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Abstract

We study the relationship between probabilistic and unambiguous
computation, and provide strong relativized evidence that they are
incomparable. In particular, we display a relativized world in which
the complexity classes embodying these paradigms of computation are
mutually immune. We answer questions formulated in—and extend
the line of research opened by—Geske and Grollman [15] and Balcázar
and Russo [3].

1 Introduction:
Why Compare Computational Paradigms?

Many complexity classes have been defined in recent years to characterize
the computational powers of natural approaches to computation. However,
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our prolific creation of complexity classes has outpaced our progress in inter-
relating these classes. Investigating relativized comparisons of complexity
classes is one fundamental way of augmenting our current knowledge [27, 34]
about possible class inclusions and oracle separations. Even the failure to
find relativized separations often leads to the discovery of important new
class inclusions and collapses; thus the collapse of the strong exponential
hierarchy [21], the inclusion of FewP in parity polynomial time [11], and the
inclusion of PNP[log] in probabilistic polynomial time [5, 32] were all found
due to failed separations.

In this paper, we compare probabilistic computation with unambiguous
computation and prove strong (mutual immunity) separations.

2 Basic Paradigms and Previous Work

In this section, we discuss three paradigms of computation—probabilistic
computation, unambiguous computation, and unique computation—and the
classes that model them.

Probabilistic Turing machines were studied by Gill [16]. Depending on
the exact definition of acceptance and the bounds put on errors, various
probabilistic complexity classes can be obtained. In this paper, we will
focus on the class R, random polynomial time, and the class BPP, bounded-
error probabilistic polynomial time. Both these classes, though perhaps not
“feasible” in the sense of deterministic polynomial time, are “feasible” in
practice, as a Turing machine with a coin can accept languages from these
classes with very low error probability.

Definition 1 ([16, 2])

1. BPP is the class of languages recognized by polynomial-time probabilis-
tic Turing machines whose error probability is bounded above by some
positive constant ε < 1/2.

2. R is the class of languages accepted by polynomial time probabilistic
Turing machines that have zero error probability for inputs not in the
language, and error probability bounded by some ε < 1/2 for inputs in
the language.

It follows immediately from the definitions that P⊆R⊆BPP∩NP, and Laute-
mann [25] and Sipser [31] showed that BPP⊆ ΣP

2 ∩ΠP
2 .
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Unambiguous computation was introduced by Valiant as a moderate
form of nondeterminism.

Definition 2 ([33])

1. A nondeterministic Turing machine is unambiguous if, for every in-
put, the machine has at most one accepting computation (accepting
path).

2. UP is the class of languages accepted by polynomial-time unambiguous
Turing machines.

Unambiguous polynomial time falls between P and NP; P⊆UP⊆NP.
There is growing evidence that UP may lack complete sets, even with re-
spect to Turing reductions [22, 20]. Unambiguous computation is related to
and motivated by cryptography; Grollmann and Selman have shown that
P6=UP if and only if one-way functions exist [17].

A related concept is that of unique acceptance. Blass and Gurevich [7]
defined a class that they called UNIQUE SOLUTION or US, which models
the sets accepted by nondeterministic Turing machines that by definition
accept if and only if they have exactly one accepting path.

Definition 3 ([7]) US= {L| there is a polynomial predicate P and an in-
teger k such that for all x: x ∈ L if and only if there is exactly one element
in the set {y| P (x, y) ∧ |y| ≤ |x|k}}.

Though UP machines can never have more than one accepting path, US
machines can—this simply causes them to reject. Immediate relationships
are: US is coNP-hard and UP⊆US∩NP [7].

A further generalization of US that has been studied is the Counting
Hierarchy [10, 18]. The usual definition of the counting hierarchy is as
follows:

Definition 4 Given a nondeterministic polynomial time machine M and a
set of integers S, let L(M,S) be the strings that, when input to machine M ,
cause the number of accepting paths of M to be a member of S. Then CH
is the class of languages L(M,S) where S is either finite or cofinite.

By abuse of notation we will call such a pair (M,S) a counting machine.
The reader will note that there is no explicit hierarchy obvious in this defi-
nition. However such a hierarchy can be constructed, and we will need it for
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our later proofs. Given a finite set S, let m(S) denote the largest number
in S; given a cofinite set let m(S) denote the largest number not in S.

