substring of yj . The functions w and w′ compute the cost of each

such deletion or insertion respectively.

Thus the computation of each entry in the dynamic programming matrix de-

pends on all the previous entries in the same row or column, rather than simply

on the adjacent entries in the matrix. The time bound for solving the recurrence

is then O(mnmax(m,n)). This method was discovered by Waterman et al. [76],

based on earlier work by Sellers [66]. But this time bound is an order of magnitude

more than that for non-gap sequence alignment, and thus is useful only for much

shorter sequences.

Galil and Giancarlo [17] noted that recurrence 6 for fixed j, and recurrence 7

for fixed i, can be expressed in a form which generalizes that of the least weight

subsequence problem, which had previously been applied to text formatting [38, 27]

and optimal layout of B-trees [27]:

E[j] = min
0≤i<j

D[i] + w(i, j) (8)

Here D[i] depends in some simple way on the corresponding value E[i]. In the

sequence alignment computation, for example in row r of recurrence 7, D[i] = C[r, i]

and G[r, i] = E[i]; thus D[i] is the minimum of E[i] and two other values; in the

previously considered least weight subsequence problem D[i] is taken to be equal to

E[i].

The computation of recurrence 5 involves the solution to O(n+m) such prob-

lems, one for each row and column of the matrix. The cost function w is the cost

of an insertion or a deletion, depending on which of equations 6 or 7 we are using

recurrence 8 to solve.
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In fact, for gap cost functions of the form given by equation 4, the recurrence

above can be simplified to

E[j] = min
0≤i<j

D[i] + g(j − i). (9)

In this new form, the f1(i) and f2(j) components of the cost function w(i, j) are

hidden in the two arraysD and E, and in the computation by whichE[i] is computed

from D[i]. More explicitly, if we are calculating for example recurrence 7 for row r,

using recurrence 9, then G[r, i] = E[i] + f2(i) and D[i] = C[r, i] + f1(i).

If we could speed up the solution to recurrence 8, or its specialization recur-

rence 9, we would then have a corresponding speedup in the solution of recurrence 5,

and thus in the computation of sequence alignment with gaps.

Without further assumption we cannot take less than O(n2) time to compute

n values of recurrence 8, so there is no such speed up. Indeed, we must examine

all possible values of w(k, i). However if we make assumptions about the nature

of w we may be able to avoid this examination, and speed up the computation of

the recurrence. Galil and Giancarlo [17] considered the gap sequence alignment

problem for both convex and concave cost functions. They gave an algorithm for

solving recurrence 8 with such functions in time O(n log n). For many simple convex

and concave functions, a binary search step in their algorithm can be eliminated,

resulting in a linear time solution to the recurrence. As a result they solved both the

convex and concave sequence alignment problems in time O(mn log n)), or O(mn)

for many simple functions. Miller and Myers [53] independently solved the same

problem in similar time bounds.

Wilber [78] pointed out a resemblance between the least weight subsequence

problem and a matrix searching technique that had been previously used to solve

a number of problems in computational geometry [2]. He used this technique in

an algorithm for solving the least weight subsequence problem in linear time. His
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algorithm also extends to the generalization of the least weight subsequence problem

expressed in recurrence 8 above. However in its application to sequence alignment,

we require the simultaneous solution to many copies of the recurrence, with the

value of D[k] in each copy depending on the partial solutions of other copies. For

such interleaved computations, Wilber’s analysis breaks down and his algorithm

can not be used for concave sequence alignment.

Klawe and Kleitman [35] studied a similar problem for the convex case; they

gave an O(nα(n)) algorithm, also using matrix searching, which can be used in

an O(mnα(n)) algorithm for the convex sequence alignment problem. Here α is

a very slowly growing function, the functional inverse of the Ackermann function.

Klawe [34] also gave a simpler algorithm, again based on matrix searching, which

solves both the convex and concave problems (although she only mentions the con-

vex case); this algorithm takes the somewhat worse time bound of O(n log∗ n),

where log∗ n = min{i : log(i) n ≤ 2}. All of these matrix searching algorithms,

while theoretically very interesting, have less importance for practical solution to

sequence alignment problems, because the constant factors in their time bounds are

very large.
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2.3. Sparse Sequence Alignment

All of the alignment algorithms above take a time which is at least the product

of the lengths of the two input sequences. This is not a big problem when the

sequences are relatively short, but the sequences used in molecular biology can be

very long, and for such sequences these algorithms can take more time than the

computing power available for their computation.

Wilbur and Lipman [79, 80] proposed a method for speeding these computations

up, at the cost of a small loss of accuracy, by only considering matchings between

certain subsequences of the two input sequences. Wilbur and Lipman’s algorithm

first selects a small number of fragments, where each fragment is a pair of substrings,

one from each input string, having exactly the same sequence of symbols. Denote

by M the number of fragments. The algorithm chooses all possible fragments with

a certain fixed length; this can be done in time O(n+m+M) using standard string

matching techniques.

An alignment is then defined to be a sequence of fragments, with the following

properties. First define the diagonal of a fragment to be the difference between the

positions its two substrings occupy in the input strings. If adjacent fragments in the

alignment have the same diagonal, we call that pair of fragments a mismatch; the

substrings of the second fragment are required to start after the substrings of the

first fragment in the respective input strings. Other pairs of fragments are called

gaps; the substrings of the second fragment are required to start after the ends of the

corresponding substrings of the first fragment. Thus the substrings of mismatched

fragments may overlap, but the substrings of gaps may not.

The cost of a mismatch is some function of the distance between the starts of

the substrings. This corresponds to substitutions in the original alignment problem.

The cost of a gap is a similar function, plus a function of the distance between the
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diagonals of the two fragments. This distance is the length of the gap, and this

second function corresponds to the gap length cost function of the gap sequence

alignment problem.

We call the alignment problem defined as above the fragment alignment prob-

lem, and as before also include in the name of the problem any restriction on the

class of gap cost functions allowed. It would also be possible to consider general

classes of mismatch cost functions; however we will assume that the mismatch func-

tion is always linear. If the fragments are taken to be single symbols, the problem

will be exactly the gap sequence alignment problem; if the number of matching

symbols is small this representation of the problem may lead to a more efficient

solution than the non-sparse algorithms. If the fragments are taken to have lengths

greater than 1, the fragment alignment approximates the gap alignment problem,

but M will become smaller and so the solution time will be decreased.

Wilbur and Lipman [79, 80] used a simple dynamic programming algorithm to

solve the fragment alignment problem in time O(n + m + M2). They first selects

a small number of fragments, where each fragment is a triple (i, j, k) such that the

k-tuple of symbols at positions i and j of the two strings exactly match each other;

that is, xi = yj , xi+1 = yj+1, . . ., xi+k−1 = yj+k−1. For instance, we might choose

all possible matching fragments with some fixed length k; such a set of fragments

can be found in time O(n+m+M) using standard string matching techniques (see

[12] for details).

A fragment (i′, j′, k′) is said to be below (i, j, k) if i + k ≤ i′ and j + k ≤ j′;

i.e. the substrings in fragment (i′, j′, k′) appear strictly after those of (i, j, k) in the

input strings. Equivalently we say that (i, j, k) is above (i′, j′, k′). The length of

fragment (i, j, k) is the number k. The forward diagonal of a fragment (i, j, k) is the

number j − i, and the back diagonal is i+ j.

An alignment of fragments is defined to be a sequence of fragments such that,
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if (i, j, k) and (i′, j′, k′) are adjacent fragments in the sequence, either (i′, j′, k′) is

below (i, j, k) on a different forward diagonal (a gap), or the two fragments are on

the same forward diagonal, with i′ > i (a mismatch). The cost of an alignment

is taken to be the sum of the costs of the gaps, minus the number of matched

symbols in the fragments. The number of matched symbols may not necessarily be

the sum of the fragment lengths, because two mismatched fragments may overlap.

Nevertheless it is easily computed as the sum of fragment lengths minus the overlap

lengths of mismatched fragment pairs. The cost of a gap is some function of the

distance between forward diagonals g(|(j − i)− (j′ − i′)|).

When the fragments are all of length 1, and are taken to be all pairs of matching

symbols from the two strings, these definitions coincide with the usual definitions

of sequence alignments. When the fragments are fewer, and with longer lengths,

the fragment alignment will typically approximate fairly closely the usual sequence

alignments, but the cost of computing such an alignment may be much less.

The method given by Wilbur and Lipman [79, 80] for computing the least cost

alignment of a set of fragments is as follows. Given two fragments, at most one

will be able to appear after the other in any alignment, and this relation of possible

dependence is transitive; therefore it is a partial order. They process fragments in

the order of any topological sorting of this order. Some such orders are by rows (i),

columns (j), or back diagonals (i+ j).

For each fragment, the best alignment ending at that fragment is taken as the

minimum, over each previous fragment, of the cost for the best alignment up to

that previous fragment together with the gap or mismatch cost from that previous

fragment. The mismatch cost is simply the length of the overlap between two

mismatched fragments; if we are computing the alignment for fragment (i, j, k) and

the previous fragment is (i − x, j − x, k′) then this length can be computed as

max(0, k′ − x). From this minimum cost we also subtract the length of the new
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fragment; thus the total cost of any alignment includes a term linear in the total

number of symbols aligned. Formally, we have

C(i, j, k) = −k + min


min

(i−x,j−x,k′)
C(i− x, j − x, k′) + max(0, k′ − x)

min
(i′,j′,k′) above (i,j,k)

C(i′, j′, k′) + g(|(j − i)− (j′ − i′)|)

(10)

The naive dynamic programming algorithm for this computation, given by

Wilbur and Lipman [79, 80], takes time O(M2). If M is sufficiently small, this

will be faster than many other sequence alignment techniques. However, M may

possibly be as large as n2, in which case this technique would be significantly worse

than the non-sparse dynamic programming technique.

The fastp program [46], based on Wilbur and Lipman’s algorithm, is in daily

use by molecular biologists, and improvements to the algorithm are likely to be of

great practical importance. Eppstein et al. [12] studied the problem for linear gap

cost functions, and gave an O(n + m + M log log min(M,nm/M)) algorithm. (To

avoid problems when nm is close to M , we define log x to be log2(2 + x) here and

throughout this thesis; thus log x ≥ 1 always.) This time bound degrades gracefully,

in that when M approaches nm the bound remains smaller than O(mn).

A related set of results have been discovered for the longest common subse-

quence problem. This can be considered a special case of sequence alignment, in

which the cost of point substitution operations is made prohibitively high. Therefore

it can also be solved with the Wilbur-Lipman sparse sequence alignment technique,

by letting the set of fragments be simply the single-symbol matches between the two

input sequences. However the problem is simpler than the general sparse sequence

alignment problem. Hunt and Szymanski showed that, if the number of matches M

is small enough, the use of sparsity could lead to an efficient longest common sub-

sequence algorithm. Their technique takes time O(M log n + n log σ), where σ is

the size of the input alphabet, and without loss of generality n ≥ m ≥ σ − 1. For
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biological sequences σ = 4 and the log σ term vanishes.

Apostolico and Guerra [7] showed that the longest common subsequence prob-

lem can be made even more sparse, by only considering dominant matches [26]; they

reduced the time bound to O(d log(nm/d) + n log σ + m log n). Different versions

of their algorithm instead take time O(M log logn+ n log σ) or O(d log logn+ nσ).

Eppstein et al. [12] improved these bounds to O(d log log min(d, nm/d) + n log σ).
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2.4. New Results

We present a number of new algorithms for sequence alignment with gaps.

First, recall that, as described above, Wilber [78] gave a linear time algorithm

for the concave least weight subsequence problem which extends to a linear time

solution of recurrence 8. However, we noted that this solution is unsuitable for

the application of the recurrence to sequence alignment. Thus the fastest known

computation of sequence alignment with concave gap costs took time O(mn log∗ n),

using an algorithm of Klawe [34]. In chapter 4, we show how the concave case of

recurrence 8 may be solved in linear time, as in Wilber’s algorithm, but in a form

suitable for use in sequence alignment. Thus we can find a minimum cost alignment

with concave gap costs in time O(nm).

Next, in chapter 7, we consider gap cost functions w(x, y) in the form of equa-

tion 4, and for which the gap length term g(y−x) can be broken into s intervals, such

that in each interval the function is either convex or concave. We call such func-

tions mixed convex and concave. We solve the mixed sequence alignment problem

in time O(nmsα(n/s)). No previous solution was better than the O(mnmax(m,n))

algorithm for arbitrary cost functions; the new time bound is never worse than this,

and when s < n it will be substantially better.

Finally, in chapter 8, we solve the the concave fragment alignment problem in

time O(n+M logM), and the convex problem in time O(n+M logMα(M)). These

time bounds greatly improve the previous best known O(M2) algorithm of Wilbur

and Lipman [79, 80]. As stated above, a similar improvement had been found for

linear cost functions [12]; however the algorithms achieving the new bounds are

quite different from those for the linear case.
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3. RNA STRUCTURE

RNA molecules are among the primary constituents of living matter. RNA is used

by cells to transport genetic information between the DNA repository in the nucleus

of the cell and the ribosomes which construct proteins from that information. It

is also used within the process of protein construction, and may also have other

important functions.

An RNA molecule is a polymer of nucleic acids, each of which may be any of

four possible choices: adenine, cytosine, guanine, and uracil. Thus an RNA molecule

can be represented as a string over an alphabet of four symbols, corresponding to

the four possible nucleic acid bases. In practice the alphabet may need to be some-

what larger, because of the sporadic appearance of certain other bases in the RNA

sequence. This string or sequence information is known as the primary structure of

the RNA. The primary structure of an RNA molecule can be determined by gene

sequencing experiments.

However, in an actual RNA molecule, hydrogen bonding will cause further

linkages will form between pairs of bases. Adenine typically pairs with uracil, and

cytosine with guanine. Other pairings, in particular between guanine and uracil,

may form, but they are much more rare. Each base in the RNA sequence will pair

with at most one other base. Paired bases may come from positions of the RNA

molecule that are far apart in the primary structure. The set of linkages between

bases for a given RNA molecule is known as its secondary structure.

The tertiary structure of an RNA molecule consists of the relative physical loca-

tions in space of each of its constituent atoms, and thus also the overall shape of the

molecule. The tertiary structure is determined by energetic (static) considerations

involving the bonds between atoms and the angles between bonds, as well as kine-

matic (dynamic) considerations involving the thermal motion of atoms. Thus the
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tertiary structure may change over time; however for a given RNA molecule there

will typically be a single structure that closely approximates the tertiary structure

throughout its changes.

The tertiary structure of an RNA molecule determines how the molecule will

react with other molecules in its environment, and how in turn other molecules

will react with it. Thus the tertiary structure controls enzymatic activity of RNA

molecules as well as the splicing operations that take place between the time RNA

is copied from the parent DNA molecule and the time that it is used as a blueprint

for the construction of proteins.

Because of the importance of tertiary structure, and its close relation to molec-

ular function, molecular biologists would like to be able to determine the tertiary

structure of a given RNA molecule. Tertiary structures can be determined experi-

mentally, but this requires complex crystalization and X-ray crystalography exper-

iments, which are much more difficult than simply determining the sequence infor-

mation of an RNA molecule. Further, the only known computational techniques for

determining tertiary structure from primary structure involve simulations of molec-

ular dynamics, which require enormous amounts of computing power and therefore

can only be applied to very short sequences.

Because of the difficulty in computing tertiary structures, biologists have re-

sorted to the simpler computation of secondary structure, which also gives some

information about the physical shape of the RNA molecule. Secondary structure

computations also have their own applications: by comparing the secondary struc-

tures of two molecules with similar function one can determine how the function

depends on the structure. In turn, a known or conjectured similarity in the sec-

ondary structures of two sequences can lead to more accurate computation of the

structures themselves, of possible alignments between the sequences, and also of

alignments between the structures of the sequences [62].
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3.1. Secondary Structure Assumptions and the Structure Tree

A perfectly accurate computation of RNA secondary structure would have to also

include a computation of tertiary structure, because the secondary structure is

determined by the tertiary structure. As we have said this seems to be a hard

problem. Instead, a number of assumptions have been made about the nature of

the structure. An energy is assigned to each possible configuration allowed by the

assumptions, and the predicted secondary structure is the one having the minimum

energy.

The possible base pairs in the structure are usually taken to be simply those

allowed by the possible hydrogen bonds among the four RNA bases; that is, a base

pair is a pair of positions (i, j) where the bases at the positions are adenine and

uracil, cytosine and guanine, or possibly guanine and uracil. We write the bases in

order by their positions in the RNA sequence; i.e. if (i, j) is a possible base pair,

then i < j. Each pair has a binding energy determined by the bases making up the

pair.

