Homework 6 Solutions

Problem C-5.1

Algorithm planWalkabout(G, s, d, k):
Input: A graph G containing vertices s and d. Each vertex represents a watering hole. Vertex s and d represent the start and destination of Anatjari’s journey respectively. Each edge, e, in G contains a label with the distance between the endpoints of e. The value k is the maximum distance Anatjari can walk.
Output: The shortest path from s to d with no edges longer than k, if such a path exists.

for each edge e in G
 if the length of e is greater than k
 remove e from G
BFS(G, s)

if a path to d was found
 return the path
else
 indicate that no such path exists

Give a graph G with n vertices and m edges, the first for loop will run in O(m) time and the BFS algorithm will run in O(n + m) time. Therefore the algorithm will run in O(n + m) time.

The correctness of the algorithm rests on the fact that a BFS starting at a vertex s will find a path with the minimum number of edges (and hence vertices) between s and all other vertices of G (if such a path exists).

Problem C-5.5

Algorithm placeGuards(X, d):
Input: Sequence X of real numbers in sorted order where each value represents the location of a painting, and a distance d in which a guard can protect all paintings
Output: Sequence of real numbers, each value represents the location of a guard

\(^1\)See Theorem 6.19 in Goodrich-Tamassia, page 315.
G <- new empty sequence

if !X.isEmpty
 cur_pos <- X.elemAtRank(0) + d
 cur_area <- cur_pos + d
 G.insertLast(cur_pos)

 for i <- 0 to X.size()-1
 if cur_area < X.elemAtRank(i)
 cur_pos <- X.elemAtRank(i) + d
 cur_area <- cur_pos + d
 G.insertLast(cur_pos)

 return G

This algorithm uses the Greedy Method to find the minimum number of guards needed to protect the paintings in X. The running time of this algorithm is $O(n)$ where n is the number of values in X.

Problem C-5.11

Like the Matrix Chain-Product problem, the problem of finding a minimum weight triangulation for a convex polygon can be solved using a dynamic programming algorithm.²

The algorithm below, minimumTriangulation(), fills in a two dimensional table, T, of values for a polygon P with n vertices. A cell $T[i][j]$ stores the weight of the optimal triangulation of polygon $v_i, ..., v_j, v_{j+1}$ for $0 \leq i < j \leq n - 2$. Therefore cell $T[0][n-2]$ will store the weight of the optimal triangulation. By convention, the triangulation weight of a polygon v_x, v_{x+1} is 0. The algorithm will run in $O(n^3)$ time and use $O(n^2)$ space.

Algorithm minimumTriangulation(P):
Input: Sequence P of n vertices, $v_{0}, v_{1}, ..., v_{n-1}$, representing a convex polygon
Output: An n-1 x n-1 table K where each cell $K[i][j]$ stores the index k of the optimal weight triangle v_{i}, v_{k+1}, v_{j+1}

T <- an empty n-1 x n-1 table
K <- an empty n-1 x n-1 table
for i <- 0 to n-2
 T[i][i] <- 0

for d <- 1 to n-2
 for i <- 0 to n-d-2
 j <- i + d
 T[i][j] <- infinity
 for k <- i to j-1
 q <- T[i][k] + T[k+1][j] + diagonal_weight(P.elemAtRank(i),
 P.elemAtRank(k+1),
 P.elemAtRank(j+1))
 if q < T[i][j]
 T[i][j] <- q
 K[i][j] <- k
 return K

Given the index table produced above, the constructTriangulation() algorithm reconstructs the optimal triangulation of the polygon P.

Algorithm constructTriangulation(P, K, i, j):
Input: An n-1 x n-1 table K where each cell K[i][j] stores the index k of the optimal weight triangle v_{i}, v_{k+1}, v_{j+1}.
Sequence P of n vertices, v_{0}, v_{1}, ..., v_{n-1}, representing a convex polygon. Indices i and j
Output: Sequence of triangles used to triangulate P
if j > i
 k <- K[i][j]
 X <- constructTriangulation(P,K,i,k)
 Y <- constructTriangulation(P,K,k+1,j)
 Z <- merge(X,Y)
 Z.insert(new triangle(P.elemAtRank(i),
 P.elemAtRank(k+1),
 P.elemAtRank(j+1))
 return Z
else
 return an empty sequence

An n vertex polygon may be triangulated using exactly n - 3 triangles. Therefore the constructTriangulation() method runs in O(n) time.

The computeTriangulation() method is a wrapper around the above to methodds that provides a convienent interface to an external user.

Algorithm computeTriangulation(P):
Input: Sequence P of n vertices, v_{0}, v_{1}, ..., v_{n-1}, representing a convex polygon.
Output: The set of triangles that form the minimum weight triangulation of P

$$K \leftarrow \text{minimumTriangulation}(P)$$
return $\text{constructTriangulation}(P, K, 0, n-2)$

Problem R-6.8

Given a graph G implemented using the adjacency matrix structure with n vertices, the method incidentEdges() will need to examine n cells to determine the number of edges incident on a particular vertex. Therefore the running time of incidentEdges() is $\Theta(n)$.

Notice that the DFS algorithm is called exactly once for each vertex in G. Each execution of the DFS algorithm results in one invocation of incidentEdges() and the running time of incidentEdges() dominates the running time of DFS as a whole. Therefore the total running time of the algorithm is $\Theta(n^2)$.
Program

/*
 * Implementation of the dynamic programming algorithm for finding the
 * longest common subsequence of two strings.
 *
 * @author James Lentini
 */

public class LCS
{
 public static String lcs(String x, String y)
 {
 int L[][] = new int[x.length() + 1][y.length() + 1];
 StringBuffer lcs = new StringBuffer();

 // initialize L
 for (int i = 0; i <= x.length(); i++) { L[i][0] = 0; }
 for (int j = 1; j <= y.length(); j++) { L[0][j] = 0; }

 // fill in L
 for (int i = 1; i <= x.length(); i++)
 {
 for (int j = 1; j <= y.length(); j++)
 {
 if (x.charAt(i-1) == y.charAt(j-1))
 {
 L[i][j] = L[i-1][j-1] + 1;
 }
 else
 {
 L[i][j] = Math.max(L[i-1][j], L[i][j-1]);
 }
 }
 }

 // reconstruct the lcs
 int i = x.length();
 int j = y.length();

 while (i != 0 && j != 0)
 {
 }
if (x.charAt(i-1) == y.charAt(j-1))
{
 lcs.insert(0, x.charAt(i-1));
 i--;
 j--;
}
else if (L[i-1][j] > L[i][j-1]) { i--; }
else { j--; }
}
return lcs.toString();
}

public static void main(String[] args)
{
 String x = "James", y = "Lentini";
 System.out.println("An LCS of " + x + " and " + y + " is " + lcs(x, y));
}