Definition 5 CHi is the class of languages L(M,S) where S is either finite
or cofinite, and where m(S) < i.

The following facts then follow easily.

• If i ≤ j then CHi ⊂ CHj .

• CH=
⋃
iCHi.

• NP⊂CH1 =NP∪coNP.

• US⊂CH2 =US∪coUS.

For a complexity class C, we use coC to denote {A|Ā ∈ C}. For classes
whose notion of relativization [23, 1] is defined in a standard way, we use
CA to denote class C relativized with oracle set A. Informally, this means
that the machines involved have access to oracle A (a hypothetical unit cost
subroutine for the set A).

The philosophy behind relativization is simple: we relativize to explore
the limits of current mathematical proof techniques, and to certify plausi-
bilities about complexity classes. Informally, if statement S fails in some
relativized world, we can never hope to prove S in the real world by any
relativizable proof technique. Since almost all standard proof techniques
relativize, relativized results set tight limits on the current power of mathe-
matical proofs. However, theorems that fail to relativize do exist (see [19]).

Finally, we say an infinite set S is C-immune if S contains no infinite
subset that is a member of C [28]. We say a class C1 is C2-immune if C1
contains a C2-immune set.

There is a large literature on relativization. Among the results that in-
spired this paper are the following. Relativized relations between US and NP
were found by Blass and Gurevich [7] and have been generalized [10]. With
respect to a random oracle, it has long been known that US 6=P=R=BPP [6]
and Kurtz, Mahaney, and Royer have recently shown that P6=UP with prob-
ability one relative to a random oracle ([24]; see also [29]).1 Rackoff initially
relativized unambiguous and probabilistic classes to separate them from NP,
and to separate them from P [27]. Geske and Grollmann expanded on this to

1The result was first asserted by Beigel in [4], but the proof has been retracted. Beigel
has alternate proofs [Beigel, personal communication, 1989].

4



     

simultaneously separate probabilistic classes from both NP and from P, and
to simultaneously separate unambiguous classes from NP and from P [15].
They introduced some immunity results to this setting, most notably show-
ing that there is a relativized world in which UP is R-immune. Balcázar
and Russo [3] continued this work and found many immunity results be-
tween pairs of probabilistic complexity classes, and between probabilistic
and nondeterministic complexity classes. Balcázar and Russo concluded by
proposing as an area for further research the study of immunity results for
unambiguous nondeterministic Turing machines [3, p. 243]. We pursue this
study, and thus extend the series of results described above.

3 Mutually Incomparibility and Mutual Immunity

Our goal is to give relativized evidence that probabilistic and unambiguous
classes are incomparable. Incomparability results between deterministic and
nondeterministic complexity classes with differing time bounds have been
studied by Gasarch, Homer, and Lischke [14, 26, 13]. However, relativized
incomparability results are not the strongest type of incomparibility result.
Gasarch proved a stronger type of separation between NP and bounded
versions of deterministic exponential time [13], and we will also focus on
obtaining such “strong” separation results.

Definition 6 Complexity classes C1 and C2 are relativizably incomparable
(written C1 || C2) if there is an oracle set A such that CA1 6⊆ CA2 and CA1 6⊇ CA2 .

Definition 7

1. C1 and C2 are mutually immune if there exist languages L1 ∈ C1 and
L2 ∈ C2 such that L1 is C2-immune and L2 is C1-immune.

2. We write C1 <> C2 if there exists an oracle A such that CA1 and CA2
are mutually immune.

One must be careful. Merely showing that a language L is not in a certain
complexity class C does not guarantee that it is C-immune [6, 30]. For ex-
ample, there are relativized worlds in which the boolean closure of NP—the
so-called boolean hierarchy—contains sets that are not in DP; nonetheless,
every infinite set in the boolean hierarchy has an infinite DP subset [9]. Thus
immunity may be a more demanding requirement than mere separation.
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Our main result is that a mutual immunity relation holds between prob-
abilistic computation and unambiguous computation in a relativized world,
and such a relation also holds between probabilistic computation and unique
computation.

Theorem 1

• BPP<> C for C equal to any of the following language classes: UP,
coUP, UP∩coUP, NP, coNP, NP∩coNP, US, coUS, US∩coUS, CH,
and BH.