Define the loop of a base pair (i, j) to be the set of bases in the sequence between

i and j. The primary assumption of RNA secondary structure computation is that

no two loops cross. In other words, if (i, j) and (i′, j′) are base pairs formed in the

secondary structure, and some base k is contained in both loops, then either i′ and

j′ are also contained in loop (i, j), or alternately i and j are both contained in loop

(i′, j′). This assumption is not entirely correct for all RNA [49], but it works well

for a great majority of the RNA molecules found in nature.

A base at position k is exposed in loop (i, j) if k is in the loop, and k is not in any

loop (i′, j′) with i′ and j′ also in loop (i, j). Because of the non-crossing assumption,

each base can be exposed in at most one loop. We say that (i′, j′) is a subloop of

(i, j) if both i′ and j′ are exposed in (i, j); if either i′ or j′ is exposed then by the
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Figure 3.1.1. Secondary structure for tRNAMet
F of Anacystis nidulans, after [64].

non-crossing assumption both must be. An example secondary structure fitting the

non-crossing assumption is illustrated in figure 3.1.1.

Therefore the set of base pairs in a secondary structure, together with the

subloop relation, forms a forest of trees. Each root of the tree is a loop that is not a

subloop of any other loop, and each interior node of the tree is a loop that has some

other subloop within it. A number of names have been given to the various possible

configurations of loops and subloops [64]. We define a hairpin to be a loop with no

subloops, that is, a leaf in the loop forest, and we define a single loop or interior

loop to be a loop with exactly one subloop. Any other loop is called a multiple loop.

A single loop such that both pairs of the subloop are adjacent to the pairs of the

outer loop, so that only the pairs of the subloop are exposed in the outer loop, is



29

called a stacked pair. A single loop such that one base of the subloop is adjacent to

a base of the outer loop is called a bulge. Some of these configurations can be seen

in the figure, which contains four regions of stacked pairs, three of them containing

a hairpin, and the fourth containing a multiple loop with three subloops.

As we have said, each base pair in an RNA secondary structure has a binding

energy which is a function of the bases in the pair. We also include in the total

energy of the secondary structure a loop cost, which is a function of the length of

the loop. This length is simply the number of exposed bases in the loop. The loop

cost may also depend on the type of the loop; in particular it may differ for hairpins,

stacked pairs, bulges, single loops, and multiple loops.

With these definitions one can easily compute the total energy of a structure,

as the sum of the base pair binding energies and loop costs. The optimal RNA

secondary structure is then that structure minimizing the total energy.
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3.2. Computation of Secondary Structure

With the definitions above, the optimum secondary structure can be computed by

a three-dimensional dynamic program with matrix entries for each triple (i, j, k),

where i and j are positions in the RNA sequence (not necessarily forming a base

pair) and k is the number of exposed bases in a possible loop containing i and j.

This computation takes time O(n4); the algorithm was discovered by Waterman

and Smith [75].

Clearly, this time bound is so large that the computation of RNA structure

using this algorithm is feasible only for very short sequences. Therefore, one needs

further assumptions about the possible structures, or about the energy functions

determining the optimum structure, in order to perform secondary structure com-

putatation in a more reasonable time bound.

A particularly simple assumption is that the energy cost of a loop is zero or a

constant, so that one need only consider the energy contribution of the base pairs in

the structure. Nussinov et al. [56] showed how to compute a structure maximizing

the total number of base pairs, in time O(n3); this algorithm was later extended

to allow arbitrary binding energies for base pairs, while keeping the same time

bound [57].

A more natural assumption is that the cost of a loop is a linear function of its

length, rather than being completely arbitrary. This can again be solved in time

O(n3), using a somewhat more complicated dynamic programming technique [64].

Instead of restricting the possible loop cost functions, one could restrict the

possible types of loops. In particular, an important special case of RNA secondary

structure computation is the computation of the best structure with no multiple

loops. Such structures can be useful for the same applications as the more general

RNA structure computation. Single loop RNA structures could be used to con-
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struct a small number of pieces of a structure which could then be combined to find

a structure having multiple loops; in this case one sacrifices optimality of the result-

ing multiple loop structure for efficiency of the structure computation. Also, the

recurrences for computing more general RNA structures include terms for possible

single loops, so speeding up single loop structure minimization would also speed up

those other computations, at least by a constant factor.

The single loop secondary structure computation can again be expressed as

a dynamic programming recurrence relation [73, 64]. We will be examining this

recurrence throughout this thesis, so we present it here:

C[p, q] = min
p<p′<q′<q

G[p′, q′] + g((p′ − p) + (q − q′)) (11)

In this recurrence, p and q are a possible base pair for which we want to compute the

minimum energy single loop. Let n be the length of the input RNA sequence; then

both C and G are n × n matrices, for which we want to compute the values using

the above recurrence. The total energy contribution of this loop will be stored in

G[p, q]. The value of C[p, q] will be the minimum over all possible subloops (p′, q′)

of the subloop energy, together with the term g((p′ − p) + (q − q′)) giving the cost

of the loop itself as a function of the length. Then G[p, q] will be calculated from

C[p, q] by including the binding energy given by pairing p and q; if the bases are

unable to pair then this will be reflected by giving them an infinite binding energy.

G[p, q] also includes a minimization over simpler possible structures pairing p and

q, including hairpins and bulges. For RNA structure computations which include

the possibility of multiple loops, C[p, q] will still be computed as above, and the

terms for possible multiple loop structures will be minimized into G[p, q].

To simplify the presentation of our algorithms, we will deal with recurrence 11

in a slightly modified form, after a change of variables. In particular, let E[i, j] =

C[n − i + 1, j] and D[i, j] = G[n − i + 1, j]. Further let w(x, y) = g(y − x). Then
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recurrence 11 becomes

E[i, j] = min
0≤i′<i
0≤j′<j

D[i′, j′] + w(i′ + j′, i+ j). (12)

There is one restriction on the minimization of recurrence 11 missing here, which is

that p′ < q′; but this can be taken care of by letting G[i, j] = +∞ when i+j > n+1.

A naive algorithm for solving this relation would seem to require time O(n4),

as for the multiple loop RNA structure computation, but the space requirement is

reduced from O(n3) to O(n2). In fact the time for solving the recurrence can also

be reduced, to O(n3), as was recently shown by Waterman and Smith [75]. But this

is still more time than one would want to spend for the computation. To achieve

even faster single loop secondary structure computation, we can again restrict our

attention to linear cost functions. With this restriction, the time for the RNA

structure computation can be reduced to O(n2) [32].

For both the multiple loop and single loop RNA structure computation, it seems

reasonable to consider a class of loop energy cost functions that is not completely

general, and yet is somewhat wider than the class of linear functions. In particular,

concave and convex functions are a natural choice, and seem to provide a good fit

with the actual physical energies of the RNA molecules. However, no algorithm

was known that sped up RNA structure computation, either for single loops or for

multiple loops, by assuming convexity or concavity.
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3.3. Sparseness in Secondary Structure

The recurrence relations that have been defined for the computation of RNA struc-

ture are all indexed by pairs of positions in the RNA sequence (and possibly also

by numbers of exposed bases). For many of these recurrences, the entries in the

associated dynamic programming matrix include a term for the binding energy of

the corresponding base pair. If the given pair of positions do not form a base pair,

this term is undefined, and the value of the cell in the matrix must be taken to be

+∞ so that the minimum energies computed for the other cells of the matrix do

not depend on that value, and so that in turn no computed secondary structure

includes a forbidden base pair.

Further, for the energy functions that are typically used, the energy cost of a

loop will be more than the energy benefit of a base pair, so base pairs will not have

sufficiently negative energy to form unless they are stacked without gaps at a height

of three or more. Thus we could ignore base pairs that can not be so stacked, or

equivalently assume that their binding energy is again +∞, without changing the

optimum secondary structure. This observation is similar to that of sparse sequence

alignment, in which we only include pairs of matching symbols when they are part

of a longer substring match.

These factors combine to greatly reduce the number of possible pairs, which we

denoteM , to a value much less than the upper bound of n2. If we required base pairs

to form even higher stacks, this number would be further reduced. The computation

and minimization in this case is taken only over positions (i, j) which can combine

to form a base pair. Such problems can still be solved with the algorithms listed

above, by giving a value of +∞ to D[i, j] at the missing positions. However, the

complexity measures of the previous algorithms for the problem do not depend on

the number of possible base pairs, but only on the length of the input sequence.
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Thus a further way of speeding up algorithms for the computation of RNA

secondary structure would be to take more careful advantage of the existence of the

missing positions, rather than simply working around them. Algorithms using this

approach would take time proportional to some function of the number of possible

base pairs, rather than the possibly much greater number of pairs of positions in

the sequence.

Concurrently with the work in this thesis, Eppstein et al. [12] showed that

the sparse single loop RNA structure problem for linear loop energy cost functions

could be solved in time O(n + M log log min(M,n2/M)). When M is close to n2

this time bound degenerates to the O(n2) bound for the non-sparse algorithm of

Kanehise and Goad [32]; when M is less than n2 the sparse algorithm can provide

a significant improvement to the previous bounds. No other such sparse RNA

structure computation algorithms were previously known.
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3.4. New Results

First, in chapter 5, we give a data structure for solving a dynamic minimization

problem resembling the generalized least weight subsequence problem described in

chapter 2. This data structure will prove useful in several of our RNA structure

computation algorithms.

Next, in chapter 6, we show how to compute single loop RNA secondary struc-

ture, for convex or concave energy costs, in time O(n2 log2 n). For many simple

cost functions, such as logarithms and square roots, we show how to improve this

time bound to O(n2 log n log logn). The best previous algorithm, due to Waterman

and Smith [75], took O(n3) time. These results have recently been improved by

Aggarwal and Park [3], who gave an O(n2 log n) algorithm; however they use ma-

trix searching techniques, which lead to a high constant factor in the time bound,

so our algorithms may be better in practice.

Then, in chapter 7, we show how to compute single loop RNA secondary struc-

tures with mixed convex and concave costs, in time O(nms log nα(n/s)). Our al-

gorithm for this problem is based on Aggarwal and Park’s technique for the convex

and concave problems, and again uses matrix searching techniques. A variant of

the algorithm, without matrix searching, runs in time O(nms log n log(n/s)).

Finally, in chapter 9, we show how to solve the sparse convex or concave

single loop RNA structure problem in time O(n + M logM log min(M,n2/M)).

For many simple functions this time bound can be further improved to O(n +

M logM log log min(M,n2/M)). Both bounds are never worse than those of the

best known algorithms for the non-sparse problem; when M is less than n2 the

sparse algorithms may provide a big improvement over the corresponding non-sparse

techniques. The time bound resembles that of O(n+M log log min(M,n2/M)) given

by Eppstein et al [12] for the sparse problem with linear costs, but the algorithmic
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techniques used are quite different. No previous algorithms for sparse computation

of RNA structure were known.
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4. THE CONCAVE LEAST WEIGHT SUBSEQUENCE PROBLEM

Recall that, in chapter 2, we showed how the problem of aligning two sequences of

length n and m, with some gap cost function w, may be reduced to solving m+ n

copies of the following recurrence:

E[j] = min
0≤i<j

D[i] + w(i, j), (13)

We will not here make any further assumptions about D, except that each value

D[i] can be computed in some simple way once the corresponding value of E[i] is

known. The obvious dynamic programming algorithm for this recurrence takes time

O(n2); if we speed up this computation we will achieve a corresponding speedup

in the computation of the modified edit distance. We will see in chapter 7 another

application of this problem, to both sequence alignment and the computation of

RNA secondary structure. We also use the problem again in chapter 8 as part of a

sparse sequence alignment algorithm.

Two dual cases of recurrence 13 have previously been studied. In the concave

case, the gap length cost function w satisfies the quadrangle inequality:

w(i, j) + w(i′, j′) ≤ w(i′, j) + w(i, j′), (2)

whenever i ≤ i′ ≤ j ≤ j′. In the convex case, the weight function satisfies the

inverse quadrangle inequality, found by replacing ≤ by ≥ in equation 2.

For both the convex and the concave cases, good algorithms have recently been

developed. Hirschberg and Larmore [27] assumed a restricted quadrangle inequality

with i ≤ i′ < j ≤ j′ in inequality 2 that does not imply the inverse triangle

inequality. They solved the “least weight subsequence” problem, with D[j] = E[j],

in time O(n log n) and in some special cases in linear time. They used this result

to derive improved algorithms for several problems. Their main application is an
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O(n log n) algorithm for breaking a paragraph into lines with a concave penalty

function. This problem had been considered by Knuth and Plass [38] with general

penalty functions. Galil and Giancarlo [17] discovered algorithms for both the

convex and concave cases which take time O(n log n), or linear time for some special

cases. Miller and Myers [53] independently discovered a similar algorithm for the

convex case. Aggarwal et al. [2] had previously given an algorithm which solves

an offline version of the concave case, in which D does not depend on E, in time

O(n); Wilber [78] extended this work to an ingenious O(n) algorithm for the online

concave case; however as we shall see Wilber’s algorithm has shortcomings that

make it inapplicable to the sequence alignment problem. Klawe and Kleitman [35]

extended the algorithm of Aggarwal et al. to solve the convex case in time O(nα(n)),

where α(n) is the inverse Ackermann function. Klawe [34] also gave a simpler

O(n log∗ n) algorithm for the convex case; although she does not mention the fact,

her algorithm also provides a solution to the concave case in the same time bound.

In this chapter we concentrate on the concave case of recurrence 13. As we

have said, Wilber already gave a linear time algorithm for this case, so one would

think that nothing remains to be said. But as we shall see, Wilber’s algorithm is

unsuited to our applications.

For the reduction given in the introduction from sequence matching to recur-

rence 13, and also for the applications of this recurrence with mixed convex and

concave functions given in chapter 7, we interleave the solutions of a number of

separate convex or concave copies of recurrence 13. I.e. many separate such prob-

lems will be solved, but the values of D[i] used in the minimization for some of the

problems will depend on the values of E[j] computed in other problems. Because

of this, we require an additional property of any solutions we use: each value E[j]

must be known before the computation of E[j + 1] begins.

Instead, Wilber’s O(n) time algorithm for the concave case of recurrence 13
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guesses a block of values of E[j] at once, then computes the corresponding values

of D[j] and verifies from them that the guessed values were correct. If they were

incorrect, they and the values of D[j] need to be recomputed, and the work done

computing and verifying the incorrect values can be amortized against progress

made. But if Wilber’s algorithm is interleaved with other computations, and an

incorrect guess is made, those other computations based on the incorrect guess will

also need to be redone, and this extra work can no longer be amortized away.

Therefore, we now present a modification to Wilber’s algorithm that allows us

to use it in interleaved computations. Thus we achieve an O(mn) time bound for

sequence alignment with concave gap costs; we shall also see further applications of

this problem in later chapters.
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4.1. Wilber’s Algorithm

First let us sketch Wilber’s algorithm for the concave least weight subsequence

problem. The algorithm depends on the following three facts. First, let i1 < i2 <

j1 < j2, and let P [j] = mini1≤i≤i2 D[i]+w(i, j) for j1 ≤ j ≤ j2 and for some concave

function w. Then the values of P [j] can be computed in time O((i2−i1)+(j2−j1)),

using the algorithm of Aggarwal et al. [2]. Second, in recurrence 13, let i(j) be the

value of i such that D[i] + w(i, j) supplies the minimum value for E[j] and again

let w be concave. Then for j′ > j, i(j′) ≥ i(j). And third, if we extend w to be

equal to +∞ for (i, j) with i ≥ j, it remains concave.

The algorithm proceeds as follows. Assume that we know the values of D[j],

E[j], and i(j) for j ≤ k. Let D[j] = d(E[j]) be the function taking values of E[j]

computed in the recurrence to the corresponding values of D[j] used for later values

of the recurrence. Let p = min(2k − i(k) + 1, n). Define a stage to be the following

sequence of steps, which Wilber repeats until all values are computed:

(1) Compute P [j] = mini(k)≤i≤kD[i] + w(i, j) for k < j ≤ p using the algorithm

of Aggarwal et al. P [j] may be thought of as a guess at the eventual value of

E[j].

(2) Compute Q[j] = d(P [j]) for k < j ≤ p. I.e. we perform the computation that

would be used to compute the values of D[j], if E[j] were in fact equal to P [j].

