Please answer the following questions, each of which is worth 10 points.

1. Show that if a hash function is strongly collision-resistant, then it is weakly collision-resistant.

2. Consider the Merkle Hash tree, which is an authenticated dictionary that prove that an element \(x \) belongs to a set \(S \) (of all the values associated with the leaves of the hash tree). Devise a scheme for extending the Merkle Hash tree so that it can prove that an element \(x \) is not in the set \(S \).

3. Define a hash function, \(h(x, y) = g^x h^y \mod p \), where \(p \) is a prime and \(g \) and \(h \) are generators of the group \(\mathbb{Z}_p^* \). Show that if you could find \(a, b, c, d \) such that \(a \neq b \) and \(c \neq d \) yet \(h(a, b) = h(c, d) \), then you can solve the corresponding discrete logarithm problem. That is, you can find \(z \) such that \(g^z \mod p = h \).

4. Alice has lost her private key for RSA encryption, but she still knows her public key. That is, she knows a number \(n = pq \), where \(p \) and \(q \) are large primes, and she knows an exponent \(e \) that is relatively prime to \(n \). But she has forgotten \(p \) and \(q \) and \(d \), the multiplicative inverse of \(e \mod \phi(n) \). Rather than throw away the values \(n \) and \(e \), Alice wants to now use encryption with her public key as a hash function. That is, for any message \(M \) (even one bigger than \(n \)), she wants to compute the hash of \(M \) as \(h(M) = M^e \mod n \). Is this hash function one-way?

5. Suppose Alice has forgotten her private information for El Gamal encryption. Explain why Alice cannot use El Gamal encryption using her public key as a hash function.