• coR<> C for C equal to any of the following language classes: UP,
coUP, NP, coUS, and UP∩coUP.

Mutual immunity implies mutual incomparibility, so these relations also
give us a number of mutual incomparibility results. The dual mutual in-
comparibilities obtained by replacing each complexity class C by coC in the
above relations then also follow as corollaries; e.g., R || coNP. However note
that mutual immunity does not dualize so trivially.

The proofs rely on interlacing the priorities of the two immunity con-
structions implicit in each part of the theorem while maintaining appropriate
invariants in the oracle; the underlying immunity constructions themselves
are novel.

Geske and Grollmann [15] proved the following strong separation: there
is a relativized world in which UP contains an R-immune set. An immediate
corollary of theorem 1 is a strengthening of their result.

Corollary 1 There is an oracle A such that UPA is BPPA-immune.

4 Proof of Mutual Immunity

The immunity results with BPP in theorem 1 follow from the obvious con-
tainments among language classes, together with the following result:

Theorem 2 There exist languages L1 and L2 and oracle A such that

• L1 is in UPA∩coUPA.

• L1 is BPPA-immune.

• L1 is infinite.
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• L2 is in BPPA.

• L2 is CHA-immune.

• L2 is infinite.

Proof: We build our oracle A in stages. After each stage i, for some
number `i we will have fixed all answers to queries of length less than or
equal to `i, and left undefined all answers to queries of length greater than
`i. At stage i+ 1 we will be considering the behavior of a finite number of
nondeterministic polynomial time machines on a particular input string of
length `i. Therefore, the number `i will be chosen so that all queries made
by the machines under consideration will be fixed. In particular `0 = 1000,
and `i+1 = 2`i should suffice for our constructions. We denote the partial
oracle constructed in stage i by Ai.

Let f(j) be the number of strings of length j ≤ `i in Ai. Then we
maintain the following invariants:

• For each j, either f(3j) ≤ 2j or f(3j) ≥ 23j−1.

• For each j, f(3j + 1) + f(3j + 2) = 1.

We define the languages required by the theorem as follows:

• L1 = {0j |f(3j + 1) = 1}.

• L2 = {0j |f(3j) ≥ 23j−1}.

Then clearly, if the invariants are maintained, L1 is in UPA∩coUPA. To
see that L2 is in BPPA, let an oracle machine choose, on input j, a random
string of length 3j, and accept if the string is in the oracle. If j is in L2,
the machine will accept with probability 1/2. If j is not in L2, the machine
will accept with probability much less than 1/4. These probabilities can
be amplified by making multiple random choices, to match any separation
desired in the definition of BPP .

Number all the possible CH oracle machines by C1, C2, etc., with the
requirement that the time taken by machine Ci on input x is at most |x|log i,
and the machine is in CHi. Number the probabilistic polynomial time oracle
machines B1, B2, etc., with the same time requirement. Note that machine
Bi may or may not be a BPP machine, depending on the choice of oracle;
in particular we require each BPP machine (relative to a given oracle) to
accept all input strings with probability either at least 2/3 (in which case
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the string is in the language accepted by the machine) or at most 1/3 (in
which case the string is rejected by the machine). BPP machines with other
probability bounds can easily be made into this form, so this restriction
involves no loss of generality.

Even Stages In stages i where i is even, we deal with the requirement
that L2 be CH-immune, yet infinite. All possible strings of L1 fixed by
choices made in this stage will be excluded from L1; therefore this stage
cannot affect the immunity results for L1. Similarly, all possible strings of
L2 fixed by the choices made in this stage are excluded with the possible
exception of 0`i−1 .

We say that a machine is eliminated if it is forced by the oracle choices
already fixed to accept a string not in L2. We require that eventually every
CH machine either becomes eliminated, or accepts a finite language (thus
failing to accept an infinite subset of L2). Let g = i/4; note that g < `i−1.
At stage i, for i even, we examine machines C1, C2, . . ., Cg. Let M1, M2,
. . ., Mj be those machines not already eliminated.

Note that for each machine Mk, in CHc (where by construction c ≤ `i−1),
the total number of possible oracle entries seen on c different nondetermin-
istic paths for input 0`i−1 is at most c`log `i−1

i−1 = c2log2 `i−1 < 2`i−1/`i−1.
Let A be the class of possible extensions of Ai−1, such that

• All strings of the form {03n+2}, for `i−1 < 3n+ 2 ≤ `i are included in
all oracles in A.