(3) For each j with k < j ≤ p, compute R[j] = mink<i<j Q[i] + w(i, j) using

the algorithm of Aggarwal et al. R[j] substitues the values of Q[j] into the

recurrence to verify that the guessed values of P [j] were correct.

(4) Let h be the least j such that R[j] < P [j], or p if no such index exists. Then

E[j] = P [j] for k < j ≤ h. If h = p, we know that all guesses were correct.

Otherwise, we know that they were correct only through h; then E[h + 1] =

R[h+ 1] and i(h+ 1) > k. In either case, start a new stage with k updated to
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reflect the newly verified values of E[j] and D[j].

A proof that the above algorithm in fact correctly computes recurrence 13 is

given in Wilber’s paper. We now give the time analysis for this algorithm; a similar

analysis will be needed for our modification to the algorithm. The total time for

each stage is O((p− k) + (k − i(k)) = O(k − i(k)). If h = n we are done, and this

final stage will have taken time O(n). If h = p 6= n then we will have computed

p− k = 2k − i(k) + 1− k = k − i(k) + 1 new values, so the time taken is matched

by the increase in k. And if h 6= p, then i(h+ 1) > k and i(h+ 1)− i(k) > k− i(k),

so the time taken is matched by the increase in i(k). Neither k nor i(k) decrease,

and both are at most n, so the algorithm takes linear time.

However as we have seen this may not hold when we interleave its execution

with other computation. In particular, the analysis above depends on step 2 of

each stage, the computation of Q[j] = d(P [j]), taking only constant time for each

value computed; but if we interleave several computations this step may take much

longer. The problem is that d(x) may not be a simple function depending only on x,

but instead it may use the value of x as part of one of the other interleaved dynamic

programs; and if we supply P [j] as the value of x instead of the correct value of

E[j], this may cause incorrect work to be done in the interleaved programs. This

incorrect computation will need to be undone, if the value of P [j] turns out not to

equal E[j], and therefore the time taken to perform it can not be amortized against

the total correct work performed. Instead we now describe a way of performing

each stage in such a way that we only need to compute d(E[j]), for actual values

of E[j].
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4.2. The New Algorithm

We introduce a new variable, c, corresponding to the role of i(k) in Wilber’s algo-

rithm, and an array A[j] which stores the already-computed “influence” of D[i], for

i < c, on future values of E[j]. That is, for all j from 1 to n,

A[j] = min
0≤i<c

D[i] + w(i, j). (14)

Actually, equation 14 will not hold as written above; instead we guarantee the

slightly weaker condition that, if index i supplies the minimum of D[i] + w(i, j) in

the computation of E[j], then either i ≥ c or E[j] = A[j].

Initially c = 0 and all values of A are +∞; clearly equation 14 holds for these

initial conditions. As in Wilber’s algorithm, let k be the greatest index such that

D[k] is known; initially k = 0. Finally let p = 2k − c+ 1; c is always at most k so

p > k. We proceed as follows.

(1) Compute P [j] = min(A[j],minc≤i≤kD[i] + w(i, j)) for k < j ≤ p using the

algorithm of Aggarwal et al. As in Wilber’s algorithm, we compute here our

guess at the values of E[j]. Wilber’s analysis applies here to show that the

algorithm of Aggarwal et al. can be used, taking time O((k − c) + (p− k)).

(2) For each i with k < i < p, compute

B[i] = max
i<j≤p

P [j]− w(i, j)

using the algorithm of Aggarwal et al. Here we differ from Wilber’s algorithm;

instead of plugging our guesses into the function d(x), we compute the bounds

B[i] directly from the guesses.

(3) While k < p, increase k by 1, let E[k] = P [k], and compute D[k] = d(E[k]). If

k = p, start the next stage at step 1. If not and D[k] < B[k], stop and go to

step 4. Otherwise, continue the loop in this step.
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(4) We have found k to be the least index with D[k] < B[k]. For k < j ≤ p, let

A[j] = P [j]. Set c = k, and start a new stage at step 1.

The algorithm can be visualized as in figure 4.2.1. The figure depicts a matrix,

with columns numbered by j and rows numbered by i. The value at position (i, j)

of the matrix is D[i] + w(i, j). Positions below the diagonal are not used by the

algorithm, and no value is defined there. Then the goal of the computation is to

compute the minimum value in each column. As in Wilber’s algorithm, rows are

indexed starting from 0 but column numbers can start from 1, since D[0] is defined

and used in the minimization but E[0] is not defined. The values in any row of

a matrix are not known until the minimum in the corresponding column has been

computed.

At each stage, the minima in all columns up to and including column k have

been computed, and so the values in all rows up to k are computable. The contri-

bution of the values in rows above (but not including) row c to the minimization

for each column j has been computed into A[j]. Step 1 extends this computation

of the contribution to include area (1) of the figure, i.e. rows c through k and

columns k + 1 through p. The remaining steps test the values so computed, to see

whether they are the actual minima in their columns. If so, k can be advanced to p.

Otherwise, one of the columns in the range from k+1 through p has a minimum in

a row from k to p, and by concavity none of the values in area (2) of the figure will

be the minimum in their columns. So in this case, we have computed the influence

between rows c and k, and we can advance c.

More formally, we have the following lemmas.

Lemma 1. If, in the computation of a stage, for some i it is the case that B[i] ≤

D[i], and assuming the values of D computed in all previous stages were correct,

then for all j, i < j ≤ p, D[i] + w(i, j) ≥ P [j].

Proof: P [j] − w(i, j) ≤ B[i] by the computation of B. So if B[i] ≤ D[i], then
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Figure 4.2.1. State in the computation of recurrence 13.

clearly the desired inequality holds. •

Lemma 2. If, in the computation of a stage, we encounter a row i with B[i] > D[i],

and assuming the values of D computed in all previous stages were correct, then

there exists a column j with i < j ≤ p, such that D[i] + w(i, j) < P [j].

Proof: Let j be the column supplying the maximum value of B[i], i.e. B[i] =

P [j]− w(i, j). Then P [j] > D[i] + w(i, j). •

Lemma 3. For any j, A[j] ≥ min0≤i<j D[i] + w(i, j).

Proof: A[j] is always taken to be a minimum over some such terms, so it can

never be smaller than the minimum over all such terms. •
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Next we show that A[j] encodes the minimization over rows above row c, so

the total minimum is the better of A[j] and the minimimum over later rows.

Lemma 4. Each stage computes the correct values of D and E. Further, after the

computation of a given stage, for each index j,

min
0≤i<j

D[i] + w(i, j) = min(A[j], min
c≤i<j

D[i] + w(i, j)), (15)

Proof: We prove the lemma by an induction on the number of stages; thus we

can assume that it held prior to the start of the stage. By k and c here we mean

the values held at the end of the stage; let k′ denote the value held by k at the start

of the stage, and similarly let c′ denote the value of c at the start of the stage.

We first prove the assertion that E and D are computed correctly. In a given

stage, we compute these values for indices j with k′ < j ≤ k. In particular,

E[j] = P [j] and D[j] = d(E[j]) for those indices. Recall that P [j] was computed as

P [j] = min(A[j], min
c≤i≤k′

D[i] + w(i, j)).

Further, for i < k, D[i] ≥ B[i], or else we would have stopped the loop in step 3

earlier. Therefore by lemma 1, for each row i with k′ < i < j, P [j] ≤ D[i]+w(i, j), so

these additional rows can not affect the minimization for E[j], and by the induction

hypothesis of equation 15 E[j] is in fact computed correctly.

Now we show that equation 15 also holds. Clearly if the stage terminates with

k = p, it remains true, because c and A remain unchanged. Otherwise, c = k is

the least row such that B[c] > D[c]. By lemma 2, there exists a column j with

c < j ≤ p, such that

D[c] + w(c, j) < P [j] ≤ min
0≤i≤c′

D[i] + w(i, j).

By lemma 1, for c′ < i < c, P [j] ≤ D[i] + w(i, j), so

D[c] + w(c, j) < min
0≤i<c

D[i] + w(i, j).
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But then by concavity, for every j′ > j ≥ p,

D[c] + w(c, j′) < min
0≤i<c

D[i] + w(i, j′).

So

min
0≤i<j′

D[i] + w(i, j′) = min
c≤i<j′

D[i] + w(i, j′)

= min(A[j′], min
c≤i<j′

D[i] + w(i, j′)),

where the last part of the above equation holds because of lemma 3. For k < j′ ≤ p,

the values of D[i] + w(i, j′) for c′ ≤ i ≤ k′ have already been computed in step 1

and incorporated into A[j′] in step 4. And since for each i < c, D[i] ≥ B[i], we

know by lemma 1 that D[i] + w(i, j′) ≥ P [j′] = A[j′] so these rows can not affect

the minimum. Therefore the equation is true for all columns. •

It remains to show that the bounds B computed in step 2 can be computed

using the algorithm of Aggarwal et al. Recall that B is defined by the recurrence

B[i] = maxi<j≤p P [j] − w(i, j). To hide the dependence of j on i, define f(i, j)

to be P [j] − w(i, j) if i < j, or −∞ otherwise. Then B[i] = maxk+1<j≤p f(i, j).

The problem is to find the maxima on the rows of the matrix implicitly determined

by the function f(i, j). The algorithm of Aggarwal et al. [2] can do this in time

O(p − k). It uses as an assumption that, for any four positions i < i′ and j < j′,

if f(i, j′) ≥ f(i, j), then f(i′, j′) ≥ f(i′, j); i.e. in any submatrix, as we progress

down the rows of the submatrices, the row maxima move monotonically to the right.

Define a matrix of values having this property to be totally monotonic. It is the

assumption of monotonicity that we must prove, in order to justify the use of the

algorithm of Aggarwal et al.

Lemma 5. Let f(i, j) be defined as above. Then the matrix of values of f(i, j) for

k < i < p and k + 1 < j ≤ p is totally monotone.
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Proof: First, if (i′ ≥ j), then f(i′, j′) ≥ f(i′, j) = −∞ and the conclusion

holds. So we may assume that i < i′ < j < j′. But then

f(i, j) + f(i′, j′) = P [j] + P [j′]− w(i, j)− w(i′, j′)

≥ P [j] + P [j′]− w(i′, j)− w(i, j′)

= f(i′, j) + f(i, j′)

by the quadrangle inequality. So if we assume f(i, j′) ≥ f(i, j), then for the above

inequality to hold f(i′, j′) ≥ f(i′, j) and the matrix is monotone. •

A similar proof of the monotonicity of D[i]+w(i, j) (with a definition of mono-

tonicity for column minima instead of row maxima) holds for the use of the algo-

rithm of Aggarwal et al. in computing the values of F in step 1. However that

proof was given by Wilber for the analogous step in his algorithm, so we omit it

here.

Now that we have determined the correctness of the algorithm, let us determine

the amount of time it takes.

Theorem 1. Recurrence 13 can be solved in time O(n), where n is the number of

values of E solved for.

Proof:

Let k and c denote the values of the variables at the end of a given stage,

with k′ and c′ holding the values before the stage. The time for the stage is then

O((p− k′) + (k′ − c′)) = O(k′ − c′). If, after the stage, k = n, we are done and the

stage took time O(n). If the stage finished without finding any D[i] < B[i], then

k = p so k−k′ = 2k′− c′+1−k′ = k′− c′+1 and the time spent is balanced by the

increase in k. Otherwise, c− c′ = k− c′ > k′− c′ and the time spent is balanced by

the increase in c. Both k and c are monotonically increasing and both are bounded

by n. Thus as before the new algorithm takes linear time. But note that now we
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only calculate the values of D[j] corresponding to actual computed values of E[j];

thus the algorithm can be safely interleaved with other computations, without loss

of time. •

Corollary 1. The sequence alignment problem with concave gap costs can be

solved in time O(mn).

Proof: Recall that, in chapter 2, we showed how the sequence alignment prob-

lem can be reduced to m least weight subsequence problems of size n (one for

each row of the sequence alignment dynamic programming matrix) together with

n problems of size m (for the columns of the matrix). Thus the total time is

O(mn+ nm) = O(mn). •
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4.3. Submatrices of the Least Weight Subsequence Problem

We have seen that recurrence 13, for concave cost functions, can be computed in

linear time, even when the computation must be interleaved with other similar com-

putations. As an immediate consequence, the edit distance problem for concave gap

costs can be solved in time O(mn). We will also apply our solution to the concave

case of the recurrence in chapter 7, where we discuss mixed convex and concave

cost functions for both sequence alignment and RNA structure computation.

In chapter 8, we again use the least weight subsequence problem, as part of an

algorithm for sparse sequence alignment. In that case we need a solution to what

looks like a more general problem; however the problem turns out to be no harder

than the least weight subsequence problem. We show the needed identity here.

Recall that the least weight subsequence problem can be thought of in terms of

finding the column minima in the matrix of values D[i]+w(i, j). Define a submatrix

of the problem to be a subset X of the row indices, and another subset Y of the

column indices, such that we are only interested in finding, for each column in Y ,

the minimum among the values in the rows in X. To relate this to the original least

weight subsequence problem, we now want to solve the recurrence

E[j] = min
i∈X
i<j

D[i] + g(i, j), (16)

for only those j ∈ Y . For the original problem we required that each D[j] be

computable from E[j]; here E[j] may never be computed so we instead require that

each D[j] be computable whenever all E[i] are known for i ≤ j.

Lemma 6. Let X and Y be the rows and columns of a submatrix of a concave

least weight subsequence problem. Then the solution of recurrence 16 for X and Y

can be solved in time O(|X|+ |Y |).
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Proof: Let i0, i2, . . . im be the sequence of indices appearing in either X or Y ;

then clearly m ≤ |X|+ |Y |. Let E′[j] = E[ij ], and let D′[j] = D[ij ], or D′[j] = +∞

if j /∈ X. Finally let w′(x, y) = w(ix, iy). Then recurrence 16 can be rewritten

E′[j] = min
0≤i<j

D′[j] + w′(i, j),

which is exactly a least weight subsequence problem of size m. Some extra values

of E[j] are calculated besides those for j ∈ Y , but this cannot cause any problem.

Further, it is not hard to see that w′ is concave exactly when w is, because the

missing rows and columns cannot affect the quadrangle inequality for the remaining

indices. The solution of the reduced problem takes time O(m), as does the reduction

from the submatrix to the reduced problem, so the submatrix problem can be solved

in time O(m) = O(|X|+ |Y |). •
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5. A DYNAMIC MINIMIZATION DATA STRUCTURE

We now describe a data structure to solve a minimization with dynamically changing

input values. We will later use this data structure in our solutions of the RNA

structure computation with convex or concave costs, as well as in the sparse RNA

structure problem. The data structure may also have independent interest of its

own. We consider the following equation:

E[i] = min
j
D[j] + w(i, j). (17)

Each of the indices i and j are taken from the set of integers from 0 through some

bound n. The minimization for each E[i] depends on all values of D[j], not just

those for which j < i. The cost function w(i, j) is assumed to be either convex or

concave. The values of D[j] will initially be set to +∞. At any time step, one of

the following two operations may be performed:

(1) Compute the value of E[i], for some index i, as determined by equation 17 from

the present values of D[j].

(2) Decrease the value of D[j], for some index j, to a new value that must be

smaller than the previous value but may otherwise be arbitrary.

This problem clearly has a strong resemblance to the least weight subsequence

problem considered in the previous chapter. In particular, that problem can be

solved by the minimization of this chapter as follows. Initially set all values of

D[j] to +∞. Then, for values of i in ascending order from 0 to n, compute E[i]

from the minimization, use the computed value of E[i] to compute the value D[i]

should have, and set D[i] to that value by decreasing it from its previously infinite

value. Thus the least weight subsequence problem could be solved by the methods

described in this chapter. However because the dynamic minimization above allows

more general sequences of operations, the time per operation will be more than if

we were only solving the least weight subsequence problem.
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In particular, we will give a data structure for this problem that will take

O(log n) amortized time per operation. For simple cost functions, this time can

be reduced to O(log logn) amortized time per operation. To contrast this with

the least weight subsequence problem, we have seen in chapter 4 that there for

the concave case each value can be computed in constant amortized time; and in

the convex case the algorithm of Klawe and Kleitman [35] computes each value in

O(α(n)) amortized time.

However, the dynamic minimization solved here solves a more general class of

problems than the least weight subsequence problem. We will show in later chapters

how it may be applied to the efficient computation of RNA secondary structure,

both with and without sparsity assumptions.

