

Incremental and Decremental
Maintenance of Planar Width

David Eppstein
Dept. Information & Computer Science

Univ. of California, Irvine

1

Width & Diameter

Any convex body has two tangents
for each possible slope

Map slope→ distance between tangents

Width = min distance
Diameter = max distance

If input is nonconvex, use its convex hull
2

Why Width?

Stable grip for parallel jaw gripper
(for parts orientation or fixturing)

Statistics: L∞ regression
(minimize max distance from data to estimator)

3

Old Results

Static

O(n log n) [Preparata & Shamos 1985]

Dynamic

Average case for random update sequence
O(log n) [Eppstein, 1996]

Constant factor approximation
O(log2 n) [Janardan; Rote, Schwarz, Snoeyink 1993]

Offline, decision problem only
O(log3 n) [Agarwal and Sharir 1991]

Diameter (but not width)
O(nε) [Agarwal, Eppstein, Matoušek 1995]

This paper: partially extend diameter result to width
4

New Results

Width of a dynamic point set
in time O(knε) per insertion or deletion
where k = number of changes to convex hull

For insertions only (incremental)
or deletions only (decremental)
total hull change = O(n)

so amortized time/update = O(nε)

5

Main Idea

Maintain set of convex hull features
(edges and vertices)

[Overmars and van Leeuwen 1981]

Define distance between features
such that closest pair = width

Build data structures for nearest neighbor queries

Convert nearest neighbors⇒ closest pair

6

Hull Feature Compatibility

A vertex and edge are compatible if some tangent
at the vertex has same slope as the edge

Each edge has ≤ 2 compatible vertices
but vertex may have many compatible edges

Previous average-case algorithm:
maintain graph of all compatible pairs
but can have Ω(n) changes in worst case

7

Hull Feature Distance

Define distance between compatible features
to be Euclidean distance from point to line

But, define distance between incompatible features
to be infinite

Lemma: The width of a point set equals
the minimum distance between any two
features

So width becomes a closest pair problem
Solve by reducing closest pairs to nearest neighbors

8

Nearest Compatible Feature

Find nearest vertex to edge

Binary search in hull for compatible vertex

(If more than one, both are equally close)

Find nearest edge to vertex

Binary search for the compatible edges
But what if there are many of them?

Use BB[α] tree to represent compatible edges
as union of O(log n) canonical sets

Search for nearest in each canonical set

9

Nearest Compatible Feature (continued)

Given canonical set of edges, all compatible with
query vertex, which is the closest?

Cut each hull edge by equal slope planes inR3, then
distance to edge = vertical distance to plane

Query becomes vertical ray shooting!

10

Vertical Ray Shooting

Given set of planes above query point

Which plane has smallest vertical distance to query?

Static:
Find intersection of halfspaces
Build point location data structure
O(log n) per query

Dynamic: O(nε) per update or query
[Agarwal and Matoušek 1995]

We need the dynamic version

11

Closest Pair from Nearest Neighbors

Theorem: If we can perform dynamic
nearest neighbor queries in time T(n) per
update or query, then we can maintain
closest pairs in T(n) log2 n per update.
[Eppstein 1995]

Even easier method (not in proceedings):

Each vertex remembers nearest
compatible edge

When an update changes an edge, use
neighbor query to find affected vertex

For each new or affected vertex,
look up new nearest edge

12

Conclusions

Reduce width→ vertical ray shooting
O(log n) ray shooting operations per hull change
so O(nε) time per hull change

For incremental or decremental width,
O(nε) time per point insertion or deletion

What about fully dynamic width?
Worst case instead of amortized time?

Generalizations to other problems
e.g. to min max distance problems?

13