• All other strings of lengths from `i−1+1 to 3`i−1−1 and from 3`i−1+1
to `i are excluded from all oracles in A.

• Either f(3`i−1) ≤ 2`i−1 or f(3`i−1) ≥ 23`i−1−1.

Such oracles satisfy the invariants required above. Let A′ be the subclass
of A with the further requirement that f(3`i−1) ≤ 2`i−1 . I.e., A′ consists of
those oracles for which 0`i−1 is not in L2.

If there is an oracle A′ in A′ such that any machine Mk accepts string
0`i−1 , then we choose one such oracle and set Ai to be all strings of A′ no
longer than 2`i−1 ; Mk does not have time to query a string longer than this.
Then Mk is eliminated; the newly fixed oracle adds no strings to L2 so if
any other machine accepts string 0`i−1 , that machine is also eliminated.

In the other case, for each oracle A′ in A′, no machine Mk accepts
0`i−1 . Some machines may perhaps accept strings not of this form, in which
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case they become eliminated; we do not concern ourselves further with this
possibility. No machines are eliminated in at least 1/2 of the even stages,
because only the first i/4 machines are considered.

Then we wish to find an oracle A such that no machine Mk accepts 0`i−1 ,
and yet the string is in L2. We do this by restricting the class of oracles
under consideration in stages. In each stage, we force one of the machines
to reject, while still including oracles for which 0`i−1 is in L2. After we have
completed j such stages, we will have found the oracle that causes all the
machines to reject, as we desired.

Then let A0 = A. We will define oracle classes A1 ⊂ A0, A2 ⊂ A1, etc,
until we compute Aj . We maintain the invariants that:

• Each class Ak is formed by restricting the behavior of oracles in the
class on a set of strings. In particular, for each k there are two sets
of strings Sk and S′k ⊂ Sk. Then Ak consists of all oracles A in A
such that A ∩ Sk = S′k. In English, the oracles in Ak are required to
include all strings in S′k, and they are required to exclude all strings
in Sk − S′k.

• Sk is a superset of Sk−1; S′k ∩ Sk−1 = S′k−1. Therefore, Ak ⊂ Ak−1.
In other words, once we fix a string in or out of the oracles, we never
take back our choice.

• The sets Sk are small; in particular |Sk−Sk−1| ≤ k2`i−1/`i−1 therefore
Ak contains some oracles in A′, and some oracles not in A′.

• None of machines M1, M2, . . ., Mk accept input string 0`i−1 for any
oracle in Ak. The choice of Sk will cause this to be true for Mk; then
the second invariant will cause it to remain true in later stages.

Assume we have defined Ak−1 satisfying the invariants above. We now
show how to find Ak maintaining the invariants. In particular, we must find
a small set of strings to add to Sk and S′k that force Mk to reject string
0`i−1 .

Let machine Mk be in class CHc, for c ≤ min(i/4, `i−1). If there is
an oracle in Ak−1 such that Mk has at least c accepting paths, on input
0`i−1 , there are two cases: (1) Mk accepts when it finds that many accepting
paths. Then it must accept on the oracle in Ak−1 ∩A′ formed by fixing the
queries made on c such paths, and answering all remaining unfixed queries
negatively; but this contradicts the assumption that for all A′ ∈ A′, Mk
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rejects. (2) Mk rejects when it finds that many accepting paths; then set
Ak to be the oracle class formed by fixing the queries made on c accepting
paths. In terms of our notation, we add all queries made to Sk, and we add
only those queries answered positively to S′k. Then Mk must reject for any
oracle in Ak.

If there is no oracle that causes Mk to have c or more accepting paths,
Then some number d < c is the maximum number of accepting paths on
input 0`i−1 for machine Mk, maximized over all oracles in Ak−1. Pick some
oracle A′ achieving this maximum, and let Ak be the class formed by fixing
the queries made on the accepting paths of Mk for oracle A′. I.e., we add
those strings to Sk, and we add the strings in Sk ∩ A′ to S′k. Then for all
oracles in Ak, machine Mk has at least those d accepting paths, and it could
not have more or else A′ would not have maximized d. Since Ak contains
oracles in A′, and since we could not eliminate Ak, Mk must reject when it
sees d accepting paths; therefore it must reject for all oracles in Ak.