Our algorithm for the general dynamic equation above is similar to the least

weight subsequence algorithm of Galil and Giancarlo [17]. However we will later

see how these techniques can be combined with the matrix searching algorithms of

Aggarwal et al. [2] to provide further reductions in the theoretical time bounds for

computation of a sequence of operations.
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5.1. Partition into Intervals

We first show that we need only consider concave cost functions; the convex case

will turn out to be essentially the same.

Lemma 7. If w(i, j) is convex, then w′(i, j) = w(i, n− j + 1) is concave.

Proof: Let f(j) = n − j + 1. Then f maps the interval 1 . . . n into itself. If

j < j′, then clearly f(j′) < f(j). Therefore, if the inverse quadrangle inequality

holds for w(i, j), the inequality formed by reversing the order of j and j′ holds for

w′(i, j) = w(i, f(j)). But this is the same as the quadrangle inequality for w′(i, j). •

Corollary 2. The dynamic minimization problem defined by equation 17, for

convex weight functions w(i, j), can be solved as a concave problem by reversing

the order of the second index j.

From now on in this chapter we will assume without loss of generality that

w(i, j) is concave. Our algorithm is based on the following fundamental fact:

Lemma 8. For any i, j, and j′, with j < j′, if D[j] + w(i, j) ≥ D[j′] + w(i, j′),

then for all i′ > i, D[j] + w(i′, j) ≥ D[j′] + w(i, j′). Conversely, if D[j] + w(i, j) ≤

D[j′] + w(i, j′), then for all i′ < i, D[j] + w(i′, j) ≤ D[j′] + w(i′, j′).

Proof: By the quadrangle inequality, w(i, j′) + w(i′, j) ≥ w(i, j) + w(i′, j′).

Subtracting w(i, j′) +w(i′, j′) +D[j′]−D[j] from both sides and rearranging gives

(D[j] + w(i, j))− (D[j′] + w(i, j′)) ≤ (D[j] + w(i′, j))− (D[j′] + w(i′, j′)).

But by assumption (D[j] + w(i, j)) − (D[j′] + w(i, j′)) is positive, and therefore

(D[j] + w(i′, j)) − (D[j′] + w(i′, j′)) must also be positive and the first statement

holds. The proof of the converse statement is similar. •

For specificity, let us break ties in favor of the smaller index. That is, we say

that D[j] is better than D[j′] at i if either D[j]+w(i, j) < D[j′]+w(i, j′), or j < j′.
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Corollary 3. At any given time, the values of D[j] supplying the minima for the

positions of E[i], with ties broken as above, partition the possible indices i into a

sequence of intervals. If j < j′, if i is in the interval in which D[j] is best, and i′ is

in the interval in which D[j′] is best, then i < i′.

Thus our algorithm need simply maintain the interval in which each value D[j]

is best, and a search structure of the interval boundaries, in which the interval con-

taining a given point i can be looked up. Such a search structure can be maintained

at a cost of O(log n) per modification or search, using any form of balanced binary

trees [5, 37, 67]. If we use the flat tree data structure of van Emde Boas [68], this

time can be reduced to O(log logn). Thus it remains to show how to decrease a

given value of D[j], while maintaining the partition above and performing only O(1)

search tree operations.

In fact we may need to perform more than O(1) search tree operations when

we reduce a value of D[j], because many other values of D[j′] may have their

corresponding intervals reduced to nothing and thus will need to be removed from

the search tree. We avoid that difficulty by, whenever we insert a value of D[j] in

the search tree, charging the operation with the time required to later delete it. In

this way, each reduction will perform O(1) non-charged search tree operations, and

will be charged for O(1) further operations which may occur in the future. The

total is O(1) operations per reduction, but the time bounds become amortized over

the lifetime of the data structure rather than worst case per operation.

We call an index j into the array D[j] live if, for some E[i], D[j] supplies the

minimum in equation 17. As well as finding the interval containing a given index i

into array E, we also need to search for the first live index before a given index

j into array D. This can be done by maintaining another search tree or flat tree

containing the live indices.

Let R[j] be the rightmost (greatest) index in the interval corresponding to
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index j, and similarly let L[j] be the leftmost index. For brevity, let C(i, j) stand

for D[j] + w(i, j).

As in the algorithm of Galil and Giancarlo [17], we make use of a subroutine

border(j , j ′). This will always be called with j < j′; it returns the greatest index

i such that C(i, j) ≤ C(i, j′). If no such index exists, it returns 0. For arbitrary

cost functions, lemma 8 can be used to derive a binary search routine that finds

border(j, j′) in time O(log n). For many functions, border(j, j′) can be calculated

directly as the root of a functional equation; we say that such a function has the clos-

est zero property. Hirschberg and Larmore [27], and later Galil and Giancarlo [17]

used this property to derive more efficient algorithms for the problems they solved.

Most simple functions that are likely to be seen in practice, such as logarithms and

square roots, have the closest zero property.
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5.2. The Reduction Algorithm

The steps performed to reduce the value of D[j] are as follows:

begin
repeat

find j ′ < j as large as possible with j ′ live;
if no such j ′ exists then L[j ]← 0; break;
else if C (L[j ′], j ) < C (L[j ′], j ) then begin

L[j ]← L[j ′];
make j ′ no longer live;

end;
end;
if j ′ still exists then begin

L[j ]← border(j ′, j );
R[j ′]← L[j ]− 1;

end;

repeat
find j ′ > j as small as possible with j ′ live;
if no such j ′ exists then R[j ]← n; break;
else if C (R[j ′], j ) < C (R[j ′], j ) then begin

R[j ]← R[j ′];
make j ′ no longer live;

end;
end;
if j ′ still exists then begin

R[j ′]← border(j , j ′);
L[j ]← R[j ′] + 1;

end;
if L[j ] ≤ R[j ] and j is not in the search structure then

add j to the search structure;
end

Clearly a change inD[j] can only affect the borders between it and its neighbors

in the interval partition, and not any of the borders between unchanged values.

Each iteration of the two loops above removes a point j′ from the set of live points,

exactly when the decrease in D[j] expands the corresponding interval to cover the



57

remaining interval of j′; that is, when j′ no longer supplies the minimum at any

point. The remaining steps fix the borders of the intervals between j and any

remaining neighbors. It can be seen, using lemma 8, that the resulting partition

is exactly that described by corollary 3. Thus the algorithm correctly solves the

dynamic minimization problem we are interested in.

Theorem 2. The data structure above can be implemented to take O(log n) time,

or O(log log n) for functions with the closest zero property.

Proof: The time for each reduction can be split into the time per iteration of

the loops, and the remaining time. The loop time for an iteration deleting point j′,

as we have said, will be charged when we insert j′ rather than when we delete it.

This time is one search tree operation per iteration. Thus the time possibly charged

to j will be one search tree operation. The remaining time consists of at most 4

search tree operations, to remove the old interval boundaries from the search tree

and insert the new ones, and possibly to add j to the list of live indices. We also

make two calls to the border subroutine. The total amortized time per operation is

O(log n), or for simple functions O(log logn). •
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5.3. Homogeneous Sequences of Operations

We have shown how to solve our dynamic minimization problem at a cost of O(log n)

steps per operation, or even O(log logn) for simple functions. We do not know how

to reduce these bounds further. However, we can achieve better time bounds for

a sequence of operations, when all operations are of the same type (either reduc-

tions of values of D, or computations of values of E). We call such a sequence of

operations homogeneous. Then as we shall show, k homogeneous operations can be

performed in time O(k log n/k). For example, n such operations would take time

O(n log n/n) = O(n), so the amortized time per operation would be reduced to a

constant. If the cost function is simple, the time for a homogeneous sequence of k

operations can be reduced to O(k log logn/k). We first consider the simple case.

In the data structure of the previous section, in place of the flat trees of van

Emde Boas, we use Johnson’s improved flat trees [31]. This is again a structure in

which one can insert, delete, and search for points numbered from 0 to n. However,

whereas flat trees take time O(log log n) per operation, improved flat trees take

time O(log logG), where G is the length of the gap between points in the structure

containing the point being searched for, inserted, or deleted. More importantly

for our analysis, a sequence of k operations, all of one type (insertions, deletions,

or searches), can be performed in total time O(k log logn/k). For insertions and

deletions this follows from Johnson’s analysis of his algorithm.

For a sequence of searches in order by the positions being searched for, the

time bound follows because consecutive searches in the same gap can be detected in

constant time, by simply comparing each new search point with the endpoints of the

gap containing the previous search point. Therefore we need pay the O(log logD)

cost at most once per gap. The cost of the sequence of search operations is there-

fore
∑k
i=1O(log logDi). Because the function f(x) = log log x is convex, any sum
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i=1 f(xi) is maximized when the xi are all equal, and so the sum is bounded by

kf(
∑k
i=1 xi/k). In particular, the cost of the search sequence can be reduced to

O(k log log(
k∑
i=1

Di/k)) = O(k log logn/k).

For a sequence of k searches in non-sorted order we could use another instance

of Johnson’s flat trees to sort the search points, in time O(k log logn/k), and then

perform the searches in sorted order as above; or if the sequence was not known

in advance we could simply insert a dummy point in the flat tree recording the

search result, so that future searches giving the same result will see a smaller gap,

and then after the last search we could delete all the inserted dummy points, to

leave the data structure clean for the next sequence of operations. In fact in all our

applications of the data structure, each sequence of searches can in fact be made to

be already in sorted order, so no such handling will be needed.

Let us state the result so far as a theorem:

Theorem 3. The data structure solving equation 17 for simple cost functions can

be implemented to take O(k log logn/k) time for each homogeneous sequence of

operations.

For non-simple functions, we must also take into account the binary searches

required to compute border(i , j ) when including new values from A into the data

structure. Assume that k such computations need be performed for a given column.

If all the binary searches occurred in disjoint intervals of the range from 0 to n, the

total time would be O(k log n/k) by a similar analysis to that for simple functions.

To force the search intervals to be disjoint, we first find the borders among the

points being inserted.

In particular, we need to solve an instance of equation 17, in which there are

k new values of D[j] given. By corollary 3 of the first section, each value of D[j]
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supplies the minima for E[i] with i in some interval of the range from 0 to n, and

further these intervals appear in the same order as the positions of D[j]. Clearly,

border(i , j ) for a newly added point j need only be computed within the interval

in which D[j] is better than the other new points. Further, all computations of

border(i , j ) have at least one of the indices i or j being a newly added point.

If, given the set of new values to be inserted, we can compute the partition of

[0 . . . n] into intervals in which each of these values is best, guaranteed to exist by

corollary 3, we can use this partition to perform each border(i , j ) computation in

a disjoint interval, and therefore the total time for these computations for k new

points will be O(k log n/k).

The algorithm of Aggarwal et al. [2] can find the minima at all n points,

and therefore the boundaries between the intervals, in time O(k + n). That of

Galil and Giancarlo [17], which uses binary searches to find interval borders as in

the data structure of the first section, but which needs only a stack instead of a

more complicated search structure, can find the boundaries in time O(k log n). We

combine these two algorithms to achieve a bound of O(k log n/k), which is what we

are trying to achieve.

This is done as follows. We first select the points E[n/k], E[2n/k], etc, and find

for each of these points which value ofD[j] supplies the minimum. This computation

involves only k points E[i], and so we can solve it in time O(k) using the algorithm

of Aggarwal et al. The remaining points in the range from 0 to n are divided up by

this computation into k segments, each of length n/k. For each boundary between

values D[j − 1] and D[j], we know from the above computation which segments

it falls in. If the two endpoints of an interval both have the same value of D[j]

supplying their minima, there can be no boundary within that interval. Otherwise,

if D[i] is the left minimum and D[j] the right minimum, the segments will contain

only those boundaries of intervals corresponding to positions between i and j.
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Thus for each segment we can perform a binary search, as used in the compu-

tation of Galil and Giancarlo, for the boundaries that may fall within that interval.

Each binary search is thus limited to a range of n/k points, and so it will take

time O(log n/k). Each value of D[j] is involved in the computations for at most

two segments, those to the left and to the right of the segment border points for

which it supplies the minima. If D[j] does not supply the minimum for any segment

border point, it will be involved in the computation for exactly one segment. The

time for a segment containing b boundaries will be b log n/k, and so the total time

for computing boundaries between new point intervals is O(k log n/k) as desired.

Once we have computed the boundaries between the intervals of the new points

being inserted, we can insert the points into the data structure as before, computing

border(i , j ) by a binary search that stays within the interval of the point being

inserted. The sum of the interval lengths is bounded by n, so the time for insertion

is bounded by O(k log n/k). Thus we have shown the following theorem:

Theorem 4. The data structure solving equation 17 for arbitrary convex or concave

cost functions can be implemented to take O(k log n/k) time for each homogeneous

sequence of operations.

In chapter 6, we use the O(log n) and O(log log n) single-operation bounds

for the solution of equation 17 to efficiently compute single loop RNA secondary

structures. Later, in chapter 9, we show how this data structure, and the bounds

for homogeneous sequences of operations, can be used to take advantage of sparsity

for even faster RNA structure computation.
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6. RNA STRUCTURE WITH CONVEX OR CONCAVE COSTS

In this chapter we examine the following recurrence, which can be considered as a

two-dimensional generalization of the least weight subsequence problem of chapter 4:

E[i, j] = min
0≤i′<i
0≤j′<j

D[i′, j′] + w(i′ + j′, i+ j) (12)

As with the least weight subsequence problem, D is taken to be some simple function

of E. It may be that D is not defined for certain pairs (i, j); in the case of RNA

structure this occurs when two bases do not pair. To account for this we give

that position of D the special value +∞, which is taken to be larger than all real

numbers. E may of course also take this value. We are given as initial values D[i, 0]

and D[0, j] for all i and j; we require the solution of the recurrence for 1 ≤ i ≤ n

and 1 ≤ j ≤ n; in the application of this recurrence to sequence analysis n will be

the length of the input sequence.

The recurrence can be solved by the obvious dynamic program in time O(n4);

fairly simple techniques suffice to reduce this time to O(n3) [75]. In this paper

we present a new algorithm, which when w is convex solves recurrence 12 in time

O(n2 log2 n). For many common choices of w, a more complicated version of the

algorithm solves the recurrence in time O(n2 log n log logn). Similar techniques can

be used to solve the concave case of recurrence 12.

The recurrence above has an important application to the computation of RNA

secondary structure [64, 75]. After a simple change of variables, one can use it to

solve the following recurrence:

C[p, q] = min
p<p′<q′<q

G[p′, q′] + g((p′ − p) + (q − q′)) (11)

Recurrence 11 has been used to calculate the secondary structure of RNA, with

the assumption that the structure contains no multiple loops, that is, loops having
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more than one subloop nested within them [64]. Thus C[p, q] gives the minimum

energy loop in which p and q form a base pair, and the minimization is over all

possible loops interior to p and q. Our algorithm computes this structure in worst

case time O(n2 log2 n), under the realistic assumption that the energy function w

of a loop is a convex function of the number of exposed bases in that loop.

It is possible to calculate RNA secondary structure with multiple loops, but

this seems to require time O(n3) for linear energy functions, or O(n4) for general

functions [75]. Secondary structure computation without multiple loops is less use-

ful, because most known RNA structures in fact contain such loops. However, the

multiple loop recurrences contain 11 to calculate the energy of loops without mul-

tiple subloops, and so speeding up this case will also speed up the more general

computation, if not asymptotically then at least in the constant factor. It is also

possible that our algorithm could be used to find plausible single loop substruc-

tures, which could be connected together heuristically to form a more general RNA

structure.

For computations on long sequences, the space requirements of the algorithms

can be at least as important as the time; if one algorithm requires more time than

another it can simply be run longer, but if an algorithm requires more memory than

is available, it can not run at all. The previous RNA structure algorithms require

space O(n2), except for the most general O(n4) algorithm which takes O(n3). A

naive implementation of the algorithms we describe would take O(n2 log n), but this

can without much difficulty be reduced to O(n2), matching the other algorithms.
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6.1. Contention Within a Diagonal

In recurrence 12, we call each of the points (i′, j′) that may possibly contribute to

the value of E[i, j] candidates. We consider the computation of E[i, j] as a contest

between candidates; the winner is the point (i′, j′) with the minimum value of

D[i′, j′] + w(i′ + j′, i+ j). If we can find a way of eliminating many candidates at

once, we can use this to reduce the time of an algorithm for solving recurrence 12.

We say that two points (i, j) and (i′, j′) in the matrices D or E are on the same

diagonal when i + j = i′ + j′. By the length of a diagonal we mean the number of

points on it; e.g. the longest diagonal in the matrix has length n rather than n
√

2.

We say that (k, l) is in the range of (i, j) when k > i and l > j; that is, when point

(i, j) is a candidate for the value of E[k, l].

In this section we describe a way of eliminating candidates within the same

diagonal. Using these methods, any given point (i, j) need only compare the values

of candidates from different diagonals; there will be only one possible choice for the

winning candidate from any given diagonal. In the next section we describe how to

compare candidates from different diagonals in order to achieve our time bounds.

In what follows we will assume that the region below a diagonal is a right

triangle, having as its hypotenuse the diagonal below the given one, and having as

its opposite right angled corner the point (n, n). In fact this region need not be

triangular, but if we pretend that our matrices D and E are at the bottom right

corner of 2n× 2n matrices we can extend the region to a triangle of the given form

(figure 6.1.1). This extension will not change the time bounds of our algorithms.

We denote rectangles by their upper left and lower right corners; that is, by

the rectangle extending from (i, j) to (i′, j′) we mean the set of points (x, y) such

that i ≤ x ≤ i′ and j ≤ y ≤ j′. The range of a point (i, j) is the rectangle extending

from (i+ 1, j + 1) to (n, n) (figure 6.1.2).
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Figure 6.1.1. Making the region below a diagonal triangular.

Figure 6.1.2. Ranges of points are rectangles extending to (n, n).

Lemma 9. If (i, j) and (i′, j′) are on the same diagonal, and if D[i, j] ≤ D[i′, j′],

then for all (k, l) in the range of both points, D[i, j] + w(i + j, k + l) ≤ D[i′, j′] +

w(i′ + j′, k + l). In other words, (i′, j′) need not be considered as a candidate for
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those points in the range of (i, j).

Proof: Immediate from the assumption that i+ j = i′ + j′. •

Given a point (i, j) on some diagonal, define the upper bound of (i, j) to be

the point (i′, j′) with i′ < i, with D[i′, j′] ≤ D[i, j], and with i′ as large as possible

within the other two constraints. If there is no such point, take the upper bound

to be (n, n). Informally, the upper bound is the closest point above (i, j) on the

diagonal that has a lower value than that at (i, j). Similarly, define the lower bound

to be the point (i′′, j′′) with i′′ > i, with D[i′′, j′′] < D[i, j], and with i′′ as small

as possible, or (n, n) if there is no such point. Note the asymmetry in the above

inequalities—we resolve ties in favor of the point that is further toward the top right

corner of the matrix.

Observe that, if we order points (i, j) from a single diagonal lexicographically

by the pair of values (D[i, j], i) then the result is a well-ordering of the points such

that, if (i′, j′) is a bound of (i, j), then (i′, j′) < (i, j) in the well-ordering.

Define the domain of (i, j) to be the rectangular subset of the range of (i, j),

extending from (i+1, j+1) to (i′′, j′), where (i′, j′) is the upper bound of (i, j) and

(i′′, j′′) is the lower bound.

Lemma 10. Each point (i, j) of a given diagonal need only be considered as a

candidate for the domain of (i, j). The domains for all points on the diagonal are

disjoint and together cover the set of all points below the diagonal.

Proof: If a point below row i′′ is within the range of (i, j), it is also within the

range of (i′′, j′′), so (i, j) will never win the competition there. Similarly, if a point

in the range of (i, j) is after column j′ it will be won by (i′, j′), or by some other

point that is even better.

For any given two points on the diagonal, either one is a bound of the other

or there is a bound of one of the two points between the two. Therefore no two
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Figure 6.1.3. Domains of the points from a single diagonal.

domains can overlap. To see that all points below the diagonal are contained in

some domain, first note that each such point is contained in the range of some

point (i, j). Then the only way it can be removed from that point’s domain is if

it is also contained in the range of one of the bounds of (i, j). But because of the

well-ordering described above we can not continue this process of taking bounds of

bounds forever; therefore there must be some point on the diagonal containing the

original point in its domain. •

An illustration of the partition of the region below a diagonal into the domains

for the points on the diagonal is given in figure 6.1.3.

Lemma 11. The domains for each of the points on a diagonal having m total

points can be found in time O(m).
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Proof: We process the points (i, j), all on the diagonal except for a dummy

point (n, n), in order by increasing values of i. We maintain a stack of some of the

previously processed points; for each point in the stack, the point below it in the

stack is that point’s upper bound. Each point that we have already processed, but

that is no longer in the stack, will already have had its domain computed. No lower

bound has yet been reached for any of the points still on the stack. Initially the

stack contains (n, n), which is a lower bound for some points on the diagonal but

which is itself not on the diagonal.

To process a point (i, j), we look at the point i′, j′ at the top of the stack. If

(i′, j′) 6= (n, n) and D[i, j] < D[i′, j′], then (i, j) is a lower bound for (i′, j′), so we

can pop (i′, j′) from the stack, compute its domain from this lower bound and the

upper bound found at the next position on the stack, and repeat with the point

now at the top of the stack. Otherwise, (i, j) is not a lower bound for any stacked

points, but (i′, j′) can be seen to be an upper bound for (i, j), so we push (i, j) on

the stack. Finally, when all points have been processed, the points remaining on

the stack have (n, n) as their lower bound, so we may pop them one at a time and

compute their domains as before.

Each point is pushed once and popped once, so the total time taken by the

above algorithm is linear. As we have seen the processing of each point maintains

the required properties of the stack, so the algorithm correctly computes the upper

and lower bounds, and therefore also the domains. •

We now give a more formal description of the algorithm described above. We

denote the stack by S. Each position p on the stack consists of three components:

V (p), I(p), and J(p). V (p) is the value of D at the point indexed by I(p) and J(p).

The stack contains a dummy member at its bottom, which is marked by having a

V value of −∞. We use k = i+ j to denote the number of the diagonal for which

we are computing the domains.
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Then the domain computation algorithm can be expressed in pseudo-code as

follows:

begin
push (−∞,n,n) onto S ;
for i ← max(0, k − n − 1) to min(k ,n − 1) do

begin
j ← k − i ;
while V (top) > D [i , j ] do begin

domain(I (top), J (top))←
rectangle from
(I (top) + 1, J (top) + 1)
to (i , J (top − 1));

pop S
end;
push (D [i , j ], i , j ) onto S

end;
while V (top) > −∞ do begin

domain(I (top), J (top))←
rectangle from
(I (top) + 1, J (top) + 1)
to (n, J (top − 1));

pop S
end

end
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6.2. Contention Among Diagonals

In the previous section we described a method for quickly resolving the competition

among candidates within a single diagonal; here we will add to this an algorithm for

resolving competition among candidates from different diagonals. We will reduce

the minimization of recurrence 12 to the minimum of only two values, which can then

be solved directly. The algorithm of the previous section for competition between

diagonals works for any cost function, but here we require the cost function to be

convex or concave.

Recall that the data structure of chapter 5 can solve equations of the form

E[i] = min
j
D[j] + w(i, j). (17)

with the two possible operations of looking up the value of E[i] for some index i,

and decreasing the value of D[j], for some index j. Each such operation takes time

O(log n); if the cost function w is simple, each operation takes time O(log logn).

We keep a separate such data structure for each row and column of the matrix

of the original problem; thus denote the matrices for row i as ERi [j] and DR
i [j], and

similarly denote the matrices for column j as ECj [i] and DC
j [i]. We will maintain

the property that, at the time we compute the value of E[i, j] in recurrence 12, it

will be found as the minimum of the two values ERi [i+ j] and ECj [i+ j]. Thus each

such computation takes the time for two data structure operations, plus a constant

amount of work to combine the two values.

It remains to show, once E[i, j] and D[i, j] have been computed for some point

(i, j), how the data structure can be updated to maintain the invariant, for those

points at which D[i, j] supplies the minimum in recurrence 12. We will compute

these values, and update the data structure, a diagonal at a time. First we use

the previously described algorithm to compute the domains for each point on the

diagonal. Each domain is a rectangle; we cut it into strips, which will be intervals
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Figure 6.2.1. Cutting domains into strips.

either of rows or columns. We choose whether to cut the domain into row intervals

or column intervals according to which direction results in the fewer strips. We

show in figure 6.2.1 three such domains already cut into strips.

We further maintain for each point (i, j) a list L(i, j) of strips beginning at point

(i, j). When we cut the domains of a diagonal into strips, we simply add each strip

to the appropriate list. Then, when we process the diagonal containing point (i, j),

which is the first time at which the strips in L(i, j) can influence the computation,

we use the strips to update DR
i and DC

j . In particular, if a strip in L(i, j) was

formed from the domain of point (i′, j′), we reduce DR
i [i′ + j′] to the minimum of

that value and D[i′, j′]. Similarly we reduce DC
j [i′+j′] to min(DC

j [i′+j′], D[i′+j′]).

It can be seen that, when we calculate the value of E[i, j] for each point (i, j),

the minimum computed by ERi [i+j] will be that of recurrence 17 for those strips that
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have already been included inDR
i . Similarly ECj [i+j] will perform the minimization

over all strips that have been included in DR
j . But any such strip is not included

until it can influence the value of E[i, j], and so whatever D[i′, j′] supplies the

minimum will necessarily have i′ < i and j′ < j.

Further, the domain of true minimum of recurrence E[i, j] must by lemma 10

contain (i, j). If the domain is cut into row interval strips, then the strip containing

(i, j) must begin at (i, j′) with j′ ≤ j, and so the strip will already have been

included in the data structure by the time we compute E[i, j]. Similarly, if the

domain were cut into column strips, we would have included the appropriate strip

in DC
j .

We have thus shown that the true minimum is included in our computation of

E[i, j], and only points containing (i, j) in their ranges are included. Therefore our

algorithm in fact correctly computes each E[i, j]. It remains to give a time bound

for the algorithm. First let us compute a bound on the number of strips formed

when we cut the domains.

Lemma 12. The total number of strips produced from the domains of the points

on a single diagonal is O(n log n).

Proof: Assume without loss of generality, as in the previous section, that the

region to be cut into domains and then strips is a triangle, rather than having its

corners cut off. The length of the diagonal of the triangle is at most 2n.

Let T (m) be the largest number of strips obtainable from a triangle having m

elements on the diagonal. As in the proof of lemma 11, the point on the diagonal

having the least value has a rectangular domain extending to the corner of the tri-

angle, leaving two smaller triangular regions to be divided up among the remaining

diagonal points. Let us say the sides of this outer rectangular domain are i+ 1 and

j+1; then i and j are the diagonal lengths of the smaller triangles, and i+j = m−1.

The number of strips formed by this outer domain is the smaller of i+ 1 and j + 1;
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without loss of generality we will assume this to be i+ 1. Then

T (m) = max
i+j=m−1

i≤j

T (i) + T (j) + i+ 1. (18)

Now assume inductively that T (k) ≤ ck log k for k < m and some constant

c ≥ 1. Let i and j be the indices giving the maximum in equation 18; note that

i < m/2. By induction, T (m) = O(m logm) for all m. But the number of strips for

any diagonal is certainly no more than T (2n) = O(n log n). •

But now we are done, because each strip produces constant overhead work in

the maintenance of the corresponding strip list L(i, j), and one value reduction in

the data structure DR
i or DC

j .

Theorem 5. The above algorithm computes the values of E[i, j] in recurrence 12,

when the cost function is either convex or concave, in total time O(n2 log2 n), or in

time O(n2 log n log logn) for simple weight functions.

Proof: By lemma 12, we create O(n2 log n) total strips, the processing for

each of which takes time O(log n) (or O(log logn) for simple functions). Further

we compute O(n2) values of E[i, j], each again taking time O(log n) or O(log log n).

Computing the domains of each point takes timeO(n2). The total time is dominated

by that for the strips, which is O(n2 log2 n) or O(n2 log n log logn). •

We should note that the algorithm as described above takes space O(n2 log n).

The dominant term is that for the lists of strips L(i, j); all other space is O(n2).

The strip list space can be reduced to O(n2) also, at no cost in time, by delaying

the division of domains into strips. In the reduced space algorithm each entry of

L(i, j), rather than being a strip, will be a rectangle, initially the domain of some

point (i′, j′). When we come to adding the strips to the data structure for row i, we

cut just the single strip from the rectangle in the list, and if more strips remain to

be cut from the rectangle we move the reduced rectangle to list L(i+1, j). Similarly
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if we are cutting the rectangle into columns we process the corresponding strip, and

move the reduced rectangle to L(i, j + 1). In this way the space required for the

lists is not more than the total number of domains created, which is O(n2).
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6.3. Summary

We have described algorithms that speed up a family of dynamic programs, used

for prediction of RNA structure.

A recent paper by Aggarwal and Park [3] improves our bounds, for both the

convex and concave cases, to O(n2 log n). As in our algorithms, the space bound

is O(n2). This improvement, while very interesting theoretically, may not be so

useful for practical applications to RNA folding programs, because it uses matrix

searching techniques [2], which lead to large constant factors in the time bounds.

In chapter 7, we show how to further extend the efficient computation of RNA

structure, to the case in which the cost function is neither convex nor concave, but

in which it can be split up into a small number of intervals in each of which it is

either convex or concave.

In chapter 9, we show how to improve the results both of this chapter and

of Aggarwal and Park’s algorithm, by taking advantage of sparsity in the RNA

structure computation (the infinities in the dynamic programming matrices alluded

to at the start of this chapter).
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7. MIXED CONVEX AND CONCAVE COST FUNCTIONS

In chapter 2, we showed how the sequence alignment problem with a gap cost

function w(i, j) may be solved using linearly many copies of the recurrence

E[j] = min
0≤i<j

D[i] + w(i, j). (13)

Further, experimental evidence shows that w(i, j) may be assumed to be of the form

w(i, j) = f1(i) + f2(j) + g(j − i). (19)

I.e. the cost of a gap is taken to be the sum of three terms, one each for the cost of

breaking the sequence at the two endpoints of the gap, and one term g(j− i) for the

dependence of the cost on the length of the gap. For such functions, recurrence 13

may be simplified to

E[j] = min
0≤i<j

D[i] + g(j − i). (20)

In other words, we have abstracted the portions of w(i, j) depending only on the

endpoints i and j into arrays D and E, and out of the cost function w(i, j) which

now is simply a function g(j − i) of the length of the gap.

The obvious dynamic programming algorithm for recurrence 13 (and recur-

rence 20) takes time O(n2); if we speed up this computation we will achieve a

corresponding speedup in the computation of the modified edit distance.

It is not possible, without further assumption, to solve recurrence 13 more

efficiently than the obvious O(n2) algorithm, because we must look at each of the

possible values of w(i, j). Thus in chapter 4, we required the assumption that w

is concave (satisfies the quadrangle inequality) in order to achieve a linear time

algorithm to solve the recurrence. Similarly the assumption that w is convex leads

to a O(nα(n)) time algorithm [35].

However, this argument does not apply to recurrence 20, because g(j − i) only

has linearly many values to be examined. Therefore we would like to speed up the
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computation of recurrence 20, without assuming anything about the convexity or

concavity of g. It is not now known whether such a solution is possible. In this

chapter we provide a partial solution, by broadening the class of cost functions g

for which an efficient solution is possible. In particular we allow g to be piecewise

concave and convex, with s alternations. More precisely, we assume that we can

find indices c1, c2, . . . cs−1 such that g is concave in the range [1, c1], convex in

the range [c1, c2], and so on. For such functions we solve recurrence 13 in time

O(nsα(n/s)), and therefore we also solve the modified edit sequence problem in

time O(n2s α(n/s)). Note that these times are never worse than the times of O(n2)

and O(n3) for the naive dynamic programming solutions; when s is small our times

will be much better than the naive times. Our algorithms use as subroutines the

previous solutions to the concave and convex cases of recurrence 13; if these solutions

are improved it is likely that our algorithms would also be sped up.
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7.1. Mixed Cost Sequence Alignment

Let us consider again recurrence 20:

E[j] = min
0≤i<j

D[i] + g(j − i).

We assume that there exist indices c1, c2, . . . cs−1 such that g is concave in the range

[0, c1], convex in the range [c1, c2], and so on. By examining adjacent triples of the

values of g, we can easily divide the numbers from 0 to n into such ranges in linear

time; therefore from now on we assume that c1, c2, . . . cs−1 are given. Also define

c0 = 0 and cs = n.

We now form s functions g1, g2, . . . gs+1 as follows. Let gp(x) = g(x) if cp−1 ≤

x ≤ cp; for other values of x let gp(x) = +∞. Then

E[j] = min
1≤p≤s

Ep[j], (21)

where

Ep[j] = min
0≤i<j

D[i] + gp(j − i). (22)

Our algorithm proceeds by solving recurrence 22 independently for each gp, and then

using equation 21 to find E[j] as the minimum of the s results obtained. We use as

subroutines the algorithms mentioned in the introduction for solving recurrence 13

when g is convex or concave.