Now we let Â be any oracle in Aj ∩ (A−A′), and let Ai be the strings of
Â no longer than `i; no machine Mk has time to query a string longer than
this. Then each Mk rejects input string 0`i−1 for oracle Ai, but this string
is in L2.

The result of the stage is that either 0`i−1 is not in L2, but some Mk

accepts it, or 0`i−1 is in L2, and all Mk reject it; the second case happens
infinitely often. If we do not add any strings to L2 in the odd stages, the
conclusion must be that L2 is infinite, but that any machine that is never
eliminated can accept only finitely often (in particular it can only accept in
those stages before it becomes one of the machines in the list C1, C2, . . . Cg).

Odd Stages The outline for the odd stages is similar to that for the even
stages. In this case, a machine is eliminated when it is caused by the oracle
choices fixed so far to have probability greater than 2/3 of accepting a string
not in L1, or when there is an input string that causes it to have probability
between 1/3 and 2/3 of accepting. HereM1, M2, . . .Mk are the uneliminated
BPP machines in the list B1, B2, . . . Bg for g = min(i/4, `i−1).

We let A be the class of oracle extensions such that

• All strings of the form {03n+2}, for `i−1 < 3n + 2 ≤ `i and 3n + 2 6=
3`i−1 + 2 are included in all oracles in A.

• All other strings of lengths from `i−1 + 1 to 3`i−1 and from 3`i−1 + 3
to `i are excluded from all oracles in A.
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• f(3`i−1 + 1) + f(3`i−1 + 2) = 1.

Thus we exclude all strings with lengths from `i−1/3 to `i/3 from member-
ship in L1 and L2, except that 0`i−1 may be in L1. We let A+ be the oracles
in A for which 0`i−1 is in L1, and A− = A−A+.

If there is an oracle in A− such that one of the Mk accepts, or such that
some Mk has probability between 1/3 and 2/3 of accepting some string,
we fix the strings in that oracle up to length `i, to create Ai. Then Mk is
eliminated, and no strings have been added to L1.

Otherwise, no machine can be eliminated; this second case happens in-
finitely often since g < i/4. Let oracle A′ be the oracle meeting all the re-
quirements of class A except that it does not contain any strings of lengths
3`i−1 +1 and 3`i−1 +2. A′ does not satisfy our invariants, but we now show
that the behavior of the machines with oracle A′ is in some sense close to
their behavior with a certain oracle in A− and another oracle in A+. There-
fore if no machine could be eliminated by the oracle in A−, no machine will
accept string 0`i−1 with the oracle in A+.

If we run all machines M1, M2, . . .Mj with input string 0`i−1 and oracle
A′, then the total expected number of queries made by all machines together
is at most g`log g

i−1 < 2log `i−1 log log `i−1 < 2`i−1 . The numbers of strings of
lengths 3`i−1 +1 and 3`i−1 +2 are 23`i−1+1 and 23`i−1+2 respectively. There-
fore the average probability of a string of those lengths being queried by
at least one machine is at most 2−2`i−1−1. Let q and r be the strings of
lengths 23`i−1+1 and 23`i−1+2 respectively least likely to be queried. Then
their probabilities of being queried are at most this average. The probability
of at least one of q or r being queried by at least one machine Mk is then
bounded by the sum of their individual probabilities; this adds to at most
2−2`i−1 .

Let oracle Aq be formed by adding string q to A′, and similarly let Ar

be formed by adding r to A′. Then Aq is in A+, and Ar is in A−. We now
show that, if no machine could have been eliminated by oracle Ar, then each
machine Mk rejects string 0`i−1 given oracle Aq.

The probability that Mk queries one of strings q and r on input 0`i−1 ,
and can therefore distinguish oracles Aq and Ar, is at most the probability
that any of the j machines queries one of the two strings, which was bounded
above by 2−2`i−1 . Therefore the probability that Mk accepts input 0`i−1 for
oracle Aq differs from the probability of acceptance for oracle Ar 2−2`i−1 <
1/6. But since Mk could not be eliminated, it accepts the input for Ar

with probability at most 1/3. Therefore it accepts the input for Aq with
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probability at most 1/2, and thus either rejects the input or is eliminated.
We create Ai by fixing all strings in Aq of length at most `i. No machine

Mk can reach strings longer than this, so each machine must behave the
same for any oracle in class Ai as it does for Aq. In particular, it must reject
input 0`i−1 even though we have caused that string to be in language L1.

Therefore again, either we eliminate one of the Mk, or (infinitely often)
we extend L1 without letting any of the Mk accept. Therefore L1 is made
infinite and BPP-immune. 2

Given a class C of oracle machines, and an oracle A, we define CA to
be the class of languages accepted by machines in the class using the given
oracle.

Corollary 2 For any class C of oracle machines such that, for all oracles
A, UPA∩coUPA ⊂ CA ⊂CHA, BPP<> C.

In particular this proves the claims of immunity with BPP made in
theorem 1.

We should note that, since all languages used in our mutual immunity
proofs are subsets of 0∗, the preceeding and subsequent results also apply to
the analogous exponential time computation classes (see [12]).

It only remains to prove our claims of immunity with R. Again, these
follow from a single result:

Theorem 3 There exist languages L1 and L2 and an oracle A such that

• L1 is in UPA∩coUPA.

• L1 is BPPA-immune.

• L1 is infinite.

• L2 is in coRA.

• L2 is coUSA-immune.

• L2 is infinite.

Proof: We let L1 and L2 be the same languages as in the proof of theorem
2. However, we must now force L2 to be in coR. To do this, we restrict our
attention to oracles A satisfying the following conditions, which are stricly
stronger than the conditions given in the proof of theorem 2.
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• For each j, f(3j + 1) + f(3j + 2) = 1.

• For each j, either f(3j) ≤ 2j or f(3j) = 23j . I.e., either all queries
of length 3j are answered positively, or most of them are answered
negatively.

Again we construct our oracle A in stages. In the odd stages, we satisfy
the requirements that L1 be infinite and BPPA-immune. These stages are
identical to those in the proof of theorem 2, so we omit their description
here.

In the even stages, we maintain a list of coUS machines. We must
either eliminate a machine on the list by causing it to accept some input
string while not adding that string to L2 or we must add a string to L2 not
recognized by any uneliminated machine on the list. The string will as usual
be 0`i−1 .

As in the previous proof let A be the class of extensions of oracle Ai−1

meeting our restrictions, and with all strings of lengths other than 3`i−1

included or excluded in a fixed way so as to cause the corresponding input
strings not to be in L1 or L2. Let U1, U2, . . . Ug be the first g coUS-machines,
for g = min(i/4, `i−1), and let M1, M2, . . .Mj be the set of those machines
not already eliminated.

Let Â be the oracle constructed from Ai−1 by including all strings of
length 3`i−1, and omitting all other length strings as before. Then Â is the
unique oracle in A for which string 0`i−1 is in L2. Let A′ be A− Â.

If any oracle A′ in A′ causes some machine Mk to accept (either by
having no accepting paths, or by having two or more accepting paths) fix
Ai to be the reachable strings in A′ as before. This eliminates Mk while
keeping input string 0`i−1 out of language L2.

The other case is that all machines Mk reject string 0`i−1 for all oracles
in A′, and therefore no machine can be eliminated. This case must happen
infinitely often because g < i/4. We now show that, in this case, all machines
Mk also reject string 0`i−1 for oracle Â; therefore we can add the string 0`i−1

to language L2 without adding it to the languages accepted by any of the
machines.

We fix our attention on some uneliminated machine Mk. First note that,
for input 0`i−1 and oracle Â, machine Mk has zero or one accepting paths;
if it had more than one, we could fix the query answers made on two such
paths, and remove all other strings of length 3`i−1 from the oracle, giving an
oracle in A′ for which Mk accepts input string 0`i−1 . We now show that Mk
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must have exactly one accepting path, and therefore does not accept string
0`i−1 .

The structure of this section of the proof is similar to a number of previ-
ous results in the relativization literature, starting with Baker et al. [1] and
Rackoff [27]. In those cases one wishes to test whether a machine accepts or
rejects a string, given an oracle; this is done by iteratively determining the
membership of a small set of strings in the oracle, until the set contains all
the queries made by the machine. Here we already know all strings in the
oracle, but we use the same iterative structure to show that the machine in
fact rejects the given string.