It turns out that concave segments (i.e. gp for odd p) remain concave on the

entire range [1, n], and therefore we could apply the algorithm of the previous section

directly to them. The solution for convex segments is more complicated, because in

this case the added infinities do interfere with convexity. Further, even if convexity

held and we applied Klawe and Kleitman’s algorithm in the straightforward way,

we would only achieve a time of O(nα(n)) for each segment; the bound we wish

to achieve is O(nα(n/s)). By a more complicated process we may solve both the

concave and convex segments in such a way that the amortized time per segment
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is bounded by the formula above; however any individual segment p may have

a solution time that is higher or lower than that bound, depending on its width

ap = cp − cp−1.

Now fix some segment p, either convex or concave. Then Ep[j] depends on

those values D[i] such that cp−1 ≤ j − i ≤ cp. Thus if we consider a matrix of pairs

(i, j), the pairs such that Ep(j) depends on D[i] form a diagonal strip of width ap.

We solve the recurrence for gp by dividing this strip into right triangles, of width

and height ap, pointing alternately to the upper right and lower left, and having as

their hypotenuses alternately the diagonal borders of the strip determined by cp−1

and cp (figure 7.1.1) We solve the recurrence independently on each triangle, and

piece together the solutions to obtain the solution of gp for the entire strip.

In particular, let the upper triangle Ut be the pairs (i, j) for which j < cp +

(t− 1)ap, i ≥ (t− 1)ap, and cp−1 ≤ j − i. Similarly let the lower triangle Lt be the

pairs (i, j) for which j ≥ cp + (t− 1)ap, i < tap, and j − i ≤ cp. Then for any fixed

j, all pairs (i, j) such that Ep[j] depends on D[i] may be found in the union of the

upper and lower triangles containing j. More formally,
Ep[j] = min

0≤i<j
D[i] + gp(j − i)

= min
cp−1≤j−i≤cp

D[i] + gp(j − i)

= min{Xp[j], Yp[j]},

where

Xp[j] = min
j−cp−1≥i≥d(j−cp+1)/apeap

D[i] + gp(j − i)

= min
(i,j)∈Ud(j−cp−1+1)/ape

D[i] + gp(j − i) (23)

and

Yp[j] = min
d(j−cp+1)/apeap>i≥j−cp

D[i] + gp(j − i)

= min
(i,j)∈Ld(j−cp+1)/ape

D[i] + gp(j − i). (24)

Thus we can compute the values of Ep by solving the values of Xp and Yp
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Figure 7.1.1. Strip for segment p divided into triangles.

within each upper and lower triangle. The computation within upper triangle Ut,

corresponding to equation 23, can be expressed as follows:

Xp[j] = min
(t−1)ap≤i≤j−cp−1

D[i] + gp(j − i), (25)

which is exactly the same form as recurrence 13, except on a problem of size ap

instead of n. Further, all values of gp(j − i) in the recurrence are in the range

[cp−1 ≤ j − i ≤ cp], so gp is consistently either convex or concave in this range.

Therefore, we can solve recurrence 25 in time O(apα(ap)) by using the Klawe and

Kleitman’s algorithm or our modified version of Wilber’s algorithm.

The computation of Yp in lower triangle Lt, which may be written

Yp[j] = min
j−cp≤i<tap

D[i] + gp(j − i), (26)



81

is however not of the appropriate form. In particular, for the least value of j in the

triangle, Yp[j] depends on all of the values of D[i] for i in the triangle; succeeding

values of j use successively fewer values of D[i]. However, observe that this pattern

of usage implies that all values of D[i] will be known before any value of Yp[j] from

the triangle need be computed. Therefore, this is an offline problem. Because of

this offline nature of the problem, we need not compute the values of Yp in order

by j; in fact we will compute them in reverse order, to transform the corresponding

search matrix to upper triangular form. Actually this step is not necessary, as the

relevant algorithms can be applied directly to the lower triangles, but it simplifies

the presentation.

Let j′ = cp + tap − j, and let i′ = tap − i. Then equation 26 can be rewritten

Yp[cp + tap − j′] = min
1≤i′≤j′

D[tap − i′] + gp(cp + i′ − j′), (27)

which is now the same form as that of recurrence 20. Finally note that if gp(j − i)

is a convex function of j− i, then gp(cp + i′− j′) is also a convex function of j′− i′;

and similarly if gp is concave it remains so under the change of variables. Thus by

reversing the order of evaluation we have transformed equation 26 into a form that

can be solved by Klawe and Kleitman’s or Wilber’s algorithms. Again the time

taken for the solution is O(apα(ap)).

Each segment is composed of at most O(n/ap) upper and lower triangles; since

the time for solving each triangle is O(apα(ap)), the total time to compute Ep for

segment p is O(nα(ap)). The time for computing all segments is
∑s
i=1O(nα(ai)),

which, because
∑
ap = n and by the convexity of the inverse Ackermann function,

we can simplify to O(nsα(n/s)). The time for combining the values from all seg-

ments is O(ns). Therefore the total time for the algorithm is O(nsα(n/s)). Thus

we have shown the following facts:

Theorem 6. Recurrence 20, for g mixed convex and concave with s segments, can
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be solved in time O(nsα(n/s)).

Corollary 4. The sequence alignment problem for gap cost functions of the form

w(i, j) = f1(i) + f2(j) + g(j − i), with g mixed with s segments, can be solved in

time O(mnsα(n/s)).
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7.2. Mixed Cost RNA Structure

As we saw in chapter 3, a dynamic program similar to that used above for sequence

comparison has also been used for predicting the secondary structure of RNA. The

recurrence is as follows:

E[i, j] = min
0≤i′<i
0≤j′<j

D[i′, j′] + w(i′ + j′, i+ j). (12)

As before, D[i, j] may be easily computed from E[i, j]. Also as before, we assume

that w is a function only of the difference between the two diagonals: w(i′ + j′, i+

j) = g((i+ j)− (i′ + j′)).

The naive dynamic programming solution takes time O(n4), and a simple ob-

servation of Waterman and Smith reduces this to O(n3) [75]. In chapter 6 we

showed that, if w is either convex or concave, this time can be further reduced to

O(n2 log2 n). Aggarwal and Park [3] used different methods to reduce this time to

O(n2 log n). We now show that these results can be extended to piecewise convex

and concave functions. If the number of segments in g is s, recurrence 12 can be

solved in time O(n2s log nα(n/s)). For small s, this bound is much better than

Waterman and Smith’s time of O(n3). Our algorithm follows in outline that of

Aggarwal and Park.

We solve recurrence 12 using divide-and-conquer techniques. Along with E[i, j]

we maintain another array W [i, j], initially +∞ at all cells. At all times W [i, j] will

be the minimum over some points (i′, j′) with i′ < i and j′ < j of D[i′, j′] + g((i+

j) − (i′ + j′)). At each recursive level we will divide the pairs of indices (i, j) into

two sets; if (i′, j′) is in the first set and (i, j) is in the second, with i′ < i and j′ < j,

then after that level the minimization for W [i, j] will include the value for (i′, j′).

The divide and conquer will ensure that all pairs (i′, j′) with i′ < i and j′ < j will

eventually be included in W [i, j], at which time we can simply take E[i, j] = W [i, j].
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Each level of the recursion proceeds in three phases. First, we compute recur-

sively E[i, j] for 0 ≤ j ≤ n/2. Second, we compute W [i, j] for n/2 < j ≤ n, using

the formula

W [i, j] = min
0≤i′<i

0≤j′≤n/2

D[i′, j′] + g((i+ j)− (i′ + j′)). (28)

In the lower levels of the recursion, we take W [i, j] as the minimum of its previous

value and the above quantity. Finally, we compute recursively E[i, j] for n/2 <

j ≤ n and combine the recursive computation with the values of W [i, j] computed

above. In each recursive call, we switch the roles of i and j so that each index

will be halved at alternate levels of the recursion; thus the dynamic programming

matrix seen at each level of the recursion remains square.

Lemma 13. The above algorithm sketch correctly computes E[i, j] for each (i, j).

Proof: By induction on the number of levels in the recursion. E[i, j] is com-

puted correctly in the first recursive call by induction. In the second half of the

matrix, half of the possible values which we are minimizing over are supplied by

W [i, j], and the other half are supplied by the recursion, so E[i, j] is again computed

correctly. •

Thus all that remains is to show how to solve recurrence 28. Fix i, and let

Wi[j] = W [i, j]. Then the recurrence can be rewritten

Wi[j] = min
0≤i′<i

0≤j′≤n/2

D[i′, j′] + w(i′ + j′, i+ j)

= min
d

min
0≤i′<i
i′+j′=d

0≤j′≤n/2

D[i′, j′] + g((i+ j)− (i′ + j′))

= min
d
Z[i, d] + g(i+ j)− d), (29)

where

Z[i, d] = min
0≤i′<i
i′+j′=d

0≤j′≤n/2

D[i′, j′]. (30)
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For a fixed diagonal d, equation 30 can be solved in time O(n) using a prefix

computation [39]. In particular Z[i, d] = min{Z[i − 1, d], D[i − 1, d − i + 1]}, so

successive values of Z can be computed in constant time per value. Therefore all

values of Z for the top level of the recursion can be computed in total time O(n2).

The remaining computation is recurrence 29. This follows a similar form to

that of recurrence 13, and can be solved by the same methods. In fact the problem is

offline (the values of Z on the right side of the equation do not depend on the values

of Wi on the left) and so for convex or concave cost functions, the recurrence can

be solved in linear time by the algorithm of Aggarwal et al. [2]. This observation is

the heart of the O(n2 log n) algorithm of Aggarwal and Park [3] for the convex and

concave cases of the RNA structure computation. For our case, g is neither convex

nor concave, but mixed. As in the previous section, recurrence 29 can be solved by

dividing the matrix of pairs (d, j) into diagonal strips, and the strips into triangles.

This leads to a time of O(nsα(n/s)) for solving each instance of recurrence 29, and

a total time for all such recurrences of O(n2s α(n/s)).

Theorem 7. Recurrence 12 for w(i, j) = g(j − i) a mixed convex and concave

function with s segments can be solved in time O(n2s log nα(n/s)).

Proof: We have seen that the time spent performing the computations at the

outer level of our recursive algorithm is O(n2s α(n/s)). We may compute the total

time for the algorithm by expanding two recursive levels at once, one halving j

and the next halving i, so that we return to the same square shape of the dynamic

programming matrix at lower levels of the recursion. Let T (n) be the complexity of

solving the problem for an n×n dynamic programming matrix. Then T (n) consists

of the time for solving the outer level of the recursion and the two problems at the

next level, together with T (n/2) for each of the four subproblems two levels down



86

in the recursion. This gives the recurrence

T (n) = 4T (n/2) +O(n2s α(n/s)),

and solving for T (n) gives T (n) = O(n2s log nα(n/s)). •
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8. SPARSE SEQUENCE ALIGNMENT

In this chapter we are concerned with the comparison of two sequences, of lengths

n and m, which differ from each other by a number of mutations. An alignment of

the sequences is a non-crossing matching of positions in one with positions in the

other, such that the number of unmatched positions (insertions and deletions) and

matched positions with the symbol from one sequence not the same as that from

the other (point mutations) is kept to a minimum. This is a well-known problem,

and a standard dynamic programming technique solves it in time O(nm) [55]. In a

more realistic model, a sequence of insertions or deletions would be considered as a

unit, with the cost being some simple function of its length; sequence comparisons

in this more general model can be solved in time O(n3) [76]. The cost functions

that typically arise are convex; for such functions this time has been reduced to

O(nm log n) [17, 53] and evenO(nmα(n)), where α is a very slowly growing function,

the functional inverse of the Ackermann function [35]. In chapter 4we saw that, for

concave cost functions, the time can be further reduced to O(mn), matching the

time bound when only single-symbol insertions and deletions are considered.

Since the time for all of these methods is quadratic or more than quadratic in

the lengths of the input sequences, such computations can only be performed for

fairly short sequences. Wilbur and Lipman [79, 80] proposed a method for speeding

these computations up, at the cost of a small loss of accuracy, by only considering

matchings between certain subsequences of the two input sequences. In particular,

their algorithm finds the best alignment in which each matched pair of symbols

is part of a contiguous sequence of at least k matched symbols, for some fixed

number k.
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8.1. Finding Fragments

Let the two input sequences be denoted x1x2 . . . xm and y1y2 . . . yn. Also, let σ be

the size of the alphabet of symbols composing x and y. For biological sequence

comparison σ = 4. In general we may typically assume σ ≤ m+ 1, because at most

m different symbols can be used in sequence x, and all other symbols appearing in

y must either mismatch or be inserted. However if different symbols have different

costs associated with their insertion, deletion, or substitution, σ may be larger, as

large as m+ n.

Wilbur and Lipman’s algorithm first selects a small number of fragments, where

each fragment is a triple (i, j, k) such that the k-tuple of symbols at positions i and

j of the two strings exactly match each other; that is, xi = yj , xi+1 = yj+1, . . .,

xi+k−1 = yj+k−1. We will denote by M the number of fragments considered by

the algorithm. In particular, an important special case is that we take all possible

fragments of length k. We now show how to find all such fragments, in time O((n+

m) log σ +M). For biological sequences, log σ = O(1) (we add two new endmarker

symbols to the alphabet, so σ = 6) and the time becomes O(n+m+M).

The method of fragment generation described in this section is not new; it uses

a standard tool of string matching algorithms, the suffix tree. The reader is referred

to [52, 77] for a definition of suffix tree of a string z, as well as for an algorithm

that constructs it in O(|z| log σ) time.

We build the suffix tree for string x$1y$2, where $1 and $2 are two different end

markers which match no symbol of x and y. Each leaf `i of the tree corresponds to

a suffix of the string, starting from position i in the string. Further, every node in

the tree has a string associated with it, which is the common prefix of all suffixes

corresponding to leaves below the node in the tree. In particular, given two leaves

`i and `j corresponding to positions in x and y, the least common ancestor of the
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leaves corresponds to the maximal common prefix of the two leaves, which is the

maximum common substring of the two strings starting at positions i and j.

Thus to accomplish our goal we need only find each node u of the tree with

the length l(u) of the corresponding string satisfying l(u) ≥ k; and for each such

node find all pairs i and j with i ≤ n and j > n (so that i corresponds to a

position in x, and j to a position in y), and with u the least common ancestor in

the tree of `i and `j . The first part of this task, finding nodes with long enough

correeponding substrings, is easily accomplished with a pre-order traversal of the

suffix tree. We mark these nodes, so that we can quickly distinguish them from

nodes with corresponding substrings that are too short.

Next observe that a node u is the least common ancestor of `i and `j if, and

only if, `i and `j descend from different children of u. Thus to enumerate the desired

substrings corresponding to u, we need simply take each pair v and w of children

of u, such that v 6= w, and list pairs (i, j) with `i a descendant of v with i ≤ n and

`j a descendant of w with j > n. To speed this procedure we should consider only

those v having descendants `i meeting the condition above, and similarly for w; in

this way each pair of children considered generates at least one substring, except

for the pairs v, v of which there are linearly many in the tree.

To be able to perform the above computation, at the time we consider node u we

must have for each of its children two lists of their descendant leaves, corresponding

to positions in the two input strings. By performing a post-order traversal of the

tree, we can list the substrings corresponding to each node u as above, and then

merge the lists of leaves at the children of u to form the lists at u ready for the

computation at the parent of u.

Thus to summarize the generation of matching substrings, we first compute a

suffix tree; next we perform a pre-order traversal to eliminate those nodes corre-

sponding to suffixes that are too short; and finally we perform a post-order traversal,
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maintaining lists of leaves descended from each node, to generate pairs of positions

corresponding to the desired common substrings. The generation of the suffix tree

and the pre-order traversal each take time O((n+m) log σ). The post-order traversal

and maintenance of descendant lists also takes time O(m+ n), and the generation

of pairs of leaves corresponding to common substrings takes time O(M). Thus the

total time for these steps is O((n +m) log σ +M). For biological sequences σ = 6

and the time becomes O(n+m+M).
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8.2. Aligning Fragments

A fragment (i′, j′, k′) is said to be below (i, j, k) if i + k ≤ i′ and j + k ≤ j′; i.e.

the substrings in fragment (i′, j′, k′) appear strictly after those of (i, j, k) in the

input strings. Equivalently we say that (i, j, k) is above (i′, j′, k′). The length of

fragment (i, j, k) is the number k. The forward diagonal of a fragment (i, j, k) is the

number j− i. This differs from the back diagonals i+ j used for the RNA structure

computation in chapter 6; here we will use both forward and back diagonals.

An alignment of fragments is defined to be a sequence of fragments such that,

if (i, j, k) and (i′, j′, k′) are adjacent fragments in the sequence, either (i′, j′, k′) is

below (i, j, k) on a different forward diagonal (a gap), or the two fragments are on

the same forward diagonal, with i′ > i (a mismatch). The cost of an alignment

is taken to be the sum of the costs of the gaps, minus the number of matched

symbols in the fragments. The number of matched symbols may not necessarily be

the sum of the fragment lengths, because two mismatched fragments may overlap.

Nevertheless it is easily computed as the sum of fragment lengths minus the overlap

lengths of mismatched fragment pairs. The cost of a gap is some function of the

distance between forward diagonals g(|(j − i)− (j′ − i′)|).

When the fragments are all of length 1, and are taken to be all pairs of matching

symbols from the two strings, these definitions coincide with the usual definitions

of sequence alignments. When the fragments are fewer, and with longer lengths,

the fragment alignment will typically approximate fairly closely the usual sequence

alignments, but the cost of computing such an alignment may be much less.

The method given by Wilbur and Lipman for computing the least cost align-

ment of a set of fragments is as follows. Given two fragments, at most one will

be able to appear after the other in any alignment, and this relation of possible

dependence is transitive; therefore it is a partial order. We process fragments in
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the order of any topological sorting of this order. Some such orders are by rows (i),

columns (j), or back diagonals (i+ j).

For each fragment, the best alignment ending at that fragment is taken as the

minimum, over each previous fragment, of the cost for the best alignment up to

that previous fragment together with the gap or mismatch cost from that previous

fragment. The mismatch cost is simply the length of the overlap between two

mismatched fragments; if the fragment whose alignment is being computed is (i, j, k)

and the previous fragment is (i− x, j − x, k′) then this length can be computed as

max(0, k′ − x). From this minimum cost we also subtract the length of the new

fragment; thus the total cost of any alignment includes a term linear in the total

number of symbols aligned. Formally, we have

C(i, j, k) = −k + min


min

(i−x,j−x,k′)
C(i− x, j − x, k′) + max(0, k′ − x)

min
(i′,j′,k′) above (i,j,k)

C(i′, j′, k′) + g(|(j − i)− (j′ − i′)|)

(10)

The naive dynamic programming algorithm for this computation, given by

Wilbur and Lipman, takes time O(M2). If M is sufficiently small, this will be

faster than many other sequence alignment techniques. However we would like to

speed the computation up to take time linear or close to linear in M ; this would

make such computations even more practical for small M , and it would also allow

more exact computations to be made by allowing M to be larger.
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8.3. Division into Subproblems

Eppstein et al. [12], in related work, showed how to perform the computation of

recurrence 10 for linear functions g(x) in time O(n+m+M log log min(M,nm/M)).

However their techniques do not extend to convex or concave cost functions. Here

we consider the problem of solving the recurrence when g is either convex or concave.

In this section we show how we may use divide and conquer to produce a number

of subproblems, the solution of which in an appropriate order will solve the original

problem. In the next section we show that such an order may be found simply by

processing the points in the order of the back diagonals they lie on.

We consider recurrence 10 as a dynamic program on points in a two-dimensional

matrix. Each fragment (i, j, k) gives rise to two points, (i, j) and (i+k−1, j+k−1).

We compute the best alignment for the fragment at point (i, j); however we do not

add this alignment to the data structure of already computed fragments until we

reach (i+k−1, j+k−1). In this way, the computation for each fragment will only

see other fragments that it is below. We compute separately the best mismatch

for each fragment; this is always the previous fragment from the same diagonal,

and so this computation can easily be performed in linear time. From now on we

will ignore the distinction between the two kinds of points in the matrix, and the

complication of the mismatch computation.

As in the RNA structure computation of chapter 6, each point has a range

consisting of the points below and to the left of it. However for this problem we

divide the range into two portions, the left influence and the right influence. The

left influence of (i, j) consists of those points in the range of (i, j) which are below

and to the left of the forward diagonal j − i, and the right influence consists of

the points above and to the right of the forward diagonal. Within each of the two

influences, g(|p− q|) = g(p− q) or g(|p− q|) = g(q−p); i.e. the division of the range
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in two parts removes the complication of the absolute value from the cost function.

Our algorithm for this problem can be viewed as a novel application of the

Bentley-Saxe dynamic-to-static reduction [10]: we perform two such reductions, in

two different orders, one for each type of eighth-plane piece of the fragment point

ranges. The differing order leaves the problem dynamic, but the reduction instead

can be imagined as removing the vertical or horizontal boundaries of the pieces,

leaving only the forward-diagonal boundaries. The reduced subproblem can then

be solved with matrix-searching techniques.

We first cut the domains of each point into right and left pieces, as described

above. We divide the points into subproblems, and then proceed to compute the

values of the recurrence at each point. Each value we compute is derived from the

subproblems containing the given point, and once we have computed this value we

apply it in the subproblems depending on it. The order in which we will compute

the values at each point will be by back diagonals. This order is is symmetric with

respect to the two kinds of pieces, so without loss of generality from now on we need

only consider the subproblems derived from the right pieces, i.e. those eighth-plane

pieces which are bordered on two sides by rows and forward diagonals.

We use divide and conquer to produce the subproblems into which we divide

the computation. Thus, let us consider first the right influences only. We now

describe how we might solve the problem if we didn’t have to worry about including

the left incluences in the computation.

The points corresponding to the fragments in the problem are arranged in a

dynamic programming matrix with m rows and n columns. We divide the points

into two sets: set A consists of those points above row m/2, and set B consists of

those points below row m/2. Then, the problem could be solved by the following

three steps:

(1) Solve recurrence 10 for set A recursively.
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(2) Compute the minimum in recurrence 10 for those points (i, j, k) in B, where

the points (i′, j′, k′) used to compute the minimization are restricted to those

points in A.

(3) Complete the computation of recurrence 10 for set A recursively.

This algorithm depends on the fact that no point in A is below any point

in B, because of the way the sets were chosen. Thus step 1 can be solved without

consideration of set B. Similarly step 2 computes all possible influence of the values

at points in set A on the values in set B, so again step 3 can be carried out without

further consideration of set A. Thus we have reduced the original problem to two

similar problems (steps 1 and 3) with m reduced to half the original value, together

with one problem (step 2) in which we know that each point in A occurs on a row

above those containing all points in B.

In each subproblem, the points in A are those above some row and the points

in B are those below the same row. Recall that we are restricting our attention here

to right influences only. Thus the minimization for point (i, j) in B depends on the

value at a point (i′, j′) in A exactly when j′ − i′ < j − i. Thus we order the points

in the subproblems by the numbers of their forward diagonals. Such an order can

be maintained by initially bucket sorting all points, and then splitting the sorted

list at each level of the recursion.

For each point x in set B on diagonal d, E[x] is calculated as the minimum

of D[y] + g(d′ − d) for point y in set A on a previous diagonal d′. Then all other

points on diagonal d will have the same value of E[x], so we might as well index E

by diagonals instead of by points. Similarly, y is the point on diagonal d′ having

the least value of D[y] among all such points in set A, then no other point on the

same diagonal can ever supply the minimum, so we will compute the same results

if, for each diagonal, we throw out all points except the one with the least value of

D[y], and use this value in indexing D by diagonals instead of by points. So each
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reduced subproblem can be written as the recurrence

E[d] = min
d′<d

D[d′] + g(d′ − d).

But this is exactly the least weight subsequence problem considered in chapter 4.

More precisely, we consider only those diagonals actually containing points in either

A or B, and the problem is a submatrix of the least weight subsequence problem,

as described at the end of that chapter.

If g is concave, so is the cost function of the reduced subproblem, and a problem

with k points may be solved in time O(k). If g is convex, we may use the algorithm

of Klawe and Kleitman [35] to solve the problem in time O(kα(k)); here α is the

inverse Ackermann function, a very slowly growing function. Both the convex and

concave methods are based on the matrix searching algorithm of Aggarwal et al. [2].

Another possible solution to these least weight subsequence problems is to use the

algorithms of Galil and Giancarlo [17]. These solve both the convex and concave

problems in time O(t log t), or for functions with the closest zero property in time

O(t). However they are much simpler than the matrix searching algorithms, and

so even the O(t log t) version of the algorithms will likely be better than matrix

searching in practice.
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8.4. Combining Subproblem Solutions

From the previous section, it would appear that we have solved the fragment align-

ment problem already. But this is not so, because we only considered the problem

for the right pieces of the point influences. The left pieces will also be reduced by a

similar divide and conquer, again to least weight subsequence problems. However,

for the left pieces the divide and conquer is by columns of the dynamic programming

matrix. Thus the order of computation of the two types of pieces is incompatible,

so we cannot perform both recursions simultaneously to solve the recurrence for

both types of pieces at once.

Instead, we perform the two recursions separately, in each case setting up

a data structure representing the state of each subproblem, but not solving any

subproblems. Each point will be in set A for O(log n) subproblems and set B for

O(log n) subproblems. Then we perform the actual computation in a third order,

advancing the state of each subproblem as the values needed for the computation

become available and combining the results of the subproblems to form the solution

to recurrence 10. We will show that this may be done by considering the points

(i, j) in order by back diagonals i+ j.

The actual order in which the subproblems receive the values of D[x] for points

in set A will be more arbitrary than that described above, as will be the order in

which the values that have been determined within the subproblem for points in set

B are requested by the main program. However the forward diagonals totally order

the points by their dependence on each other. The subproblem solution proceeds

by saving each given value of D[x] until all previous values in the dependence order

are known, and then computing as many derived values as possible with the known

values and saving these derived values until the main program asks for them. In

this way each subproblem solution operates asynchronously of the main program.
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All we require is that, whenever the main program asks for the subproblem’s value

at a point x in set B, all values D[y] for points y on previous forward diagonals of

set A will have already been given to the subproblem.

When we split the computation into subproblems, we also keep for each point

a list of the subproblems for which that point is in set A; thus when the point’s

value is computed we need only look at the list to determine which subproblems

can proceed in their computation. Along with these subproblem computations, we

also proceed as we have said along back diagonals; for each point on a given back

diagonal we compute the value as the minimum of the O(log n) values from the

subproblems for which the point is in set B, and then include the computed value

in the computations for which the point is in set A.

Let us now summarize the outline of the sparse alignment algorithm in pseudo-

code:

begin
find sparse set X of fragments;
divide-and-conquer by rows to produce

subproblems for right influences;
divide-and-conquer by columns for left influences;
for diag ← 2 to 2n do

for x ∈ X with row(x ) + column(x ) = diag do begin
E [x ]← +∞;
for subproblem S with x ∈ B(S ) do

E [x ]← min(E [x ], value at x in S );
compute D [x ] from E [x ];
for subproblem S with x ∈ A(S ) do

include value of D [x ] in S ;
end

end
end

It remains to show that, when the back diagonal computation reaches each

point, the subproblems giving the point’s value will all have computed their separate
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minimizations for that point, so that the total value for that point can in fact

be computed. In terms of the pseudo-code above, we need to show that each

subproblem S with x ∈ B(S) is ready to supply the value at x when the computation

reaches the back diagonal containing point x.

For clarity of explanation, assume the subproblem S is one involving right

influences; the assertion for left influence subproblems follows by symmetry. If a

point (i, j) in set B(S) for some subproblem S depends on the value at a point

(i′, j′) in set A(S), then clearly i′ < i and j′ − i′ < j − i. But then j′ + i′ =

(j′ − i′) + 2i′ < (j − i) + 2i = j + i; that is, the back diagonal containing (i′ + j′)

appears before that containing (i, j). Because we process points in order by back

diagonals, D[(i′, j′)] will already have been computed and included in subproblem S.

Therefore all subproblem results will in fact be computed in time for them to be

combined by the back diagonal computation, and the algorithm correctly computes

recurrence 10.

Theorem 8. The problem of sequence alignment from a sparse set of fragments

can be solved in time O(n+m+M logMα(M)) for convex gap cost functions, and

time O(n+m+M logM) for concave functions.

Proof: As we have said, the time for each subproblem of size t is O(tα(t)) in the

convex case, and O(t) in the concave case. Each point is in O(log n) subproblems,

so the divide and conquer adds a logarithmic factor to these time bounds, giving

O(n + m + M logM) in the concave case, and O(n + m + M logM α(M)) in the

convex case. •

If we use the algorithms of Galil and Giancarlo, the bound for fragment align-

ment with simple functions is O(n +m +M logM), for both the convex and con-

cave cases. For arbitrary convex and concave functions the time rises to O(n +

m+M log2M). However the latter algorithms do not use matrix searching and are
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therefore likely to be more efficient in practice.
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9. SPARSE RNA STRUCTURE COMPUTATION

As we described in chapter 3, the following recurrence has been used to predict

RNA structure:

E[i, j] = min
0≤i′<i
0≤j′<j

D[i′, j′] + w(i′ + j′, i+ j). (12)

The value of E[i, j] is the cost of the best singly-nested loop pairing bases i and

j; D[i, j] is then the best overall structure pairing the two bases, which may be a

hairpin, single loop, or other structure.

The obvious dynamic programming algorithm solves recurrence 12 for sequences

of length n in time O(n4) [64]; this can be improved to O(n3) [75]. When w is a

linear function of the distance between back diagonals (i′ + j′) − (i + j), another

easy dynamic program solves the problem in time O(n2) [32]. Here we consider

instead the case that the cost function is either convex or concave. In chapter 6we

described a O(n2 log2 n) algorithm for such costs; this has recently been improved

to O(n2 log n) [3]. However we would like to reduce these times further, and so it

would seem that we need to use some further assumptions about the problem. As

in the previous chapter, the assumption we use is sparsity.

If a given pair of positions do not form a base pair, no structure pairing the two

can exist, and the value of the cells in the matrix must be taken to be +∞. Thus

the minimum energies computed for the other cells of the matrix will not depend on

that value, and so in turn no computed secondary structure will include a forbidden

base pair.

Further, for the energy functions that are typically used, the energy cost of a

loop will be more than the energy benefit of a base pair, so base pairs will not have

sufficiently negative energy to form unless they are stacked without gaps at a height

of three or more. Thus we could ignore base pairs that can not be so stacked, or
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equivalently assume that their binding energy is again +∞, without changing the

optimum secondary structure.

This is analogous to the previous chapter, in which we showed how to compute

sequence alignments efficiently from a sparse set of fragments. Here we wish, instead

of computing sequence alignments, to compute RNA structure as in recurrence 12.

Again we need only consider a sparse set of fragments, which here may be taken

as pairs of substrings that may form stacked pairs of some given height. However,

because here base pairs must be stacked to form a stable structure, we can consider

a sparse set of fragments without affecting the optimality of the computed structure.

Nevertheless, we might restrict our attention to longer fragments, gaining still more

time at some expense of accuracy.

In fact the set of fragments may be computed exactly as in the previous chapter,

by finding common substrings of the input sequence x together with another string

x∗, formed by reversing the order of the symbols in x and replacing each symbol

by its complementary base pair. Thus, if there are M such fragments, finding them

takes time O(n+m+M).

Eppstein et al. [12] described how to solve recurrence 12 for a sparse set of frag-

ments when w is linear. Their algorithm takes time O(M log log min(M,n2/M)),

and is closely related to their algorithm for sparse sequence alignment with linear

gap costs. Here we instead assume that w is either convex or concave. In this case,

neither the techniques for the linear case, nor the alignment algorithm of the pre-

vious chapter can be used. We instead derive a different algorithm, that for both

the convex and concave cases takes time O(M logM log min(M,n2/M)). For simple

cost functions this can be further reduced to O(M logM log log min(M,n2/M)).
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9.1. Computing the Structure

Each point (possible base pair) may be considered as having a range of influence

consisting of the region of the dynamic programming matrix below and to the right

of it. Thus the range of each point is a quarterplane with vertical and horizontal

boundaries. We first effectively remove the horizontal boundaries, leaving half-

planar ranges, at a logarithmic cost in execution time. This is done as follows.