By assumption Mk has exactly one accepting path for input 0`i−1 for
each oracle in A′. For each oracle A′ ∈ A′, let q(A′) be the set of queries of
length 3`i−1 made in the one accepting path of Mk. We can assume without
loss of generality that, for any two oracles X and Y , |q(X)| = |q(Y )| = c for
some c bounded by the running time of Mk; Mk can make and then ignore
the results of some dummy queries if necessary to make this happen.

Let X0 be the oracle in A′ formed by excluding all strings of length
3`i−1. Let X1 be formed from X0 by including all strings of length 3`i−1

queried in q(X0); i.e. we change all answers to queries in q(X0) to positive.
Repeating this process, let Xi be formed by changing all answers to queries
in q(Xi−1) to positive. We repeat this process at most c times, so each
oracle Xi contains at most c(c+1) ≤ `log `i−1

i−1 ≤ 2`i−1 strings of length 3`i−1;
therefore all such oracles are in A′.

Then for each Xi, i ≥ 1 it must be that q(Xi) and q(X0) are non-disjoint;
otherwise we could form an oracle in A′ for which Mk had two accepting
paths, by fixing the answers to queries in q(X0) to be those of oracle X0,
fixing those of q(Xi) to those of oracle Xi, and answering all other queries
negatively. This would contradict the assumption that no machine could be
eliminated.

Further, each q(Xi), i ≥ 2 must be non-disjoint with q(X1) − q(X0), if
q(X1)− q(X0) is non-empty; otherwise, we could form an oracle from which
Mk has two accepting paths, by answering the queries in q(X0) positively,
the answers in q(X1) − q(X0) negatively, and all other queries in q(Xi) as
they are set in oracle Xi.

Inductively, each q(Xi) must be non-disjoint with each non-empty set
of the form q(Xj) −

⋃
k<j q(Xk), for each j < i. Otherwise, we could form

two accepting paths, by setting the queries in q(Xi) ∩ q(Xj) to all positive,
matching the answers to those queries both in Xi and Xj , and setting the
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remaining answers in q(Xi) and q(Xj) to the answers given by Xi and Xj

respectively.
Therefore, for some i ≤ c, we must have q(Xi) ⊂

⋃
j<i q(Xj), for other-

wise q(Xc) would have to have points in c non-empty disjoint sets, contra-
dicting the assumption that |q(Xi)| ≤ c. By construction oracle Xi contains
all strings in

⋃
j<i q(Xj); it follows that all strings in q(Xi) are also in Xi;

that is, all queries of length 3`i−1 made on the accepting path of machine
Mk for input string 0`i−1 and oracle Xi are answered positively. Therefore
that accepting path must also exist for oracle Â, which answers all queries
positively. So Mk has an accepting path, and must reject string 0`i−1 for
oracle Â.

Therefore, we can set partial oracle Ai to be the reachable queries of Â,
and we will be adding a string to L2 that all machines Mk must reject. 2

Corollary 3 For any class C of oracle machines such that, for all oracles
A, UPA∩coUPA ⊂ CA ⊂coUSA, coR<> C.

In particular this holds for C taken to be UP, coUP, UP∩coUP, NP, and
coUS, as claimed in theorem 1.

5 Conclusions and Open Problems

This paper gives strong evidence that the paradigm of probabilistic compu-
tation is incomparable with both the unambiguous computation paradigm
and the unique computation paradigm. In particular, we proved mutual
immunity results.

We have left a number of possible results unproven. For instance, it
might be possible to extend the immunity results claimed in theorem 3
to immunity between coR and CH+, the class of languages accepted by
counting machines that accept when they have many accepting paths (NP
and coUS machines are instances of this, accepting when they have more
than 1 or 2 paths respectively).

Can even stronger separations be proven? In particular, can the “ulti-
mate” result—a probability one mutual immunity result—be obtained? It
follows from a very recent advance that the answer is “no.” Kurtz, Ma-
haney, and Royer [24] have recently shown that P6=UP with probability one
relative to a random oracle. Since it is well known that US6=P=BPP with
probability one [6], “ultimate” results of the form above are impossible for
BPP versus US, or for BPP versus UP.
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