We solve the problem by a divide and conquer recursion on the rows of the

dynamic programming matrix. For each level of the recursion, having t points in

the subproblem for that level, we choose a row r such that the numbers of points

above r and below r are each at most t/2. Such a row must always exist, and it

can easily be found in linear time. Thus we can partition the points of the problem

into three sets: those above r, those on r, and those below r. In fact it would be

possible to partition the points into only two sets, by including the first half of the

points on r among the points below r, and including the second half of the points on

r among the points above r. However the correctness of the algorithm is easier to

see with the three-part division; and since the best way of computing the two-part

division seems to be by first computing the three-part division, we might as well

just use the three part division.

Within each level of the recursion, we will need the points of each set to be

sorted by their column number. This can be achieved by initially bucket sorting

all points, and then at each level of the recurrence performing a pass through the

sorted list to divide it into the three sets. Thus the order we need will be achieved

at a linear cost per level of the recurrence.

We note that for any point above or on r, the minimum value in equation 12

only depends on the values of other points above r. For points below r, the value

of equation 12 is the minimum between the values from points above r, and the
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points below r. Thus we can compute all the minima by performing the following

steps: (1) solve the problem above r by a recursive invocation of our algorithm, (2)

use the values given by this solution to solve the problem for the points on r, (3)

compute the influence of the points above or on r, on the values of the points below

r, and (4) recursively solve the problem below r.

This divide and conquer technique is similar to the dynamic-to-static reduction

of Bentley and Saxe [10]; it differs from the RNA structure algorithm of Aggarwal

and Park [3] in that we divide only by rows, and not by columns. It does not seem

possible to modify the algorithm of Aggarwal and Park to run in time depending on

the sparsity of the problem, because at each level of their recursion they compute a

linear number of matrix search problems, the size of each of which does not depend

on the sparsity of the problem.

The problem remaining after our recursion is as follows. We are given a set A

of points above a certain row of the matrix, and a set B of points below the row.

Both sets are sorted by column number. The values of the points in A are known,

and we want to know their contributions to the minimizations for each of the points

in B. Each level of the divide and conquer recursion computes the solution to two

such problems, one with A the points above row r and B the points on row r, and

a second with A the points above or on row r and B the points below row r.

We now write a recurrence equation for the reduced subproblem:

E[i, j] = min
(i′,j′)∈A
1≤j′<j

D[i′, j′] + w(i′ + j′, i+ j). (31)

The crucial difference between this and equation 12 is that now, the requirement

that i′ < i has been subsumed by the separation into sets A and B. In other

words, the horizontal boundaries of the quarter-planar regions of influence have

been removed, leaving only the vertical boundaries. Thus the range of influence of

each point in A is the subset of B to the right of the point, and points in A are
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totally ordered by inclusion of the ranges. We use the total order to add the points

of A to the data structure described in chapter 5, so that when we process each

point of B exactly the points that influence it will have been added to the data

structure.

In particular, we process the points of A and B in order by their column

numbers. The details of this processing will be given below. Within a given column,

we first process the points of B, and then the points of A. By proceeding along the

sorted lists of points in each set, we need only spend time on columns that actually

contain points, so there will be no time loss determining which points to process

next. Clearly, if we use this order, then whenever we process a point (i, j) from the

set B, the points (i′, j′) of A that will have been processed will be exactly those

with j′ < j.

We process points by maintaining a copy of the data structure of chapter 5.

Recall that the data structure maintains a matrix of values D[y], initially all +∞.

At each step, the algorithm may either decrease one such value, or it may answer a

query of the form

E[x] = min
y
D[y] + w(y, x). (32)

It is easily seen that equation 32 is like equation 31, but with points (i, j) replaced

by the numbers i + j of their diagonals, and with the requirement that j′ < j

removed. As we have described above, this last requirement will be taken care of

by the order in which we process the points.

To process a point (i, j) from A, with value v, we let y = i+ j be the number

of the diagonal containing the point, and reduce D[y] to min(D[y], v). To process a

point (i, j) from B, we let x = i + j be the number of the diagonal containing the

point, and compute the influence of the points in A on the value at (i, j) to be E[x]

as in equation 32.

This completes the solution of equation 31, and thus the solution of recur-
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rence 12. To summarize, the algorithm solving the recurrence can be written in

pseudo-code as follows:

procedure RNA(x , y):
begin

find sparse set X of possible base pairs from the two strings;
sort X by column numbers;
let arrays E and D be indexed by members of X ;
for x ∈ X do E [x ] = +∞;
Recurse(X );

end

The recursive subprocedure called above solves the problem within the set of

points given, assuming the influences of previous points have already been included

in the computation. The input set of points is assumed sorted by column numbers,

and the splitting of that set into subsets A, B, and C must maintain that sorted

order. Note that there is no call to Recurse(B) because the points in B, being all

on the same row, cannot influence each other.

procedure Recurse(X ):
begin

let j be a row with at most |X |/2 points above and below it;
let A be the points above row j in X ;
let B be the points on row j ;
let C be the points below row j ;
if A 6= ∅ then begin

Recurse(A);
Influence(A,B);

end;
for x ∈ B do

compute D [x ] from E [x ];
if C 6= ∅ then begin

Influence(A ∪ B ,C );
Recurse(C );

end;
end
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Finally we give pseudo-code for computing the influence of one set of points on

another, in which all the actual work of solving the recurrence is performed. Again,

the input sets are sorted by column.

procedure Influence(A,B):
begin

let X = A ∪ B , maintaining sorted order; if A and B both have
points in the same column let those of B come first;

prepare a data structure solving F [i ] = minj G [j ] + w(j , i);
for x ∈ X in order do begin

d ← row(x ) + column(x );
if x ∈ A then G [d ]← min(G [d ],D [x ])
else E [x ]← min(E [x ],F [d ]);

end;
end

Before we give the time bound, let us first note that the time per data struc-

ture operation can be taken to be O(logM) or O(log logM) rather than O(log n) or

O(log log n). This is because we need only consider diagonals of the dynamic pro-

gramming matrix that actually contain some of the M points in the sparse problem.

We number these non-empty diagonals in order by their real diagonal numbers; it

is easily seen that this change does not affect the convexity or concavity of the cost

function. However closest zero functions have the complication that the computa-

tion of border(x , y) is defined in terms of actual diagonal numbers. Therefore we

need to translate actual diagonal numbers into the nearest non-empty diagonals;

a table to perform this translation can be created in O(n + M) time, and used

throughout the algorithm.

Theorem 9. The RNA structure computation of recurrence 12, for a sequence of

length n, with M possible base pairs, and convex or concave cost functions, can

be performed in time O(n + M log2M). For cost functions with the closest zero

property, the computation can be performed in time O(n+M logM log logM).



108

Proof: Denote the number of points processed at a given level of the recurrence

by t. Then the time taken at that level is O(t), together with O(t) operations from

the data structure. The time per data structure operation is either O(logM) or

O(log logM), as described above. The latter version also requires O(M) prepro-

cessing time to set up the flat tree search structures; however the same structures

can be re-used at different levels of the recursion and so this setup time need only

be payed once. The divide and conquer adds another logarithmic factor to this

bound. We also need to compute the possible base pairs and bucket sort them, in

a preprocessing stage taking time O(t). The total time to solve recurrence 12 is

O(n + M log2M) for arbitrary convex or concave functions. For simple functions

the time can be reduced to O(n+M logM log logM). •
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9.2. Faster Computation for Intermediate Sparsity

In the introduction we promised a time bound for the RNA structure computation

of O(n + M logM log min(M,n2/M)) for arbitrary convex or concave loop cost

functions, and O(O(n + M logM log log min(M,n2/M)) for simple cost functions.

Yet in the previous section the bounds we gave were only O(n + M log2M) or

O(n+M logM log logM). Here we describe how to improve our algorithms to run

within the time bounds we claimed. We assume without loss of generality that

n < M ; otherwise, the bounds given in the previous section reduce to those here.

First let us examine the algorithm for simple functions. The algorithm for

arbitrary functions is similar but requires a few more ideas. Our algorithms will

be similar to those of the previous section, but the divide and conquer scheme will

be different. Instead of dividing only by rows, we divide alternately by rows and

columns, similarly to the divide and conquer technique used in the non-sparse RNA

structure algorithm of Aggarwal and Park [3]. More precisely, at even levels of the

divide and conquer recurrence we divide the dynamic programming matrix at some

row i as before; however we choose i to be the center of the matrix rather than the

center of the sparse set of points in the matrix. At odd levels we similarly divide

by columns. In this way, each level of the recursion performs a computation in a

matrix that is either square or close to square; there can be O(log n) levels before

the recursion bottoms out at single points.

In terms of the pseudo-code given in the previous section, we need two versions

of Recurse, one that divides by rows and one that divides by columns, each of which

calls the other. We also need two versions of Influence, one to be called by each

version of Recurse. All of these procedures keep the sets of points they handle

in two sorted orders: sorted by rows, and sorted by columns. Unlike the code of

the previous section, we divide into only two sets A and C; the line of division



110

between them will be halfway between two actual rows or columns, and so there is

no in-between set B. Further this line of division is chosen by halving the number

of columns in the sets, instead of halving the number of points.

As before, we compute the values of the points in A recursively, compute the

influence of these values on those of the points in C, and then finish the computation

of the values in C recursively. In the description that follows we assume that the

current level in the divide and conquer recursion is even, so that as in the previous

section the division between A and C occurs on a row boundary; the computation

for odd levels is similar.

In the previous section, we computed the value D from E for each point when

it was part of set B. Because here there is no such set, we must do so at another

time; in particular we do so when the recursion bottoms out, and all points are on

a single row or column. In this way the value is computed exactly once for each

point, before it is needed.

Thus the pseudo-code for the procedures can be written as follows. We have

merged the Influence procedure in with Recurse, because it would have been called

only in one place. We only show one of the two mutually recursive procedures; the

other can be found by replacing rows by columns and vice versa.

procedure RecurseColumn(X ):
begin

let i and k be the first and last rows occurring in X ;
if i = k then

for x ∈ X do
compute D [x ] from E [x ];

else begin
j ← d(i + k)/2e;
let A be the points above row j in X ;
let C be the points on or below row j ;
RecurseRow(A);
let F [i ] = minj G [j ] + w(j , i) be solved by the data structure;
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for x ∈ X in order by columns do begin
d ← row(x ) + column(x );
if x ∈ A then G [d ]← min(G [d ],D [x ])
else E [x ]← min(E [x ],F [d ]);

end;
RecurseRow(C );

end;
end

Recall that we can implement the data structure of chapter 5 to use, in place

of the flat trees of van Emde Boas, we use Johnson’s improved flat trees [31]. With

such an implementation, a sequence of k operations, all of one type (insertions,

deletions, or searches), can be performed in total time O(k log n/k). If the cost

function is simple, this time can be further reduced to O(k log logn/k).

Theorem 10. The RNA structure computation of recurrence 12, for sparse set of

M fragments, and convex or concave cost functions with the closest zero property,

can be performed in time O(n+M logM log log min(M,n2/M)).

Proof: Consider the time for the top level of the recursion, which we denote

T (0). The algorithm from the previous section consists of, for each column, per-

forming a sequence of searches, and then a sequence of insertions and deletions.

Let the number of searches in column i be denoted si, and the number of inser-

tions and deletions be denoted di. Then
∑
di is at most twice the total number of

points in set A, and
∑
si is the total number of points in set C. The time taken

is
∑
si log logn/si +

∑
di log logn/di. In the function f(x) = x log logn/x, the

log logn/x term decreases as x increases, and so the function as a whole is sub-

linear and therefore convex. Because of this convexity the total time taken at the
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given recursive stage in the algorithm can be reduced to

T (0) =
n∑
i=1

O(f(si) + f(di))

≤ O(nf(
n∑
i=1

si/n))

= O(nf(M/n))

= O(n(M/n) log log
n

M/n
)

= O(M log logn2/M).

An identical analysis applies to each even level recursive subproblem, with n re-

placed in the bound by the size of the matrix for the subproblem. Similar bounds

hold for the odd levels.

Now let us consider the sum of the times for all stages at a given level 2i. As

before, the analysis for odd levels is similar. Let Mj , for j from 1 to 22i, be the

number of points in subproblem j. Further, at the given level, there will be 22i

subproblems, each of having 2i rows and columns. Then, by convexity, the total

time for the level is

T (i) = O(
22i∑
j=1

Mj log log
(n/2i)2

Mj
)

≤ O(22i(M/22i) log log
(n/2i)2

M/22i
)

= O(M log logn2/M).

There are O(logM) levels in the recursion, and each takes time O(M log logn2/M).

Therefore the total time is O(M logM log log min(M,n2/M)). •

Theorem 11. The RNA structure computation of recurrence 12, for a sequence of

length n, withM possible base pairs, and arbitrary convex or concave cost functions,

can be performed in time O(n+M logM log min(M,n2/M)).
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Proof: As we showed in chapter 5, k operations of the same type in the data

structure may be performed in time O(k log n/k). Thus the analysis is identical to

that of theorem 10, with log log replaced by log. •
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10. CONCLUSIONS AND FURTHER RESEARCH

We have described algorithms for sequence alignment with gaps, and for RNA

secondary structure computation. These algorithms assume convex, concave, or

mixed convex and concave costs. Some perform their computations on all potential

matching pairs of symbols in the input strings (or potential base pairs in the RNA

structure problem). Others achieve even greater efficiency by considering only a

sparse subset of the potential pairs. In particular, we described algorithms for the

following problems:

(1) Sequence alignment with concave gap costs, in time O(mn).

(2) RNA structure with convex or concave loop length costs, in time O(n2 log2 n).

For simple cost functions, the time becomes O(n2 log n log logn). These bounds

were recently improved by Aggarwal and Park [3] to O(n2 log n).

(3) Sequence alignment with mixed costs, in time O(mnsα(n/s)).

(4) RNA structure with mixed costs, in time O(n2s log nα(n/s)).

(5) Sparse sequence alignment, with concave costs in time O(M logM), and with

convex costs in time O(M logMα(M)).

(6) Sparse RNA structure computation, with convex or concave costs, in time

O(M logM log min(M,n2/M)). For simple cost functions, the time becomes

O(M logM log log min(M,n2/M)).

A number of related problems remain open for further research.

The most obvious is to ask whether any of the above bounds can be further

improved. For instance, when M = nm the sparse alignment algorithms are worse

than their non-sparse counterparts by a logarithmic factor; perhaps this factor can

be removed by, as in the RNA structure computation, replacing the logM term by

log min(M,nm/M). However this would seem to require a different approach than

the present divide and conquer. A similar question is whether the factor of α(n)
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can be removed in the convex alignment times, reducing them to the same as the

concave times. Such an improvement would also likely give a similar improvement

for the mixed cost algorithm time bounds.

It may prove possible to reduce the non-sparse RNA structure computation

time to O(n2), which would be optimal since that many values must be computed

in the recurrence. In the convex case perhaps an O(n2α(n)) time algorithm can be

found. Baruch Schieber (private communication) has claimed some results in this

direction.

Let us turn now to widening the set of assumptions made in our algorithms.

A particular special case that we omitted is sparse alignment or RNA structure

computation with mixed convex and concave cost functions. The difficulty here is

that, unlike the case for convex or concave costs, a submatrix of a mixed cost least

weight subsequence is not itself mixed. Perhaps our techniques can be extended to a

broader class of cost functions that is closed under submatrix reductions. A related

question, raised in the chapter on mixed cost functions, is whether we can improve

the obvious dynamic programming algorithms when the cost function w(x, y) =

g(y − x) is a function of one variable, but with no further assumptions.

In chapter 2, we mentioned the problem of computing a circular alignment for

two strings; that is, the minimum cost alignment between any circular permutations

of the two strings. For single insertions and deletions, a O(nm log n) time algorithm

was known [33], and it seems likely that the linear cost sparse alignment algorithm

of Eppstein et al. [12] reduces this to O(M logM log log min(M,nm/M)). However

these algorithms depend on a non-crossing property of shortest paths in the dynamic

programming matrix which may not hold in general, and in particular is not likely

to hold for convex costs. For concave costs, the non-crossing property may hold,

but only if we make some further assumptions about the cost of substitutions.

Finally, we must consider the space bounds for our algorithms. Recall that,
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for linear cost sequence alignment, Hirschberg [25] gave a linear space algorithm

remaining within the best known time bound of O(nm). However no such improve-

ment is known for our algorithms. In general, our space bounds are all currently

O(n2) for the RNA structure problem, and O(nm) for sequence alignment. For

the sparse RNA computation, the space bound is O(M), and for sparse sequence

alignment it is O(M logM). The last bound, in particular, may be greater than

the O(nm) non-sparse bound. For all of these bounds it remains open whether the

space can be improved, even at some small cost in time.
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